
CHAPTER 1

Partial Differential Equations on Bounded

Domains

1. Separation of Variables

Exercise 1. The solution is

u(x, t) =

∞
∑

n=1

ane
−n2t sinnx

where

an =
2

π

∫ π

π/2

sinnxdx = − 2

nπ
((−1)n − cos(nπ/2))

Thus

u(x, t) =
2

π
e−t sinx− 2

π
e−4t sin 2x+

2

3π
e−9t sin 3x+

2

5π
e−25t sin 5x+ · · ·

Exercise 2. The solution is given by formula (4.14) in the text, where the coeffi-
cients are given by (4.15) and (4.16). Since G(x) = 0 we have cn = 0. Then

dn =
2

π

∫ π/2

0

x sinnx dx+
2

π

∫ π

π/2

(π − x) sinnx dx

Using the antiderivative formula
∫

x sinnx dx = (1/n2) sinnx − (x/n) cosnx we
integrate to get

dn =
4

πn2
sin

nπ

2

Exercise 3. Substituting u(x, y) = φ(x)ψ(y) we obtain the Sturm-Liouville prob-
lem

−φ′′ = λφ, x ∈ (0, l); φ(0) = φ(l) = 0

and the differential equation

ψ′′ − λψ = 0

The SLP has eigenvalues and eigenfunctions

λn = n2π2/l2, φn(x) = sin(nπx/l)

and the solution to the ψ–equation is

ψn(y) = an cosh(nπy/l) + bn sinh(nπy/l)

1
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Therefore

u(x, y) =

∞
∑

n=1

(an cosh(nπy/l) + bn sinh(nπy/l)) sin(nπx/l)

Now we apply the boundary conditions:

u(x, 0) = F (x) =
∞
∑

n=1

an sin(nπx/l)

and

u(x, 1) = G(x) =
∞
∑

n=1

(an cosh(nπ/l) + bn sinh(nπ/l)) sin(nπx/l)

Thus

an =
2

l

∫ π

0

F (x) sin(nπx/l)dx

and

an cosh(nπ/l) + bn sinh(nπ/l) =
2

l

∫ π

0

G(x) sin(nπx/l)dx

which gives the coefficients an and bn.

Exercise 4. Substituting u = y(x)g(t) into the PDE and boundary conditions
gives the SLP

−y′′ = λy, y(0) = y(1) = 0

and, for g, the equation

g′′ + kg′ + c2λg = 0

The SLP has eigenvalues and eigenfunctions

λn = n2π2, yn(x) = sinnπx, n = 1, 2, . . .

The g equation is a linear equation with constant coefficients; the characteristic
equations is

m2 + km+ c2λ = 0

which has roots

m =
1

2
(−k ±

√

k2 − 4c2n2π2)

By assumption k < 2πc, and therefore the roots are complex for all n. Thus the
solution to the equation is (see the Appendix in the text on ordinary differential
equations)

gn(t) = e−kt(an cos(mnt) + bn sin(mnt))

where

mn =
1

2

√

4c2n2π2 − k2)

Then we form the linear combination

u(x, t) =

∞
∑

n=1

e−kt(an cos(mnt) + bn sin(mnt)) sin(nπx)

Now apply the initial conditions. We have

u(x, 0) = f(x) =
∞
∑

n=1

an sin(nπx)
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and thus

an =

∫ 1

0

f(x) sinnπx dx

The initial condition ut = 0 at t = 0 yields

ut(x, 0) = 0 =

∞
∑

n=1

(bnmn − kan) sin(nπx)

Therefore

bnmn − kan = 0

or

bn =
kan

mn
=

k

mn

∫ 1

0

f(x) sinnπx dx

2. Flux and Radiation Conditions

Exercise 1. This problem models the transverse vibrations of a string of length l
when the left end is fixed (attached) and the right end experience no force; however,
the right end can move vertically. Initially the string is displaced by f(x) and it is
not given an initial velocity.

Substituting u = y(x)g(t) into the PDE and boundary conditions gives the SLP

−y′′ = λy, y(0) = y′(l) = 0

and, for g, the equation

g′′ + c2λg = 0

The SLP has eigenvalues and eigenfunctions

λn = ((2n+ 1)π/l)2, yn(x) = sin((2n+ 1)πx/l), n = 0, 1, 2, . . .

and the equation for g has general solution

gn(t) = an sin((2n+ 1)πct/l) + bn cos((2n+ 1)πct/l)

Then we form

u(x, t) =

∞
∑

n=0

(an sin((2n+ 1)πct/l) + bn cos((2n+ 1)πct/l)) sin((2n+ 1)πx/l)

Applying the initial conditions,

u(x, t) = f(x) =

∞
∑

n=0

bn sin((2n+ 1)πx/l)

which yields

bn =
1

|| sin((2n+ 1)πx/l)||2
∫ l

0

f(x) sin((2n+ 1)πx/l)

And

ut(x, 0) = 0 =
∞
∑

n=0

ancλn sin((2n+ 1)πx/l)
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which gives an = 0. Therefore the solution is

u(x, t) =

∞
∑

n=0

bn cos((2n+ 1)πct/l)) sin((2n+ 1)πx/l)

Exercise 2. This problem models the steady state temperatures in a rectangular
plate that is insulated on both sides, whose temperature is zero on the top, and
whose temperature is f(x) along the bottom. Letting u = g(y)φ(x) and substituting
into the PDE and boundary conditions gives the Sturm-Liouville problem

−φ′′ = λφ, φ′(0) = φ′(a) = 0

and the differential equation

g′′ − λg = 0

The eigenvalues and eigenfunctions are λ0 = 0, φ(x) = 1 and

λn = n2π2/a2, φn(x) = cos(nπx/a), n = 1, 2, 3, . . .

The solution to the g equation is, corresponding to the zero eigenvalue, g0(y) =
c0y + d0, and corresponding to the positive eigenvalues,

gn(y) = cn sinh(nπy/a) + dn cosh(nπy/a)

Thus we form the linear combination

u(x, y) = c0y + d0 +

∞
∑

n=1

(cn sinh(nπy/a) + dn cosh(nπy/a)) cos(nπx/a)

Now apply the boundary conditions on y to compute the coefficients:

u(x, 0) = f(x) = d0 +

∞
∑

n=1

dn cos(nπx/a)

which gives

d0 =
1

a

∫ a

0

f(x)dx, dn =
2

a

∫ a

0

f(x) cos(nπx/a)dx

Next

u(x, b) = 0 = c0b+ d0 +
∞
∑

n=1

(cn sinh(nπb/a) + dn cosh(nπb/a)) cos(nπx/a)

Therefore

c0 = −d0/b, cn = −cosh(nπb/a)

sinh(nπb/a)
dn

Exercise 3. The flux at x = 0 is φ(0, t) ≡ −ux(0, t) = −a0u(0, t) > 0, so there
is heat flow into the bar and therefore adsorption. At x = 1 we have φ(1, t) =
−ux(1, t) = a1u(1, t) > 0, and therefore heat is flowing out of the bar, which is
radiation. The right side of the inequality a0 + a1 > −a0a1 is positive, so the
positive constant a1, which measures radiation, must greatly exceed the negative
constant a0, which measures adsorption.

In this problem substituting u = y(x)g(t) leads to the Sturm-Liouville problem

−y′′ = λy, y′(0) − a0y(0) = 0, y′(1) + a1y(1) = 0
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and the differential equation
g′ = λg

There are no nonpositive eigenvalues. If we take λ = k2 > 0 then the solutions are

y(x) = a cos kx+ b sin kx

Applying the two boundary conditions leads to the nonlinear equation

tan k =
(a0 + a1)k

k2 − a0a1

To determine the roots k, and thus the eigenvalues λ = k2, we can graph both sides
of this equation to observe that there are infinitely many intersections occuring at
kn, and thus there are infinitely many eigenvalues λn = k2

n. The eigenfunctions are

yn(x) = cos knx+
a0

kn
sin knx

So the solution has the form

u(x, t) =

∞
∑

n=1

cne
−λ2

n
t(cos knx+

a0

kn
sin knx)

The cn are then the Fourier coefficients

cn = (f, yn)/||yn||2

If a0 = −1/4 and a1 = 4 then

tan k =
3.75k

k2 + 1

From a graphing calculator, the first four roots are approximately k1 = 1.08, k2 =
3.85, k3 = 6.81, k4 = 9.82.

Exercise 4. Letting c(x, t) = y(x)g(t) leads to the periodic boundary value prob-
lem

−y′′ = λy, y(0) = y(2l), y′(0) = y′(2l)

and the differential equation
g′ = λDg

which has solution
g(t) = e−Dλt

The eigenvalues and eigenfunctions are found exactly as in the solution of Exercise
4, Section 3.4, with l replaced by 2l. They are

λ0 = 0, λn = n2π2/l2, n = 1, 2, . . .

and
y0(x) = 1, yn(x) = an cos(nπx/l) + bn sin(nπx/l), n = 1, 2, . . .

Thus we form

c(x, t) = a0/2 +

∞
∑

n=1

e−n2π2Dt/l2(an cos(nπx/l) + bn sin(nπx/l)

Now the initial condition gives

c(x, 0) = f(x) = a0/2 +
∞
∑

n=1

(an cos(nπx/l) + bn sin(nπx/l)
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which is the Fourier series for f . Thus the coefficients are given by

an =
1

l

∫ 2

0

lf(x) cos(nπx/l)dx, n = 0, 1, 2, /ldots

and

bn =
1

l

∫ 2

0

lf(x) sin(nπx/l)dx, n = 1, 2, /ldots

3. Laplace’s Equation

Exercise 2. Substituting u(r, θ) = g(θ)y(r) into the PDE and boundary conditions
gives the Sturm-Liouville problem

−g′′ = λg, g(0) = g(π/2) = 0

and the differential equation

r2y′′ + ry′ + λy = 0

This SLP has been solved many times in the text and in the problems. The eigen-
values and eigenfunctions are

λn = 4n2, gn(θ) = sin(2nθ), n = 1, 2, . . .

The y equation is a Cauchy-Euler equation and has bounded solution

yn(r) = r2n

Form

u(r, θ) =

∞
∑

n=1

bnr
2n sin(2nθ)

Then the boundary condition at r = R gives

u(R, θ) = f(θ) =

∞
∑

n=1

bnR
2n sin(2nθ)

Hence the coefficients are

bn =
1

πR2n

∫ π/2

0

f(θ) sin(2nθ)dθ

Exercise 3. Substituting u(r, θ) = g(θ)y(r) into the PDE and boundary conditions
gives the Sturm-Liouville problem

−g′′ = λg, g(0) = g′(π/2) = 0

and the differential equation

r2y′′ + ry′ + λy = 0

The eigenvalues and eigenfunctions are

λn = (2n+ 1)2, gn(θ) = sin((2n+ 1)θ), n = 0, 1, 2, . . .

The y equation is a Cauchy-Euler equation and has bounded solution

yn(r) = r2n+1
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Form

u(r, θ) =

∞
∑

n=1

bnr
2n+1 sin((2n+ 1)θ)

Then the boundary condition at r = R gives

u(R, θ) = f(θ) =
∞
∑

n=1

bnR
2n+1 sin((2n+ 1)θ)

Hence the coefficients are

bn =
1

πR2n+1

∫ π/2

0

f(θ) sin((2n+ 1)θ)dθ

Exercise 4. Substituting r = 0 into Poisson’s integral formula (4.34) of the text
we instantly get the temperature at the origin as

u(0, 0) =
1

2π

∫ 2π

0

f(θ)dθ

The right side is the average of the function f(θ) over the interval [0, 2π].

Exercise 5. Let w = u+ v where u satisfies the Neumann problem and v satisfies
the boundary condition n · ∇v = 0. Then

E(w) = E(u+ v)

=
1

2

∫

Ω

(∇u · ∇u+ 2∇u · ∇v + ∇v · ∇v)dV −
∫

∂Ω

(hu− hv)dA

= E(u) +

∫

Ω

∇u · ∇v dV +
1

2

∫

Ω

∇v · ∇vdV −
∫

∂Ω

hv dA

= E(u) +

∫

∂Ω

v∇u · n dA−
∫

Ω

v∆u dV +
1

2

∫

Ω

∇v · ∇vdV −
∫

∂Ω

hv dA

= E(u) +

∫

∂Ω

vh dA+
1

2

∫

Ω

∇v · ∇vdV −
∫

∂Ω

hv dA

= E(u) +
1

2

∫

Ω

∇v · ∇vdV

So E(u) ≤ E(w).

Exercise 6. Multiply both sides of the PDE by u and integrate over Ω. We obtain
∫

Ω

u∆u dV = c

∫

Ω

u2dV

Now use Green’s first identity to obtain
∫

∂Ω

u∇u · ndA−
∫

Ω

∇u · ∇u dV = c

∫

Ω

u2dV

or

−
∫

∂Ω

au2dA−
∫

Ω

∇u · ∇u dV = c

∫

Ω

u2dV
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The left side is negative and the right side is positive. Then both must be zero, or
∫

Ω

u2dV = 0

Hence u = 0 in Ω.
The uniqueness is standard. Let u and v be two solutions to the boundary

value problem

∆u− cu = f, x ∈ Ω n · ∇u+ au = g, x ∈ ∂Ω

Then the difference w = u− v satisfies the homogeneous problem

∆w − cw = 0, x ∈ Ω n · ∇w + aw = 0, x ∈ ∂Ω

By the first part of the problem we know w = 0 and therefore u = v.

Exercise 7. The solution is given by equation (4.31) in the text. Here

f(θ) = 4 + 3 sin θ

The right side is its Fourier series, so the Fourier coefficients are given by
a0

2
= 4, Rb1 = 3

with all the other Fourier coefficients identically zero. So the solution is

u(r, θ) = 4 +
3r

R
sin θ

Exercise 8. Multiplying the equation ∆u = 0 by u, integrating over Ω, and then
using Green’s identity gives

∫

Ω

u∆u dV =

∫

∂Ω

u∇u · ndA−
∫

Ω

∇u · ∇udV = 0

Thus
∫

Ω

∇u · ∇udV = 0

which implies

∇u = 0

Thus u =constant.

4. Cooling of a Sphere

Exercise 1. The problem is

−y′′ − 2

ρ
y′ = λy, y(0) bounded, y(π) = 0

Making the transformation Y = ρy we get −Y ′′ = λY . If λ = −k2 < 0 then

Y = a sinh kρ+ b cosh kρ

or

y = ρ−1(a sinh kρ+ b cosh kρ)

For boundedness at ρ = 0 we set b = 0. Then y(π) = 0) forces sinh kπ = 0. Thus
k = 0. Consequently, there are no negative eigenvalues.
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Figure 1. Temperature at the center of the sphere in Exercise 2.

Exercise 2. From the formula developed in the text the temperature at ρ = 0 is

u(0, t) = 74
∞
∑

n=1

(−1)n+1 1

n
e−n2kt

where k = 5.58 inches-squared per hour. A graph of an approximation using fifty
terms is shown in the figure.

Exercise 3. The boundary value problem is

ut = k(uρρ +
2

ρ
uρ)

uρ(R, t) = −hu(R, t), t > 0

u(ρ, 0) = f(ρ), 0 ≤ ρ ≤ R

Assume u = y(ρ)g(t). Then the PDE and boundary conditions separate into the
boundary value problem

y′′ + (2/ρ)y′ + λy = 0, y′(R) = −hy(R), y bounded

and the differential equation

g− = −λkg
The latter has solution g(t) = exp(−λkt). One can show that the eigenvalues are
positive. So let λ = p2 and make the substitution Y = ρy, as in the text, to obtain

Y ′′ + p2Y = 0

This has solution

Y (ρ) = a cos pρ+ b sin pρ
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But Y (0) = 0 forces a = 0 (because y is bounded). Then the other boundary
condition forces p to satisfy the nonlinear equation

tanRp =
Rp

1 −Rh

If we graph both sides of this equation against p we note that there are infinitely
many intersections, giving infinitely many roots pn, n = 1, 2, . . ., and therefore
infinitely many eigenvalues λn = p2

n. The corresponding eigenfunctions are

yn(ρ) = ρ−1 sin(
√

λnρ)

Thus we have

u(ρ, t) =

∞
∑

n=1

cne
−λnktρ−1 sin(

√

λnρ)

The cn are found from the initial condition. We have

u(ρ, 0) = f(ρ) =

∞
∑

n=1

cnρ
−1 sin(

√

λnρ)

Thus

cn =

∫ R

0
ρf(ρ) sin(

√
λnρ)dρ

∫ R

0
sin2(

√
λnρ)ρdρ

Exercise 4. Representing the Laplacian in spherical coordinates, the boundary
value problem for u = u(ρ, φ), where ρ ∈ (0, 1) and φ ∈ (0, π), is

∆u = uρρ +
2

ρ
uρ +

1

ρ2 sinφ
(sinφuφ) = 0

u(1, φ) = f(φ), 0 ≤ φ ≤ π

Observe, by symmetry of the boundary condition, u cannot depend on the angle θ.
Now assume u = R(ρ)Y (φ). The PDE separates into two equations,

ρ2R′′ + 2ρR′ − λR = 0

and
1

sinφ
(sinφY ′)′ = λY

We transform the Y equation by changing the independent variable to x = cosφ.
Then we get, using the chain rule,

1

sinφ

d

dφ
= − d

dx

So the Y –equation becomes

− d

dx

(

(1 − x2)
dy

dx

)

= λy − 1 < x < 1

By the given facts, this equation has bounded, orthogonal, solutions yn(x) = Pn(x)
on [−1, 1] when λ = λn = n(n + 1), n = 0, 1, 2, . . .. Here Pn(x) are the Legendre
polynomials.

Now, the R–equation then becomes

ρ2R′′ + 2ρR′ − n(n+ 1)R = 0
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This is a Cauchy-Euler equation (see the Appendix in the text) with characteristic
equation

m(m− 1) +m− n(n+ 1) = 0

The roots are m = n,−(n+ 1). Thus

Rn(ρ) = anρ
n

are the bounded solutions (the other root gives the solution ρ−n−1, which is un-
bounded at zero). Therefore we form

u(ρ, φ) =
∞
∑

n=0

anρ
nPn(cosφ)

or, equivalently

u(ρ, x) =

∞
∑

n=0

anρ
nPn(x)

Applying the boundary condition gives the coefficients. We have

u(1, x) = f(arccosx) =

∞
∑

n=0

anPn(x)

By orthogonality we get

an =
1

||Pn||2
∫ 1

−1

f(arccosx)Pn(x)dx

or

an =
1

||Pn||2
∫ π

0

f(φ)Pn(cosφ) sinφ dφ

By direct differentiation we get

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

5

2
x3 − 3

2
x

Also the norms are given by

||P0||2 = 2, ||P1||2 =
2

3
, ||P2||2 =

2

5

When f(φ) = sinφ the first few Fourier coefficients are given by

a0 =
π

4
, a1 = a3 = 0, a2 = −0.49

Therefore a two-term approximation is given by

u(ρ, φ) ≈ π

4
− 0.49

2
ρ2(3 cos2 φ− 1)

Exercise 5. To determine the temperature of the earth we must derive the tem-
perature formula for any radius R (the calculation in the text uses R = π). The
method is exactly the same, but now the eigenvalues are λn = n2π2/R2 and the
eigenfunctions are yn = ρ−1 sin(nπρ/R), for n = 1, 2, . . .. Then the temperature is

u(ρ, t) =
2RT0

π

∞
∑

n=1

(−1)n+1

n
e−lamnktρ−1 sin(nπρ/R)
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Now we compute the geothermal gradient at the surface, which is uρ(ρ, t) at ρ = R.
We obtain

uρ(R, t) = −2T0

R

∞
∑

n=1

e−n2π2kt/R2

If G is the value of the geothermal gradient at the current time t = tc, then

RG

2T0
=

∞
∑

n=1

e−n2π2ktc/R2

We must solve for tc. Notice that the sum has the form
∞
∑

n=1

e−an2

where a = π2ktc/R
2. We can make an approximation by noting that the sum

represents a Riemann sum approximation to the integral
∫ ∞

0

e−ax2

dx =
1

2

√

π/a

So we use this value to approximate the sum, i.e.,
∞
∑

n=1

e−n2π2ktc/R2 ≈ R

2
√
kπtc

Solving for tc gives

tc =
T 2

0

G2kπ
Substituting the numbers in from Exercise 5 in Section 2.4 gives tc = 5.15(10)8

years. This is the same approximation we found earlier.

5. Diffusion in a Disk

Exercise 1. The differential equation is −(ry′)′ = λry. Multiply both sides by y
and integrate over [0, R] to get

∫ R

0

−(ry′)′ydr = λ

∫ R

0

ry2dr

Integrating the left hand side by parts gives

−ryy′ |R0
∫ R

0

r(y′)2dr = λ

∫ R

0

ry2dr

But, since y and y′ are assumed to be bounded, the boundary term vanishes. The
remaining integrals are nonnegative and so λ ≥ 0.

Exercise 2. Let y, λ and w, µ be two eigenpairs. Then −(ry′)′ = λry and
−(rw′)′ = µrw. Multiply the first of these equations by w and the second by
y, and then subtract and integrate to get

∫ R

0

[−(ry′)′w + (rw′)′y]dr = (λ− µ)

∫ R

0

ruwdr
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Figure 2. The Bessel functions J0(znr).

Now integrate both terms in the first integral on the left hand side by parts to get

(−ry′w + rw′y) |R0 +

∫ R

0

(ry′w′ − rw′y′)dr = (λ− µ)

∫ R

0

ruwdr

The left side of the equation is zero and so y and w are orthogonal with respect to
the weight function r.

Exercise 3. We have

u(r, t) =

∞
∑

n=1

cne
−0.25λntJ0(znr)

where

cn =

∫ 1

0
5r4(1 − r)J0(znr)dr
∫ 1

0
J0(znr)2rdr

We have z1 = 2.405, z2 = 5.520, z3 = 8.654. Use a computer algebra program to
calculate a three-term approximation.

Exercise 4. The eigenfunctions J0(znr), n = 1, 2, 3, 4 are sketched in the figure.
For larger n the number of oscillations increases.

Exercise 5. The Maple worksheet follows.
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6. Sources on Bounded Domains

Exercise 1. Use Duhamel’s principle to solve the problem

utt − c2uxx = f(x, t), 0 < x < π, t > 0

u(0, t) = u(π, t) = 0, t > 0

u(x, 0) = ut(x, 0) = 0, 0 < x < 1

Consider the problem for w = w(x, t, τ), where τ is a parameter:

wtt − c2wxx = 0, 0 < x < π, t > 0

w(0, t, τ) = w(π, t, τ) = 0, t > 0

w(x, 0, τ) = 0, wt(x, 0, τ) = 0, 0 < x < 1

This problem was solved in Section 4.1 (see (4.14)–(4.14)). The solution is

w(x, t, τ) =
∞
∑

n=1

cn(τ) sinnct sinnx

where

cn(τ) =
2

ncπ

∫ π

0

f(x, τ) sinnx dx

So the solution to the original problem is

u(x, t) =

∫ t

0

w(x, t− τ, τ)dτ

Exercise 2. If f = f(x), and does not depend on t, then the solution can be
written

u(x, t) =
2

π

∞
∑

n=1

(
∫ π

0

f(r) sinnr dr

)

(

(
∫ t

0

e−n2k(t−τ)dτ

)

sinnx

But a straightforward integration gives
∫ t

0

e−n2k(t−τ)dτ =
1

kn2
(1 − e−n2kt)

Therefore

u(x, t) =
2

π

∞
∑

n=1

1

kn2
(1 − e−n2kt)

(
∫ π

0

f(r) sinnr dr

)

sinnx

Taking the limit as t→ ∞ gives

U(x) ≡ limu(x, t) = u(x, t) =
2

π

∞
∑

n=1

1

kn2

(
∫ π

0

f(r) sinnr dr

)

sinnx

Now consider the steady state problem

−kv′′ = x(π − x), v(0) = v(π) = 0

This can be solved directly by integrating twice and using the boundary conditions
to determine the constants of integration. One obtains

v(x) = − 1

12k
(2πx2 − x4 − π3x)
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To observe that the solution v(x) is the same as the limiting solution U(x) we
expand the right side of the v–equation in its Fourier sine series on [0, π]. Then

−kv′′ =

∞
∑

n=1

cn sinnx

where

cn =
2

π

∫ π

0

r(π − r) sinnrdr

Integrating the differential equation twice gives

−kv(x) + kv′(0)x =
∞
∑

n=1

cnn
−2(sinnx− x)

Evaluating at x = π gives

kv′(0) =

∞
∑

n=1

cnn
−2

Whence

kv(x) =
∞
∑

n=1

cnn
−2 sinnx

or

v(x) =
2

kπ

∞
∑

n=1

1

n2

(
∫ π

0

f(r) sinnr dr

)

sinnx

Hence v(x) = U(x).

Exercise 3. Following the hint in the text we have

u(x, y) =
∞
∑

n=1

gn(y) sinnx

where we find

g′′n − n2gn = fn(y), gn(0) = gn(1) = 0

where fn(y) are the Fourier coefficients of f(x, y). From the variation of parameters
formula

gn(y) = aeny + be−ny − 2

n

∫ y

0

sinh(n(ξ − y))fn(ξ)dξ

Now gn(0) = 0 implies b = −a. So we can write

gn(y) = 2a sinhny − 2

n

∫ y

0

sinh(n(ξ − y))fn(ξ)dξ

which gives, using gn(1) = 0,

a =
1

n sinhn

∫ 1

0

sinh(n(ξ − 1))fn(ξ)dξ

Thus the gn(y) are given by

gn(y) =
2 sinhny

n sinhn

∫ 1

0

sinh(n(ξ − 1))fn(ξ)dξ − 2

n

∫ y

0

sinh(n(ξ − y))fn(ξ)dξ
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Exercise 4. The problem is

ut = ∆u+ f(r, t) 0 ≤ r < R, t > 0

u(R, t) = 0, t > 0

u(r, 0) = 0, 0 < r < R

For w = w(r, t, τ) we consider the problem

wt = ∆w 0 ≤ r < R, t > 0

w(R, tτ) = 0, t > 0

w(r, 0, τ) = f(r, τ), 0 < r < R

This is the model for heat flow in a disk of radius R; the solution is given by
equation (4.53) in Section 4.5 of the text. It is

w(r, t, τ) =
∑

cn(τ)e−λnktJ0(znr/R)

where zn are the zeros of the Bessel function J0, λn = z2
n/R

2 and

cn(τ) =
1

||J0(znr/R)||2
∫ R

0

f(r, τ)J0(znr/R)rdr

Then

u(r, t) =

∫ R

0

w(r, t− τ, τ)dτ

7. Parameter Identification Problems

Exercise 1. We have
p1 = p0e

r1t∗ , p2 = p0e
r2t∗

Dividing the two equations and then taking natural logarithms gives

r1 − r2 =
1

t∗
(ln p1 − ln p2)

By the mean value theorem

| ln a− ln b|
|a− b| =

d lnx

dx
|x=c =

1

c

for some c between a and b. Thus

|r1 − r2| =
1

t∗
| ln p1 − ln p2| ≤

1

Mt∗
|p1 − p2|

Exercise 2. We have ρ(x)utt = uxx. Putting u = Y (x)g(t) gives, upon separating
variables,

−y′′ = ρ(x)λy, y(0) = y(1) = 0

We have
−y′′f = ρ(x)λfyf , yf (0) = yf (1) = 0

Integrating from x = 0 to x = s gives

−y′f (s) + y′f (0) = λf

∫ s

0

ρ(x)yf (x)dx
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Now integrate from s = 0 to s = 1 to get

y′f (0) = λf

∫ 1

0

∫ s

0

ρ(x)yf (x)dxds

= λf

∫ 1

0

(1 − x)ρ(x)yf (x)dx

The last step follows by interchanging the order of integration. If ρ(x) =r ho0 is a
constant, then

ρ0 =
y′f (0)

λf

∫ 1

0
(1 − x)yf (x)dx

Exercise 3. From Exercise 2 in Section 4.6 we have the solution

u(x, t) =
2

π

∞
∑

n=1

1

kn2
(1 − e−n2kt)

(
∫ π

0

f(r) sinnr dr

)

sinnx

Therefore

U(t) = u(π/2, t) =

∫ π

0

(

2

π

∞
∑

n=1

sinnr sin(nπ/2)
1

kn2
(1 − e−n2kt)

)

f(r)dr

We want to recover f(x) if we know U(t). This problem is not stable, as the
following example shows. Let

u(x, t) = m−3/2(1 − e−m2t) sinmx, f(x) =
√
m sinmx

This pair satisfies the model. If m is sufficiently large, thenu(x, t) is uniformly
small; yet f(0) is large. So a small error in measuring U(t) will result in a large
change in f(x).

Exercise 4. The problem is

ut = uxx, x, t > 0

u(x, 0) = 0, x > 0

u(0, t) = f(t), t > 0

Taking Laplace transforms and solving gives

U(x, s) = F (s)e−x
√

s

Here we have discarded the unbounded part of the solution. So, by convolution,

u(x, t) =

∫ t

0

f(τ)
x

√

4π(t− τ)3
e−x2/4(t−τ)dτ

Hence, evaluating at x = 1,

U(t) =

∫ t

0

f(τ)
1

√

4π(t− τ)3
e−1/4(t−τ)dτ

which is an integral equation for f(t). Suppose f(t) = f0 is constant and U(5) = 10.
Then

20
√
π

f0
=

∫ 5

0

e−1/4(5−τ)

√

4π(5 − τ)3
dτ = 2 erfc (1/

√
5)

where erfc = 1 − erf . Thus f0 = 59.9 degrees.
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Exercise 5. The problem

ut = Duxx − vux, x ∈ R, t > 0; u(x, 0) = e−ax2

, x ∈ R

can be solved by Fourier transforms to get

u(x, t) =

√
a√

a+ 4Dt
e−(x−vt)2/((a+4Dt)

Thus, choosing a = v = 1 we get

U(t) = u(1, t) =
1√

1 + 4Dt
e−(1−t)2/((1+4Dt)

8. Finite Difference Methods

Exercise 1. The Cauchy-Euler algorithm for this problem is

Yn+1 = Yn + h(−2nhYn + Y 2
n ), n = 0, 1, 2, . . . ;Y0 = 1

where h is the step size. With h = 0.1 the values of Yn at the points tn = nh, n =
0, . . . , 10 are:

1, 1.1, 1.199, 1.295, 1.385, 1.466, 1.534, 1.585, 1.615, 1.617, 1.587

Exercise 2. A time snapshot of the solution surface at t = 1 is shown in the
accompanying figure. The Maple program in Figure 4.8 of the text was run with
h = 0.1 and k = 0.1, which gives r = k/h2 = 10. This violates the stability
condition, and one can observe the highly oscillatory behavior of the numerical
scheme.

Exercise 3. The Maple worksheet and surface plot is given in the two figures.

Exercise 4. The Maple worksheet and surface plot is given in the two figures.

Exercise 5. The Maple worksheet and surface plot for the first problem in Exercise
5 is given in the accompanying figures.



8. FINITE DIFFERENCE METHODS 19

Figure 3. Time t = 1 profile of the numerical solution in Exercise
2 when h/k = 10.
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Figure 4. Maple program to solve Exercise 3.
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Figure 5. Solution surface in Exercise 3.



22 1. PARTIAL DIFFERENTIAL EQUATIONS ON BOUNDED DOMAINS

Figure 6. Maple program to solve Exercise 4.
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Figure 7. Solution surface in Exercise 4.
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Figure 8. Maple program to solve Exercise 5.
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Figure 9. Solution surface in Exercise 5.





CHAPTER 2

Appendix

1. The equation y′ + 2y = e−x is first order, linear. Multiply by the integrating
factor e2x and the equation becomes (ye2x)′ = ex Integrate both sides and multiply
by e−2x to get

y(x) = Ce−2x + e−x

2. Here, y′ = −3y. Separate variables and integrate to obtain

y(x) = Ce−3x

3. The equation y′′ +8y = 0 is second-order, linear, with constant coefficients. The
characteristic equation is m2 + 8 = 0 which has roots m = ±

√
8. Then

y(x) = A cos
√

8x+B sin
√

8x

4. The equation y′ − xy = x2y2 is a Bernoulli equation. Make the substitution
w = 1/y and the equation turns into a linear equationw′ + xw = −x2. The
integrating factor is exp(x2/2). Multiplying by the integrating factor gives

(wex2/2)′ = −x2ex2/2

Integrating both sides from 0 to x gives

wex2/2 − w(0) = −
∫ x

0

r2er2/2dr

Then

w(x) = 1/y(x) = e−x2/2w(0) − e−x2/2

∫ x

0

r2er2/2dr

5. The equation x2y′′−3xy′+4y = 0 is a Cauchy-Euler equation. The characteristic
equation is m(m− 1) − 3m+ 4 = 0 which has roots m = 2, 2. Thus

y(x) = ax2 + bx2 lnx

6. The equation y′′ +x(y′)2 = 0 does not have y appearing explicitly. So let v = y′

to obtain
v′ + xv2 = 0

We separate variables to get
1

v
=

1

2
x2 +A

27
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Then

y(x) =

∫

dx

x2/2 +A
+B =

2√
2A

arctan
x√
2A

+B

7. The equation y′′ + y′ + y = 0 is linear, second-order, with constant coefficients.
The characteristic equation is m2 +m+1 = 0, which has roots m = −1/2±

√
3i/2.

Thus

y(x) = e−x/2

(

a cos

√
3x

2
+ b sin

√
3x

2

)

8. In the equation yy′′ − (y′)3 = 0 the independent variable does not appear
explicitly. So let v = y′ which gives y′′ = v dv

dy . Then we get

yv
dv

dy
= v3

Separating variables and solving gives v = −1/(C + ln y). Then

(C + ln y)dy = −dx
Then

Cy + y ln y − y = −x+B

9. The equation 2x2y′′+3xy′−y = 0 is a Cauchy-Euler equation with characteristic
equation 2m(m− 1) + 3m− 1 = 0. The roots are m = −1, 1/2. Then

y(x) = a
√
x+

b

x

10. The equation y′′−3y′−4y = 2 sinx is a linear, nonhomogeneous equation. The
homogeneous solution is yh(x) = ae4t+be−t. Guess a particular solution of the form
yp(x) = A sinx+B cosx. Substitute into the equation to find A = 5/8, B = −3/8.
Then

y(x) = ae4t + be−t +
5

8
sinx− 3

8
cosx

11. The homogeneous solution of y′′ + 4y = x sinx is yh(x) = a cos 2x+ b sin 2x. A
particular solution can be found by undetermined coefficients or using the variation
of parameters formula from this appendix. We choose the latter. We have

yp(x) =

∫ x

0

cos 2s sin 2x− cos 2x sin 2s

2
s sin 2s ds

The calculation is left as an exercise. The solution is the sum of yh and yp.

12. The equation y′ − 2xy = 1 is linear with integrating factor exp(−x2). Multi-
plying by the integrating factor leads to

(ye−x2

)′ = e−x2
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Integrating from 0 to x then gives

y(x) = y(0)ex2

+

∫ x

0

ex2−r2

dr

13. The second order linear equation y′′ +5y”+6y = 0 has characteristic equation
m2 + 5m+ 6 = 0 with roots −3,−2. Hence

y(x) = ae−3x + be−2x

14. Separate variables to obtain

(1 + 3y3)dy = x2dx

Integrating gives the implicit solution

y +
3

4
y4 =

1

3
+ C


