A First Course in Differential Equations, 3rd ed. Springer-Verlag, NY (2015)
 J. David Logan, University of Nebraska

ERRATA

This supplement contains corrections in the text. It is an on-going collection, and the author would be grateful if readers could forward to me any new ones that they find. Mail them to jdavidlogan@gmail.com.

Chapter 1 Corrections

page 4 , The pendulum equation is $\theta^{\prime \prime}+\frac{g}{L} \sin \theta$.
page 22 , replace $x(1)=0$ by $x(0)=1$.
page 26, Exercise 1(e). The differential equation should be $x^{\prime}=a x+b$.
page 27, Exercise 1(c). Change the initial condition to $y(1)=\pi / 2$.
page 33. The more general linear equation resulting from unequal volumetric flow rates may be solved by methods from Section 1.4.
page 42, Exercise 3(b). Change the initial condition to $v(0)=1$.
page 45 . The differential equation modeling the chemical reactor is

$$
C^{\prime}+\frac{q_{\mathrm{in}}}{V(t)} C=\frac{q_{\mathrm{out}}}{V(t)} C_{\mathrm{i} n}
$$

page 48. Exercise 10 should refer to Section 1.3.
page 70. The differential equation in Exercise 1(a) is intended to be $x^{\prime}=h-x^{2}$.

Chapter 2 Corrections

page 83. The reference to the RCL circuit should cite Section 1.4 (or Section 1.4.3).
page 85 . In 3(c) the governing equation is $m x^{\prime \prime}=-k x-\gamma x^{\prime}$.
page 94. In Table 2.1, the case of real unequal roots should read $x(t)=$ $c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}$.
page 108. The method of undetermined coefficients gives $-4 A-3 B=1$, $3 A-4 B=0$. So that $A=-0.16$ and $B=-0.12$. The initial conditions imply that $c_{1}=4.16$ and $c_{2}=4.6$.
page 112. It is also thought that so-called "negative damping" rather than classical resonance was responsible for the Tacoma Narrows Bridge collapse.
page 120, Exercise 1(e). $t^{2} x^{\prime \prime}+3 t x^{\prime}+x=0$.
page 122. The particular solution in Example 2.33 should be

$$
x_{p}=\frac{1}{3} \cos \ln (\cos 3 t)+t \sin 3 t .
$$

page 123. The differential on the integral describing the rest solution should be $d s$ rather than $d x$.
page 124, Exercise 5. $L x \equiv x^{\prime \prime}+p x^{\prime}+q x$.
page 126, Exercise 7. " $x(t)=z(t) y(t) "$ should read " $x(t)=v(t) y(t) "$
page 130, Exercise 3. In the equation, $\sin 5 t$ should read $\sin 2 t$.
page 136, Exercise 9. The Dupuit-Forchheimer equation should read

$$
\frac{K}{2}\left(h^{2}\right)^{\prime \prime}=-q .
$$

Chapter 3 Corrections

page 154. The equation should read $x(t)=\int(t-3) H(t-3) d t=\frac{1}{2}(x-3)^{3} H(t-$ $3)$.
page 157, Exercise 5. replace "tranform" with"transform".
page 168. The second equation should read

$$
\int_{0}^{t} \delta_{a}(\tau) \phi(t-\tau) d \tau=H(t-a) \phi(t-a)
$$

page 175. The Table should be corrected:

- Replace $H(t-a)(t) f(t-a)$ with $H(t-a) f(t-a)$.
- Replace $\frac{2 b s}{\left(s^{2}+k^{2}\right)^{2}}$ with $\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}$
- Replace $\frac{s^{2}-b^{2}}{\left(s^{2}+k^{2}\right)^{2}}$ with $\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}}$
page 164, Exercise $15(\mathrm{~d})$. As the problem stands, the solution is $x(t)=0$. A better problem is

$$
x(t)=-2+\int_{0}^{t} \cos (t-r) x(r) d r .
$$

page 164, Exercise 17. The integral equation should read

$$
f(t)=\frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{x(\tau)}{\sqrt{t-\tau}} d \tau
$$

Chapter 5 Corrections

page 284, Exercise 11. The second equation should read

$$
\frac{d G}{d t}=c_{2} G(1-G)-c_{1} T G-d_{2} G
$$

