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CHAPTER 2

Partial Differential Equations on Unbounded

Domains

1. Cauchy Problem for the Heat Equation

Exercise 1a. Making the transformation r = (x− y)/
√
4kt we have

u(x, t) =

∫ 1

−1

1√
4πkt

e−(x−y)2/4ktdy

= −
∫ (x−1)/

√
4kt

(x+1)/
√
4kt

1√
π
e−r2dr

=
1

2

(

erf
(

(x+ 1)/
√
4kt

)

− erf
(

(x − 1)/
√
4kt

))

Exercise 1b. We have

u(x, t) =

∫ ∞

0

1√
4πkt

e−(x−y)2/4kte−ydy

Now complete the square in the exponent of e and write it as

− (x− y)2

4kt
− y = −x

2 − 2xy + y2 + 4kty

4kt

= −y + 2kt− x)2

4kt
+ kt− x

Then make the substitution in the integral

r =
y + 2kt− x√

4kt

Then

u(x, t) =
1√
π
ekt−x

∫ ∞

(2kt−x)/
√
4kt

e−r2dr

=
1

2
ekt−x

(

1− erf
(

(2kt− x)/
√
4kt

))

Exercise 2. We have

|u(x, t)| ≤
∫

R

|G(x − y, t)||φ(y)|dy ≤M

∫

R

G(x− y, t)dy =M

3
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Exercise 3. Use

erf(z) =
2√
π

∫ z

0

e−r2dr

=
2√
π

∫ z

0

(1− r2 + · · · )dr

=
2√
π
(z − z3

3
+ · · · )

This gives

w(x0, t) =
1

2
+

x0

π
√
t
+ · · ·

Exercise 4. The verification is straightforward. We guess the Green’s function in
two dimensions to be

g(x, y, t) = G(x, t)G(y, t)

=
1√
4πkt

e−x2/4kt 1√
4πkt

e−y2/4kt

=
1

4πkt
e−(x2+y2)/4kt

where G is the Green’s function in one dimension. Thus g is the temperature
distribution caused by a point source at (x, y) = (0, 0) at t = 0. This guess gives
the correct expression. Then, by superposition, we have the solution

u(x, y, t) =

∫

R2

1

4πkt
e−((x−ξ)2+(y−η)2)/4ktψ(ξ, η)dξdη

Exercise 6. Using the substitution r = x/
√
4kt we get

∫

R

G(x, t)dx =
1√
π

∫

R

e−r2dr = 1

Exercise 7. Verification is straightforward. The result does not contradict the
theorem because the initial condition is not bounded.

2. Cauchy Problem for the Wave Equation

Exercise 1. Applying the initial conditions to the general solution gives the two
equations

F (x) +G(x) = f(x), −cF ′(x) + cG′(x) = g(x)

We must solve these to determine the arbitrary functions F and G. Integrate the
second equation to get

−cF (x) + cG(x) =

∫ x

0

g(s)ds+ C

Now we have two linear equations for F and G that we can solve simultaneously.
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Exercise 2. Using d’Alembert’s formula we obtain

u(x, t) =
1

2c

∫ x+ct

x−ct

ds

1 + 0.25s2

=
1

2c
2 arctan(s/2) |x+ct

x−ct

=
1

c
(arctan((x+ ct)/2)− arctan((x− ct)/2))

Exercise 4. Let u = F (x− ct). Then ux(0, t) = F ′(−ct) = s(t). Then

F (t) =

∫ t

0

s(−r/c)dr +K

Then

u(x, t) = −1

c

∫ t−x/c

0

s(y)dy +K

Exercise 5. Letting u = U/ρ we have

utt = Utt/ρ, uρ = Uρ/ρ− U/ρ2

and
uρρ = Uρρ/ρ− 2Uρ/ρ

2 + 2U/ρ3

Substituting these quantities into the wave equation gives

Utt = c2Uρρ

which is the ordinary wave equation with general solution

U(ρ, t) = F (ρ− ct) +G(ρ+ ct)

Then

u(ρ, t) =
1

r
(F (ρ− ct) +G(ρ+ ct))

As a spherical wave propagates outward in space its energy is spread out over a
larger volume, and therefore it seems reasonable that its amplitude decreases.

Exercise 6. The exact solution is, by d’Alembert’s formula,

u(x, t) =
1

2
(e−|x−ct| + e−|x+ct|) +

1

2c
(sin(x+ ct)− sin(x − ct))

Exercise 7. Use the fact that u is has the same value along a characteristic.

Exercise 8. Write

v =

∫

R

H(s, t)u(x, s)ds

where

h(s, t) =
1

√

4πt(k/c2)
e−s2/(4t(k/c2))

which is the heat kernel with k replaced by k/c2. Thus H satisfies

Ht −
k

c2
Hxx = 0
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Then, we have

vt − kvxx =

∫

R

(Ht(s, t)u(x, s)− kH(s, t)uxx(x, s))ds

=

∫

R

(Ht(s, t)u(x, s)− (k/c2)H(s, t)uss(x, s))ds

where, in the last step, we used the fact that u satisfies the wave equation. Now
integrate the second term in the last expression by parts twice. The generated
boundary terms will vanish since H and Hs go to zero as |s| → ∞. Then we get

vt − kvxx =

∫

R

(Ht(s, t)u(x, s)− (k/c2)Hss(s, t)u(x, s))ds = 0

3. Well-Posed Problems

Exercise 1. Consider the two problems

ut + uxx = 0, x ∈ R, t > 0

u(x, 0) = f(x), x ∈ R

If f(x) = 1 the solution is u(x, t) = 1. If f(x) = 1 + n−1 sinnx, which is a small
change in initial data, then the solution is

u(x, t) = 1 +
1

n
en

2t sinnx

which is a large change in the solution. So the solution does not depend continuously
on the initial data.

Exercise 2. Integrating twice, the general solution to uxy = 0 is

u(x, y) = F (x) +G(y)

where F and G are arbitrary functions. Note that the equation is hyperbolic and
therefore we expect the problem to be an evolution problem where data is carried
forward from one boundary to another; so a boundary value problem should not
be well-posed since the boundary data may be incompatible. To observe this, note
that

u(x, 0) = F (x) +G(0) = f(x). u(x, 1) = F (x) +G(1) = g(x)

where f and g are data imposed along y = 0 and y = 1, respectively. But these
last equations imply that f and g differ by a constant, which may not be true.
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Exercise 3. We subtract the two solutions given by d’Alembert’s formula, take
the absolute value, and use the triangle inequality to get

|u1 − u2| ≤ 1

2
|f1(x− ct)− f2(x− ct)|+ 1

2
|f1(x+ ct)− f2(x+ ct)|

+
1

2c

∫ x+ct

x−ct

|g1(s)− g2(s)|ds

≤ 1

2
δ1 +

1

2
δ1 +

1

2c

∫ x+ct

x−ct

δ2ds

= δ1 +
1

2c
δ2(2ct)

≤ δ1 + Tδ2

4. Semi-Infinite Domains

Exercise 2. We have

u(x, t) =

∫ ∞

0

(G(x− y, t)−G(x+ y, t))dy = erf (x/
√
4kt)

Exercise 3. For x > ct we use d’Alembert’s formula to get

u(x, t) =
1

2
((x − ct)e−(x−ct) + (x + ct)e−(x+ct))

For 0 < x < ct we have from (2.29) in the text

u(x, t) =
1

2
((x + ct)e−(x+ct) − (ct− x)e−(ct−x))

Exercise 4. Letting w(x, t) = u(x, t)− 1 we get the problem

wt = kwxx, w(0, t) = 0, t > 0, ;w(x, 0) = −1, x > 0

Now we can apply the result of the text to get

w(x, t) =

∫ ∞

0

(G(x − y, t)−G(x + y, t))(−1)dy = −erf (x/
√
4kt)

Then

u(x, t) = 1− erf (x/
√
4kt)

Exercise 5. The problem is

ut = kuxx, x > 0, t > 0

u(x, 0) = 7000, x > 0

u(0, t) = 0, t > 0

From Exercise 2 we know the temperature is

u(x, t) = 7000 erf (x/
√
4kt) = 7000

2√
π

∫ x/
√
4kt

0

e−r2dr
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The geothermal gradient at the current time tc is

ux(0, tc) =
7000√
πktc

= 3.7× 10−4

Solving for t gives

tc = 1.624× 1016 sec = 5.15× 108 yrs

This gives a very low estimate; the age of the earth is thought to be about 15 billion
years.

There are many ways to estimate the amount of heat lost. One method is as
follows. At t = 0 the total amount of heat was

∫

S

ρcu dV = 7000ρc
4

3
πR3 = 29321ρcR3

where S is the sphere of radius R = 4000 miles and density ρ and specific heat
c. The amount of heat leaked out can be calculated by integrating the geothermal
gradient up to the present day tc. Thus, the amount leaked out is approximately

(4πR2)

∫ tc

0

−Kux(0, t)dt = −4πR2ρck(7000)

∫ tc

0

1√
πkt

dt

= −ρcR2(1.06× 1012)

So the ratio of the heat lost to the total heat is

ρcR2(1.06× 1012)

29321ρcR3
=

3.62× 107

R
= 5.6%

Exercise 6. Follow the suggested steps. Exercise 7. The left side of the equation

is the flux through the surface. The first term on the right is Newton’s law of
cooling and the second term is the radiation heating.

5. Sources and Duhamel’s Principle

Exercise 1. The solution is

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

sin sds

=
1

c2
sinx− 1

2c2
(sin(x− ct) + sin(x+ ct))

Exercise 2. The solution is

u(x, t) =

∫ t

0

∫ ∞

−∞
G(x − y, t− τ) sin y dydτ

where G is the heat kernel.

Exercise 3. The problem

wt(x, t, τ) + cwx(x, t, τ) = 0, w(x, 0, τ) = f(x, τ)
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has solution (see Chapter 1)

w(x, t, τ) = f(x− ct, τ)

Therefore, by Duhamel’s principle, the solution to the original problem is

u(x, t) =

∫ t

0

f(x− c(t− τ), τ)dτ

Applying this formula when f(x, t) = xe−t and c = 2 gives

u(x, t) =

∫ t

0

(x− 2(t− τ))e−τdτ

This integral can be calculated using integration by parts or a computer algebra
program. We get

u(x, t) = −(x− 2t)(e−t − 1)− 2te−t + 2(1− e−t)

6. Laplace Transforms

Exercise 4. Using integration by parts, we have

L

(
∫ t

0

f(τ)dτ

)

=

∫ ∞

0

(
∫ t

0

f(τ)dτ

)

e−stdt

= −1

s

∫ ∞

0

(
∫ t

0

f(τ)dτ

)

d

ds
e−stdt

= −1

s

∫ t

0

f(τ)dτ · e−st |∞0 +
1

s

∫ ∞

0

f(t)e−stdt

=
1

s
F (s)

Exercise 5. Since H = 0 for x < a we have

L (H(t− a)f(t− a)) =

∫ ∞

a

f(t− a)e−stdt

=

∫ ∞

0

f(τ)e−s(τ+a)dτ = e−asF (s)

where we used the substitution τ = t− a, dτ = dt.

Exercise 8. The model is

ut = uxx, x > 0, t > 0

u(x, 0) = u0, x > 0

−ux(0, t) = −u(0, t)
Taking the Laplace transform of the PDE we get

Uxx − sU = −u0
The bounded solution is

U(x, s) = a(s)e−x
√
s +

u0
s
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The radiation boundary condition gives

−a(s)
√
s = a(s) +

u0
s

or
a(s) = − u0

s(1 +
√
s)

Therefore, in the transform domain

U(x, s) = − u0
s(1 +

√
s)
e−x

√
s +

u0
s

Using a table of Laplace transforms we find

u(x, t) = u0 − u0

[

erfc

(

x√
4t

)

− erfc

(√
t+

x√
4t

)

ex+t

]

where erfc(z) = 1− erf(z).

Exercise 10. Taking the Laplace transform of the PDE gives, using the initial
conditions,

Uxx −
s2

c2
U = − g

sc2

The general solution is

U(x, s) = A(s)e−sx/c +B(s)esx/c +
g

s3

To maintain boundedness, set B(s) = 0. Now U(0, s) = 0 gives A(s) = −g/s3.
Thus

U(x, s) = − g

s3
e−sx/c +

g

s3

is the solution in the transform domain. Now, from a table or computer algebra
program,

L−1

(

1

s3

)

=
t2

2
, L−1(F (s)e−as) = H(t− a)f(t− a)

Therefore

L−1

(

1

s3
e−xs/c

)

= H(t− x/c)
(t− x/c)2

2

Hence

u(x, t) =
gt2

2
− gH(t− x/c)

(t− x/c)2

2

Exercise 11. Taking the Laplace transform of the PDE while using the initial
condition gives, for U = U(x, y, s),

Uyy − pU = 0

The bounded solution of this equation is

U = a(x, s)e−y
√
s

The boundary condition at y = 0 gives sU(x, o, s) = −Ux(x, 0, s) or a = −ax, or
a(x, s) = f(s)e−xs

The boundary condition at x = u = 0 forces f(s) = 1/s. Therefore

U(x, y, s) =
1

s
e−xse−y

√
s
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From the table of transforms

u(x, y, t) = 1− erf((y − x)/
√
4t)

Exercise 13. Taking the Laplace transform of the PDE gives, using the initial
conditions,

Uxx − s2

c2
U = 0

The general solution is

U(x, s) = A(s)e−sx/c +B(s)esx/c

To maintain boundedness, set B(s) = 0. Now The boundary condition at x = 0
gives U(0, s) = G(s) which forces A(s) = G(s). Thus

U(x, s) = G(s)e−sx/c

Therefore, using Exercise 4, we get

u(x, t) = H(t− x/c)g(t− x/c)

7. Fourier Transforms

Exercise 1. The convolution is calculated from

x ⋆ e−x2

=

∫ ∞

−∞
(y − x)e−y2

dy

Exercise 2. From the definition we have

F−1(e−a|ξ|)) =
1

2π

∫ ∞

−∞
e−a|ξ|e−ixξdξ

=
1

2π

∫ 0

−∞
eaξe−ixξdξ +

1

2π

∫ ∞

0

e−aξe−ixξdξ

=
1

2π

∫ 0

−∞
eaξ−ixξdξ +

1

2π

∫ ∞

0

e−aξ−ixξdξ

=
1

2π

1

a− ix
e(a−ix)ξ |0−∞ +

1

2π

1

−a− ix
e(−a−ix)ξ |∞0

=
a

π

1

a2 + x2

Exercise 3a. Using the definition of the Fourier transform

2πF−1(−ξ) =
∫ ∞

−∞
u(x)e−i(−ξ)xdx = F(u)(ξ)
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Exercise 3b. From the definition,

û(ξ + a) =

∫ ∞

−∞
u(x)ei(ξ+a)xdx

=

∫ ∞

−∞
u(x)eiaxeiξxdx

= F(eiaxu)(ξ)

Exercise 3c. Use 3(a) or, from the definition,

F(u(x+ a)) =

∫ ∞

−∞
u(x+ a)eiξxdx =

∫ ∞

−∞
u(y)eiξ(y−a)dy = e−iaξû(ξ)

Exercise 6. From the definition

û(ξ) =

∫ ∞

0

e−axeiξxdx

=

∫ ∞

0

e(iξ−a)xdx

=
1

iξ − a
e(iξ−a)x |∞0

=
1

a− iξ

Exercise 7. Observe that

xe−ax2

= − 1

2a

d

dx
e−ax2

Then

F(xe−ax2

) = − 1

2a
(−iξ)F(e−ax2

).

Exercise 9. Take transforms of the PDE to get

ût = (−iξ)2û+ f̂(ξ, t)

Solving this as a linear, first order ODE in t with ξ as a parameter, we get

û(ξ, t) =

∫ t

0

e−x2(t−τ)f̂(ξ, τ)dτ

Taking the inverse Fourier transform, interchanging the order of integration, and
applying the convolution theorem gives

u(x, t) =

∫ t

0

F−1
[

e−x2(t−τ)f̂(ξ, τ)
]

dτ

=

∫ t

0

F−1
[

e−x2(t−τ)
]

⋆ f(x, τ)dτ

=

∫ t

0

∫ ∞

−∞

1
√

4π(t− τ)
e−(x−y)2/4(t−τ)f(y, τ)dydτ
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Exercise 10. Proceeding exactly in the same way as in the derivation of (2.65) in
the text, but with k replaced by I, we obtain the solution

u(x, t) =
1√
4πit

∫ ∞

−∞
e−(x−y)2/4itf(y)dy

where u(x, 0) = f(x). Thus

u(x, t) =
1√
4πit

∫ ∞

−∞
ei(x−y)2/4t−y2

dy

Here, in the denominator,
√
i denotes the root with the positive real part, that is√

i = (1 + i)/
√
2.

Exercise 11. Letting v = uy we have

vxx + vyy = 0, x ∈ R, y > 0; v(x, 0) = g(x)

Hence

v(x, y) =
1

π

∫ ∞

−∞

yg(τ)

(x− τ)2 + y2
dτ

Then

u(x, y) =

∫ y

0

v(x, ξ)dξ

=

∫ y

0

1

π

∫ ∞

−∞

yg(τ)

(x− τ)2 + y2
dτdξ

=
1

π

∫ ∞

−∞

∫ y

0

y

(x− τ)2 + y2
dξdτ

=
1

2π

∫ ∞

−∞
g(τ)

(

ln
(

(x− τ)2 + y2
)

− ln
(

(x− τ)2
))

dτ

=
1

2π

∫ ∞

−∞
g(x− ξ) ln

(

ξ2 + y2
)

dτ + C

Exercise 12. We have

u(x, y) =
y

π

∫ l

−l

dτ

(x− τ)2 + y2

=
1

π

(

arctan

(

l − x

y

)

+ arctan

(

l + x

y

))

Exercise 13. From the definition of the Fourier transform

F(ux) =

∫ ∞

−∞
ux(x, t)e

iξxdx

= u(x, t)eiξx |∞−∞ −iξ
∫ ∞

−∞
u(ξ, t)eiξxdx

= −iξû(ξ, t)
For the second derivative, integrate by parts twice and assume u and ux tend

to zero as x→ ±∞ to get rid of the boundary terms.
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Exercise 14. In this case where f is a square wave signal,

F(f(x)) =

∫ ∞

−∞
f(x)eiξxdx =

∫ a

−a

eiξxdx =
2 sin ξx

ξ

Exercise 15. Taking the Fourier transform of the PDE

ut = Duxx − cux

gives

ût = −(Dξ2 + iξc)û

which has general solution

û(ξ, t) = C(ξ)e−Dξ2t−iξct

The initial condition forces C(ξ) = φ̂(ξ) which gives

û(ξ, t) = φ̂(ξ)e−Dξ2t−iξct

Using

F−1
(

e−Dξ2t
)

=
1√
4πDt

e−x2/4Dt

and

F−1
(

û(ξ, t)e−iaξ
)

= u(x+ a)

we have

F−1
(

e−iξcte−Dξ2t
)

=
1√
4πDt

e−(x+vt)2/4Dt

Then, by convolution,

u(x, t) = φ ⋆
1√
4πDt

e−(x+vt)2/4Dt

Exercise 16. (a) Substituting u = exp(i(kx − ωt)) into the PDE ut + uxxx = 0
gives −iω + (ik)3 = 0 or ω = −k3. Thus we have solutions of the form

u(x, t) = ei(kx+k3t) = eik(x+k2t)

The real part of a complex-valued solution is a real solution, so we have solutions
of the form

u(x, t) = cos[k(x+ k2t)]

These are left traveling waves moving with speed k2. So the temporal frequency ω
as well as the wave speed c = k2 depends on the spatial frequency, or wave number,
k. Note that the wave length is proportional to 1/k. Thus, higher frequency waves
are propagated faster.

(b) Taking the Fourier transform of the PDE gives

ût = −(−iξ)3û
This has solution

û(ξ, t) = φ̂(ξ)e−iξ3t

where φ̂ is the transform of the initial data. By the convolution theorem,

u(x, t) = φ(x) ⋆ F−1(e−iξ3t)
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To invert this transform we go to the definition of the inverse. We have

F−1(e−iξ3t) =
1

2π

∫ ∞

−∞
e−iξ3te−iξxdξ

=
1

2π

∫ ∞

−∞
cos(ξ3t+ ξx)dξ

=
1

2π

∫ ∞

−∞
cos

(

z3

3
+

zx

(3t)1/3

)

1

(3t)1/3
dz

=
1

(3t)1/3
Ai

(

x

(3t)1/3

)

where we made the substitution ξ = z/(3t)1/3 to put the integrand in the form of
that in the Airy function. Consequently we have

u(x, t) =
1

(3t)1/3

∫ ∞

−∞
φ(x− y)Ai

(

y

(3t)1/3

)

dy.

Exercise 18. The problem is

utt = c2uxx = 0, x ∈ R, t > 0

u(x, 0) = f(x), ut(x, 0) = 0, x ∈ R

Taking Fourier transforms of the PDE yields

ûtt + c2ξ2û = 0

whose general solution is

û = A(ξ)eiξct +B(ξ)e−iξct

From the initial conditions, û(ξ, 0) = f̂(ξ) and ût(ξ, 0) = 0. Thus A(ξ) = B(ξ) =

0.5f̂(ξ). Therefore

û(ξ, t) = 0.5f̂(ξ)(eiξct + e−iξct)

Now we use the fact that

F−1
(

f̂(ξ)eiaξ
)

= f(x− a)

to invert each term. Whence

u(x, t) = 0.5(f(x− ct) + f(x+ ct))

Exercise 20. Notice the left side is a convolution. Take the transform of both
sides, use the convolution theorem, and solve for f̂ . Then invert to get f .


