CHAPTER 1

Partial Differential Equations on Bounded
Domains

1. Separation of Variables

Exercise 1. The solution is

o0
— 2 .
u(z,t) = E ane " tsinna
n=1

where
2 (™ . 2 .
ap = — sinnzdr = ——((—1)" — cos(nw/2))
™ 7.‘./2 nm
Thus
2 2 2 2
u(z,t) = Ze 'sine — e *sin2c + —e Ysin3r + —e P sinbz + - - -
T s 3m o

Exercise 2. The solution is given by formula (4.14) in the text, where the coeffi-
cients are given by (4.15) and (4.16). Since G(x) = 0 we have ¢, = 0. Then

2 71'/2 2 ™
dnz—/ msinnxdx—i——/ (m — ) sinnz dz
™ Jo T Jr/2

Using the antiderivative formula [xsinnz dz = (1/n?)sinnz — (z/n) cosnz we
integrate to get

Exercise 3. Substituting u(z,y) = ¢(x)1(y) we obtain the Sturm-Liouville prob-
lem

—¢" =X¢, x€(0,1); $(0)=¢()=0
and the differential equation
"—Xp=0
The SLP has eigenvalues and eigenfunctions
A\ =022 /1%, ¢n(x) = sin(nra/l)
and the solution to the ¥—equation is
U, (y) = ay, cosh(nmy/l) + b, sinh(nmy/1)

1
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Therefore

u(z,y) = Z(an cosh(nmy/l) + by, sinh(nwy/1)) sin(nwz /1)

n=1

Now we apply the boundary conditions:

u(x,0) = F(z) = Z ap, sin(nwx/1)

and
u(z,1) = G(z) = Z(an cosh(nz/l) + by, sinh(nn /1)) sin(nwz /1)
Thus " o 7
ap, = 7/0 F(z)sin(nrx/l)dx
and

ay, cosh(nm /1) + by, sinh(nw/l) = / G(z)sin(nrx/l)dx

which gives the coefficients a,, and b,.

Exercise 4. Substituting v = y(z)g(t) into the PDE and boundary conditions
gives the SLP

=Xy, y(0)=y(1)=0
and, for g, the equation

J"+ kg +AAg=0
The SLP has eigenvalues and eigenfunctions

Ay =072, yn(z) =sinnrz, n=1,2,...

The g equation is a linear equation with constant coefficients; the characteristic
equations is

m?+km+cEX=0
which has roots

— 4c®n2n?)
By assumption k < 27c, and therefore the roots are complex for all n. Thus the
solution to the equation is (see the Appendix in the text on ordinary differential
equations)
gn(t) = e ¥ (a, cos(mpt) + by, sin(myt))

1
My, = 5\/ 4c2n?m2 — k2)

Then we form the linear combination

where

Z e " (a, cos(mpt) + by, sin(m,t)) sin(nrz)
Now apply the initial cond1t1ons. We have

u(z,0) E ay, sin(nmz)
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and thus )
ap = / f(z)sinnrz dr
0
The initial condition u; = 0 at ¢ = 0 yields

ug(z,0) =0 = Z(bnmn — kay,) sin(nmx)
n=1
Therefore
bpymy, —ka, =0
or
1
by, = kan = i/ f(z)sinnmzx dx
s mn Jo

2. Flux and Radiation Conditions

Exercise 1. This problem models the transverse vibrations of a string of length [
when the left end is fixed (attached) and the right end experience no force; however,
the right end can move vertically. Initially the string is displaced by f(z) and it is
not given an initial velocity.

Substituting u = y(x)g(¢) into the PDE and boundary conditions gives the SLP

-y =Xy, y(0)=y(1)=0
and, for g, the equation
g +cAg=0
The SLP has eigenvalues and eigenfunctions
M= (2n+D)7/1)?, yu(z) = sin((2n + Drz/l), n=0,1,2,...
and the equation for g has general solution
gn(t) = ap sin((2n + 1)wet /1) + by, cos((2n + 1)wct /1)

Then we form

u(z,t) = Z(an sin((2n 4 1)wct /1) 4 by, cos((2n + V)wet /1)) sin((2n + 1)z /1)

n=0

Applying the initial conditions,

u(a,t) = f(z) =Y bysin((2n + V)mz/1)

n=0
which yields

1
bn = [sin((2n + 1)rz/0)| 2

!
/0 f(z)sin((2n + )7 /1)
And
ug(x,0) =0 = Z anCAp sin((2n + D)z /1)

n=0
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which gives a,, = 0. Therefore the solution is

u(z,t) = i by, cos((2n + 1)mwet /1)) sin((2n + )7 /1)

n=0

Exercise 2. This problem models the steady state temperatures in a rectangular
plate that is insulated on both sides, whose temperature is zero on the top, and
whose temperature is f(x) along the bottom. Letting u = g(y)¢(x) and substituting
into the PDE and boundary conditions gives the Sturm-Liouville problem

—¢" =Xp, ¢'(0)=¢'(a) =0
and the differential equation
g —Ag=0
The eigenvalues and eigenfunctions are A\g = 0, ¢(z) = 1 and
Ao =n?12/a?,  ¢n(x) = cos(nmx/a), n=1,2,3,...

The solution to the g equation is, corresponding to the zero eigenvalue, go(y) =
coy + do, and corresponding to the positive eigenvalues,

gn(y) = cp sinh(nmy/a) + d,, cosh(nry/a)

Thus we form the linear combination

u(z,y) = coy + do + Z(cn sinh(nmy/a) + d,, cosh(nwy/a)) cos(nrz/a)

n=1

Now apply the boundary conditions on y to compute the coefficients:

u(z,0) = f(x) =do + Z dy, cos(nmz/a)

n=1

which gives
L[ 2 [
do = _/ f(z)dz, d, = _/ f(@) cos(nma/a)dx
a Jo a Jo
Next

u(z,b) =0=cob+do + Z(C” sinh(nwb/a) + d,, cosh(nwb/a)) cos(nrz/a)
n=1
Therefore
cosh(nmb/a)

co=—do/b, en = ~ sinh(nwb/a) "

Exercise 3. The flux at z = 0 is ¢(0,t) = —u,(0,t) = —aou(0,t) > 0, so there
is heat flow into the bar and therefore adsorption. At z = 1 we have ¢(1,t) =
—ug(1,t) = aqu(l,t) > 0, and therefore heat is flowing out of the bar, which is
radiation. The right side of the inequality ag + a1 > —aga; is positive, so the
positive constant a;, which measures radiation, must greatly exceed the negative
constant ag, which measures adsorption.

In this problem substituting u = y(z)g(t) leads to the Sturm-Liouville problem

—y" =Xy, ' (0) —ay(0) =0, ¥'(1) +a1y(1) =0
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and the differential equation
g =g
There are no nonpositive eigenvalues. If we take A = k2 > 0 then the solutions are
y(x) = acoskx + bsin kx
Applying the two boundary conditions leads to the nonlinear equation
ap + a1)k
tank = 7(]{20_ aol(zl

To determine the roots k, and thus the eigenvalues A = k2, we can graph both sides
of this equation to observe that there are infinitely many intersections occuring at
Ky, and thus there are infinitely many eigenvalues \,, = k2. The eigenfunctions are

yn(x) = cos kpx + & sin k,x
kn

So the solution has the form
ao

o0
u(z,t) = Z cne_’\it(cos knx + — sin k)
n=1 kn

The ¢,, are then the Fourier coefficients

Cn = (fv yn)/||yn||2
If ap = —1/4 and a; = 4 then

From a graphing calculator, the first four roots are approximately k1 = 1.08, kg =
3.85, k3 = 6.81, kg = 9.82.

Exercise 4. Letting c(x,t) = y(z)g(t) leads to the periodic boundary value prob-
lem
=y =Xy, y(0) =y(2), y'(0) =y'(2)

and the differential equation

g'=ADg
which has solution

g(t) _ efD)\t

The eigenvalues and eigenfunctions are found exactly as in the solution of Exercise
4, Section 3.4, with [ replaced by 2l. They are

Xo =0\, =n?7%/1?, n=1,2,...
and
yo(x) =1, yn(z) = a,cos(nma/l) + by sin(nwz/l), n=1,2,...
Thus we form
o0
c(xz,t) =ap/2+ Z e~ Dt/l? (an cos(nmx/l) + by, sin(nwx /1)
n=1

Now the initial condition gives

c(z,0) = f(z) =ap/2+ Z(an cos(nmzx/l) + by, sin(nwz /1)

n=1
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which is the Fourier series for f. Thus the coefficients are given by
1 (2
ap = 7/ lf(x)cos(nmx/l)dx, n=0,1,2,/ldots
0

and

2
by, = %/ Uf(x)sin(nrz/l)de, n=1,2,/ldots
0

3. Laplace’s Equation

Exercise 2. Substituting u(r, 0) = ¢g(#)y(r) into the PDE and boundary conditions
gives the Sturm-Liouville problem

—g" =MXg, g(0)=g(m/2) =0
and the differential equation
2y +ry + Ay =0
This SLP has been solved many times in the text and in the problems. The eigen-
values and eigenfunctions are
Ay =4n? gn(0) =sin(2n0), n=1,2,...

The y equation is a Cauchy-Euler equation and has bounded solution

yn(r) —_ ,r,2n

Form
u(r,0) = Z b, " sin(2n6)
n=1

Then the boundary condition at » = R gives

u(R,0) = f(0) = byR*" sin(2n0)

Hence the coefficients are

1 7T/2

Exercise 3. Substituting u(r, ) = g(0)y(r) into the PDE and boundary conditions
gives the Sturm-Liouville problem

—g"=Xg, g(0)=¢g(n/2)=0
and the differential equation

1

2y +ry + Xy =0
The eigenvalues and eigenfunctions are

A= (2n4+1)% g,(0) =sin((2n+ 1)), n=0,1,2,...
The y equation is a Cauchy-Euler equation and has bounded solution

yn(r) —_ T,2n+1
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Form

Z 2" sin((2n + 1)8)

n=1

Then the boundary condition at r = R gives

u(R,0) = = Z b, R sin((2n +1)0)

n=1

Hence the coefficients are

1 .
b, = W/o £(60) sin((2n + 1)6)df

Exercise 4. Substituting » = 0 into Poisson’s integral formula (4.34) of the text
we instantly get the temperature at the origin as

27
u(0,0) = o / £(6)d0

The right side is the average of the function f(6) over the interval [0, 27].

Exercise 5. Let w = u + v where u satisfies the Neumann problem and v satisfies
the boundary condition n - Vv = 0. Then

E(w) E(u+v)

= 1/(VU'VU+2VU'V’U+V’U'V’U)dV7/ (hu — hv)dA
2 Jo 89
= E(u)Jr/Vu'VvdV+1/VU'VvdV7/ hv dA
Q 2 Jo a0
= E(u)+/ vVu~ndA—/vAudV+l/Vv-VvdV—/ hv dA
a0 Q 2 Jo 89
- E(u)+/ vhdA+1/Vv~VvdV—/ hv dA
a0 2 Jo a0
= E(u)+l/Vv-VvdV
2 Ja
So E(u) < E(w).

Exercise 6. Multiply both sides of the PDE by w and integrate over 2. We obtain

/ uAu dV = c/ u2dV
Q Q

Now use Green'’s first identity to obtain

/ uVu-ndA—/Vu-VudV:c/u2dV
o0 Q Q

—/ aquA—/Vu-VudV:c/quV
o0 Q Q

or
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The left side is negative and the right side is positive. Then both must be zero, or

/ w2dV =0
Q
Hence v =0 in €.

The uniqueness is standard. Let u and v be two solutions to the boundary
value problem

Au—cu=f, z€Q n-Vu+au=g, x€
Then the difference w = u — v satisfies the homogeneous problem

Aw—cw =0, € n-Vw+aw =0, z¢€d
By the first part of the problem we know w = 0 and therefore u = v.

Exercise 7. The solution is given by equation (4.31) in the text. Here
f(0) =4+ 3sind

The right side is its Fourier series, so the Fourier coefficients are given by

ao

— =4, Rbj =3

5 1

with all the other Fourier coefficients identically zero. So the solution is

u(r, 0) :4+3—];sin9

Exercise 8. Multiplying the equation Au = 0 by wu, integrating over 2, and then
using Green’s identity gives

/uAudV:/ uVu~ndA—/Vu-VudV=O
Q o0 Q

/Vu-VudeO
Q

Thus

which implies
Vu=0

Thus u =constant.

4. Cooling of a Sphere

Exercise 1. The problem is
2
—y" - ;y’ =y, y(0) bounded, y(7) =0

Making the transformation Y = py we get —Y” = \Y. If A = —k? < 0 then
Y = asinh kp + bcosh kp

or
y = p~*(asinh kp + bcosh kp)

For boundedness at p = 0 we set b = 0. Then y(m) = 0) forces sinh km = 0. Thus

k = 0. Consequently, there are no negative eigenvalues.
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FiGURE 1. Temperature at the center of the sphere in Exercise 2.

Exercise 2. From the formula developed in the text the temperature at p = 0 is
> 1 e
u(0,t) =74 E (=1t ekt
n
n=1

where k = 5.58 inches-squared per hour. A graph of an approximation using fifty
terms is shown in the figure.

Exercise 3. The boundary value problem is
up = k(upp + %Up)
u,(R,t) = —hu(R,t), t>0
u(p,0) = f(p), 0<p<R

Assume u = y(p)g(t). Then the PDE and boundary conditions separate into the
boundary value problem

y" +(2/p)y’ + Xy =0, ¢ (R)=—hy(R), y bounded
and the differential equation
g— = —Akg

The latter has solution ¢(t) = exp(—Akt). One can show that the eigenvalues are
positive. So let A = p? and make the substitution Y = py, as in the text, to obtain

Y'+p°Y =0
This has solution

Y (p) = acospp + bsin pp
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But Y(0) = 0 forces a = 0 (because y is bounded). Then the other boundary
condition forces p to satisfy the nonlinear equation

Rp
tan Rp =
P=1"Rn
If we graph both sides of this equation against p we note that there are infinitely
many intersections, giving infinitely many roots p,, n = 1,2,..., and therefore

infinitely many eigenvalues \,, = p2. The corresponding eigenfunctions are

Yn(p) = p~*sin(y/Anp)

Thus we have
u(p,t) = Z cne MR Lsin(/\,p)
n=1

The ¢,, are found from the initial condition. We have

oo

u(p,0) = f(p) =Y cnp™ " sin(v/Anp)

n=1
Thus
_Jo It (o) sin(vAup)dp

St sin® (VA p)pdp

n

Exercise 4. Representing the Laplacian in spherical coordinates, the boundary
value problem for u = u(p, ¢), where p € (0,1) and ¢ € (0, ), is

2

1 .
Au = up, + ;up + m(sm pug) =0

u(1,¢):f(¢)7 0<o¢<m

Observe, by symmetry of the boundary condition, u cannot depend on the angle 6.
Now assume v = R(p)Y (¢). The PDE separates into two equations,

p*R’ +2pR' — AR =0

and

1

¢(sin oY) = \Y
We transform the Y equation by changing the independent variable to x = cos ¢.
Then we get, using the chain rule,

1L d__4d
singdp  dx

So the Y—equation becomes

d dy
——((1-2*">) = -1 1
d:C(( x)d;v> Ay <z <
By the given facts, this equation has bounded, orthogonal, solutions y, (x) = P, (z)
n [—1,1] when A =X, =n(n+1),n =0,1,2,.... Here P,(z) are the Legendre
polynomials.
Now, the R—equation then becomes

p*R" +2pR —n(n+1)R=0
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This is a Cauchy-Euler equation (see the Appendix in the text) with characteristic
equation

m(m—1)+m-—-n(n+1)=0
The roots are m = n, —(n + 1). Thus
Rn(p) = anp"

n—

are the bounded solutions (the other root gives the solution p~"~!, which is un-

bounded at zero). Therefore we form

U(p, ¢) - Z anpnpn (COS QS)
n=0
or, equivalently
u(p,x) = Z anp" Py (x)
n=0

Applying the boundary condition gives the coefficients. We have
u(l,z) = f(arccosz) = Z an Py (x)
n=0
By orthogonality we get

1 1
ap = AR [1 f(arccos x) Py, (z)dx
or _
i = ﬁ /0 F(6)Pa(cos ) sin ¢ do

By direct differentiation we get
L, o 5 3
Py(z) =1, Pi(z) =z, P(x)= 5(33: —1), P3(x) = 2%~ 5%
Also the norms are given by

2 2
B|P=2 ||A|IP=32, |IR|P=z

When f(¢) = sin ¢ the first few Fourier coefficients are given by

apg = %, a; = as = 0, as = —0.49
Therefore a two-term approximation is given by
m 0.49
u(p, @) ~ 1 Tp2(3cos2 o—1)

Exercise 5. To determine the temperature of the earth we must derive the tem-
perature formula for any radius R (the calculation in the text uses R = 7). The
method is exactly the same, but now the eigenvalues are \,, = n?72/R? and the
eigenfunctions are y, = p~!sin(nmp/R), for n = 1,2,.... Then the temperature is

2RTH o= (—1)7+1
u(p,t) = 2037
n=1

) e~tamnkt )= sin(nmp/R)
n
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Now we compute the geothermal gradient at the surface, which is u,(p, t) at p = R.
We obtain
o0
up(R, t) = _2_T0 e—’I’L27T2kt/R2
n=1
If G is the value of the geothermal gradient at the current time ¢ = ¢., then
RG = —n272kt./R>

‘We must solve for t.. Notice that the sum has the form

[e%S)
E e—an2
n=1

where a = 72kt./R?. We can make an approximation by noting that the sum
represents a Riemann sum approximation to the integral

> 2 1
/ e " dx = 5\/71’/&
0

So we use this value to approximate the sum, i.e.,

o0
§ :e—n27r2ktc/R2 ~ R
2V kmt,

n=1
Solving for t. gives
T2
te = =0
G?km
Substituting the numbers in from Exercise 5 in Section 2.4 gives t. = 5.15(10)8
years. This is the same approximation we found earlier.

5. Diffusion in a Disk

Exercise 1. The differential equation is —(ry’)" = Ary. Multiply both sides by y
and integrate over [0, R] to get

R R
/ —(ry") ydr = )\/ rydr
0 0

Integrating the left hand side by parts gives

R R
—ryy’ \OR/ r(y')2dr = )\/ rydr
0 0

But, since y and 3y’ are assumed to be bounded, the boundary term vanishes. The
remaining integrals are nonnegative and so A > 0.

Exercise 2. Let y,A and w,p be two eigenpairs. Then —(ry’) = Ary and
—(rw’)’ = prw. Multiply the first of these equations by w and the second by
y, and then subtract and integrate to get

R R
/0 = (ryYw + (rw!Y'gldr = (A — ) / s



5. DIFFUSION IN A DISK 13

FIGURE 2. The Bessel functions Jy(z,7).

Now integrate both terms in the first integral on the left hand side by parts to get

R R
(—ry/w 4 rw'y) |§ +/O (ry’'w’ —rw'y")dr = (A — ,u)/o ruwdr

The left side of the equation is zero and so y and w are orthogonal with respect to
the weight function r.

Exercise 3. We have

oo

u(r,t) = Z cnefo‘z‘r’)‘"t:]g(znr)

n=1
where

B fol 5r4(1 — 1) Jo(2nr)dr
" fol Jo(znr)%rdr

We have z; = 2.405, 29 = 5.520, z3 = 8.654. Use a computer algebra program to
calculate a three-term approximation.

Exercise 4. The eigenfunctions Jy(z,7), n = 1,2,3,4 are sketched in the figure.
For larger n the number of oscillations increases.

Exercise 5. The Maple worksheet follows.
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6. Sources on Bounded Domains

Exercise 1. Use Duhamel’s principle to solve the problem
Uy — gy = flx,t), O<z<m, t>0
u(0,t) = u(m,t) =0, t>0
u(z,0) = w(x,0) =0, O0<z<l1
Consider the problem for w = w(z,t,7), where 7 is a parameter:
wtt—c%m:o, O<z<mt>0
w(0,t,7) = w(m,t,7) =0, t>0
w(z,0,7) =0, w(z,0,7) =0, O<z<l1
This problem was solved in Section 4.1 (see (4.14)—(4.14)). The solution is

w(z,t,7) = Z ¢n (7) sin net sin nx:

where ) .
n(7) = — f(z,7)sinnx dx
en(T) ner /. (z,7)si

So the solution to the original problem is

t
u(z,t) = / w(zx,t —7,7)dr
0

Exercise 2. If f = f(x), and does not depend on t, then the solution can be

written
u(z,t) (/ f(r)sinnr dr) ((/ ”Zk(tT)dT> sin nx

But a straightforward mtegratlon gives

t
—nzk(t—'r)d _ L 1— —n2kt
/0 e T an( e )

Therefore

2= 1 2 T
_“ 1 __-n kt / . d .
- 321 TnZ (1—e ) < ; f(r)sinnr r) sin nx

Taking the limit as t — oo gives

U(z) = limu(z,t) = u(x,t) = %E_:ki(/ f(r Smm"dr> sin nx

Now consider the steady state problem
—kv" =z(r—2z), v(0)=uv(r)=0
This can be solved directly by integrating twice and using the boundary conditions
to determine the constants of integration. One obtains
1

v(z) = fm(%msz — 2t — 7132)
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To observe that the solution v(z) is the same as the limiting solution U(x) we
expand the right side of the v—equation in its Fourier sine series on [0, 7]. Then

o
—kv" = g ¢y Sinne
n=1

where

s
Cn = —/ r(m —r)sinnrdr
0

™

Integrating the differential equation twice gives
o
—kv(z) + ko'(0)x = Z can”2(sinnz — )
n=1

Evaluating at © = 7 gives
kv'(0) = Z con?
n=1
Whence
kv(z) = Z can” 2 sinna
n=1
or
@ = 5 ([ seysmnrar) s
v(z) = — — r)sinnr dr | sinnx
kﬂ— el TL2 0

Hence v(z) = U(x).
Exercise 3. Following the hint in the text we have

u(@,y) = gn(y) sinna
n=1

where we find

In =10 = fa(y), gn(0) = ga(1) =0
where f,(y) are the Fourier coefficients of f(z,y). From the variation of parameters
formula

2 (Y.
on(0) = 0™ b = 2 [Viunn(e - ) )t
Now g, (0) = 0 implies b = —a. So we can write

2 Y
(9) = 2asinhny — = ["sinb(n(€ — 9)), (€)e

which gives, using g, (1) =0,

nsinhn

1 v
0= | bt - D) fal)ae
0
Thus the g, (y) are given by
_ 2sinhny

9uly) = | sinbnte - D)€ — 2 [ sinitate — o) )i

nsinhn
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Exercise 4. The problem is
ug=Au+ f(r,t) 0<r<R,t>0
u(R,t) =0, t>0
u(r,0) =0, 0<r<R
For w = w(r,t,7) we consider the problem
=Aw 0<r<R,t>0
w(R,tt) =0, t>0
w(r,0,7) = f(r,7), 0<r<R

This is the model for heat flow in a disk of radius R; the solution is given by
equation (4.53) in Section 4.5 of the text. It is

w(r, t,T) ch A"MJ()(znr/R)

where z,, are the zeros of the Bessel function Jy, A, = z / R? and

Cn(T)

T [ S

Then
R
u(r, t) = / w(r,t —7,7)dT
0

7. Parameter Identification Problems

Exercise 1. We have
p1=poe™",  p2=poe™
Dividing the two equations and then taking natural logarithms gives

1
T — Ty = t—*(lnpl —Inps)

By the mean value theorem
[Ina — In b _dlnz| 1
la—b — dx "T° ¢

for some ¢ between a and b. Thus

1
|ry — o] = t—*|1HP1 —Inpo| < |p1 — p2

Mt*

Exercise 2. We have p(z)uy = ug,. Putting u = Y (x)g(t) gives, upon separating
variables,
—y" = p(@)Ay, y(0)=y(1)=0
We have
=i = p@)Arys, yr(0) =ys(1) =0
Integrating from x = 0 to x = s gives

i (s) 4y (0) = A / " ple)yy(a)da
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Now integrate from s =0 to s = 1 to get
1 s
y}(O) = )\f/ / p(x)ys(x)dzds
o Jo
1
= [ (-l

The last step follows by interchanging the order of integration. If p(x) =, hog is a
constant, then
Y (0)

O i = )y (@)de

Po

Exercise 3. From Exercise 2 in Section 4.6 we have the solution

oo 1 ™
u(z,t) = %7; k—nQ(l — e_"th) </0 f(r)sinnr dr) sin nz

Therefore
2SN . ) 1 2kt
U(t) = u(n/2,t) :/ - Zsmm‘sm(mrﬂ)ﬁ(l —e ") fr)dr
0 Vi 1 n

We want to recover f(z) if we know U(¢). This problem is not stable, as the
following example shows. Let

w(z,t) =m 321 — e ™) sinma, flz)=/msinma

This pair satisfies the model. If m is sufficiently large, thenu(x,t) is uniformly
small; yet f(0) is large. So a small error in measuring U(¢) will result in a large
change in f(z).

Exercise 4. The problem is
Up = Ugy, T,t>0
u(z,0) =0, x>0
u(0,t) = f(t), t>0
Taking Laplace transforms and solving gives
Uz, s) = F(s)e™™V?®

Here we have discarded the unbounded part of the solution. So, by convolution,

t
x 2
u(z,t) = T)— % /4(t_7)d7
@i = [ o) o
Hence, evaluating at x =1,
t
1
Ut :/ ) YAt-T) g
0= [ 10—

which is an integral equation for f(¢). Suppose f(t) = fo is constant and U(5) = 10.

Then 207 5 o—1/4(5-7) i — o LB
fo _/0 VA5 —71)3 m=2erfe(1/V5)

where er fc =1 — erf. Thus fy = 59.9 degrees.
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Exercise 5. The problem
uy = Dugy —vu,, =€ R, t>0; wu(z,0)= 67”2, r€R
can be solved by Fourier transforms to get

\/a —(z—vt)?/((a+4Dt)

u(x,t) = ———=e
(%) Va+ 4Dt

Thus, choosing a = v =1 we get

1
U(t) =u(l,t) = me—(l—t)2/((1+4m)

8. Finite Difference Methods

Exercise 1. The Cauchy-Euler algorithm for this problem is
Y1 =Yy +h(=20hY, +Y?), n=0,1,2,...;Y5 =1

where h is the step size. With h = 0.1 the values of Y,, at the points t,, = nh, n =

0,...,10 are:
1,1.1,1.199,1.295,1.385,1.466,1.534,1.585,1.615,1.617, 1.587

Exercise 2. A time snapshot of the solution surface at ¢ = 1 is shown in the
accompanying figure. The Maple program in Figure 4.8 of the text was run with
h = 0.1 and k = 0.1, which gives r = k/h?> = 10. This violates the stability
condition, and one can observe the highly oscillatory behavior of the numerical

scheme.

Exercise 3. The Maple worksheet and surface plot is given in the two figures.

Exercise 4. The Maple worksheet and surface plot is given in the two figures.

Exercise 5. The Maple worksheet and surface plot for the first problem in Exercise

5 is given in the accompanying figures.
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FIGURE 3. Time ¢t = 1 profile of the numerical solution in Exercise
2 when h/k = 10.

19



20

1. PARTIAL DIFFERENTIAL EQUATIONS ON BOUNDED DOMAINS

FIGURE 4. Maple program to solve Exercise 3.
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FIGURE 5. Solution surface in Exercise 3.
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FIGURE 6. Maple program to solve Exercise 4.
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FIGURE 7. Solution surface in Exercise 4.
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FIGURE 8. Maple program to solve Exercise 5.
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FIGURE 9. Solution surface in Exercise 5.
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CHAPTER 2

Appendix

—x

1. The equation 3’ 4+ 2y = e~ is first order, linear. Multiply by the integrating
factor €2* and the equation becomes (ye?*)’ = e® Integrate both sides and multiply
by e72% to get

y(xr) = Ce ™ +e°

2. Here, 3y’ = —3y. Separate variables and integrate to obtain
y(z) = Ce™™

3. The equation y” + 8y = 0 is second-order, linear, with constant coefficients. The
characteristic equation is m? + 8 = 0 which has roots m = ++v/8. Then

y(z) = Acos 8z + BsinV8z

4. The equation y' — zy = z2y? is a Bernoulli equation. Make the substitution

w = 1/y and the equation turns into a linear equationw’ + zw = —ax?. The
integrating factor is exp(x?/2). Multiplying by the integrating factor gives
(wem2/2)' _ _l,2ez2/2

Integrating both sides from 0 to = gives
T
we™ /2 — w(0) = 7/ r2em 2dy
0

Then )
w(x) = 1/y(a) = e Pw(0) —e*/? / r2er 12y
0

5. The equation z%y” —3xy’+4y = 0 is a Cauchy-Euler equation. The characteristic
equation is m(m — 1) — 3m + 4 = 0 which has roots m = 2,2. Thus

y(z) = az? + br’Inz

6. The equation 3" + x(y')? = 0 does not have y appearing explicitly. So let v = ¢/
to obtain
v 4+ 202 =0

We separate variables to get



28 2. APPENDIX
Then

(m)—/d—x—FB—iarctanL—i—B
M= ey ATt T R V24

7. The equation y” + vy’ + y = 0 is linear, second-order, with constant coefficients.
The characteristic equation is m? +m+1 = 0, which has roots m = —1/24/3i/2.

Thus
y(z) = e~ /2 (a cos @ + bsin @)

8. In the equation yy” — () = 0 the independent variable does not appear
explicitly. So let v = ¢/ which gives 3" = vg—z. Then we get
dv 3
yvd—y =0

Separating variables and solving gives v = —1/(C + Iny). Then
(C+ny)dy = —dx

Then
Cy+yhmy—y=—-z+20B

9. The equation 222y” +3zy’ —y = 0 is a Cauchy-Euler equation with characteristic
equation 2m(m — 1) +3m — 1 = 0. The roots are m = —1,1/2. Then

y(r) = avi +

10. The equation y"’ — 3y’ —4y = 2sin z is a linear, nonhomogeneous equation. The
homogeneous solution is yp, () = ae*®+be~t. Guess a particular solution of the form
yp(x) = Asinx + B cosz. Substitute into the equation to find A =5/8, B = —3/8.
Then

5 3
y(z) = ae' +be™! + 3 sinx — Pl

11. The homogeneous solution of y”’ + 4y = xsinz is yp(z) = acos 2z + bsin 2z. A
particular solution can be found by undetermined coefficients or using the variation
of parameters formula from this appendix. We choose the latter. We have

yp(x) _ /z cos 2ssin 2x ; Cos 2z sin QSssin 9 ds
0

The calculation is left as an exercise. The solution is the sum of y; and y,.

12. The equation y’ — 2zy = 1 is linear with integrating factor exp(—z?). Multi-
plying by the integrating factor leads to
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Integrating from 0 to x then gives

xT
y(x) = y(O)e’”2 +/ e dr
0

13. The second order linear equation y” + 5y” + 6y = 0 has characteristic equation
m? + 5m + 6 = 0 with roots —3, —2. Hence

y(x) = ae™3" + b=

14. Separate variables to obtain
(1+3y*)dy = x2dx

Integrating gives the implicit solution

3, 1
Syt=_4C
y+4y 3+



