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Introduction

These notes (through p. 9.80) are based on my course at Princeton in 1978-
79. Large portions were written by Bill Floyd and Steve Kerckhoff. Chapter 7, by
John Milnor, is based on a lecture he gave in my course; the ghostwriter was Steve
Kerckhoff. The notes are projected to continue at least through the next academic
year. The intent is to describe the very strong connection between geometry and low-
dimensional topology in a way which will be useful and accessible (with some effort)
to graduate students and mathematicians working in related fields, particularly 3-
manifolds and Kleinian groups.

Much of the material or technique is new, and more of it was new to me. As
a consequence, I did not always know where I was going, and the discussion often
tends to wanter. The countryside is scenic, however, and it is fun to tramp around if
you keep your eyes alert and don’t get lost. The tendency to meander rather than to
follow the quickest linear route is especially pronounced in chapters 8 and 9, where
I only gradually saw the usefulness of “train tracks” and the value of mapping out
some global information about the structure of the set of simple geodesic on surfaces.

I would be grateful to hear any suggestions or corrections from readers, since
changes are fairly easy to make at this stage. In particular, bibliographical informa-
tion is missing in many places, and I would like to solicit references (perhaps in the
form of preprints) and historical information.
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CHAPTER 1
Geometry and three-manifolds

The theme I intend to develop is that topology and geometry, in dimensions up
through 3, are very intricately related. Because of this relation, many questions
which seem utterly hopeless from a purely topological point of view can be fruitfully
studied. It is not totally unreasonable to hope that eventually all three-manifolds
will be understood in a systematic way. In any case, the theory of geometry in
three-manifolds promises to be very rich, bringing together many threads.

Before discussing geometry, I will indicate some topological constructions yielding
diverse three-manifolds, which appear to be very tangled.

0. Start with the three sphere S?, which may be easily visualized as R3, together
with one point at infinity.

1. Any knot (closed simple curve) or link (union of disjoint closed simple curves)
may be removed. These examples can be made compact by removing the interior of
a tubular neighborhood of the knot or link.
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1. GEOMETRY AND THREE-MANIFOLDS

The complement of a knot can be very enigmatic, if you try to think about it
from an intrinsic point of view. Papakyriakopoulos proved that a knot complement
has fundamental group Z if and only if the knot is trivial. This may seem intuitively
clear, but justification for this intuition is difficult. It is not known whether knots
with homeomorphic complements are the same.

2. Cut out a tubular neighborhood of a knot or link, and glue it back in by a
different identification. This is called Dehn surgery. There are many ways to do
this, because the torus has many diffeomorphisms. The generator of the kernel of the
inclusion map m;(T?) — m; (solid torus) in the resulting three-manifold determines
the three-manifold. The diffeomorphism can be chosen to make this generator an
arbitrary primitive (indivisible non-zero) element of Z @ Z. It is well defined up to
change in sign.

Every oriented three-manifold can be obtained by this construction (Lickorish) .
It is difficult, in general, to tell much about the three-manifold resulting from this
construction. When, for instance, is it simply connected? When is it irreducible?
(Irreducible means every embedded two sphere bounds a ball).

Note that the homology of the three-manifold is a very insensitive invariant.
The homology of a knot complement is the same as the homology of a circle, so
when Dehn surgery is performed, the resulting manifold always has a cyclic first
homology group. If generators for Z @ Z = m,(T?) are chosen so that (1,0) generates
the homology of the complement and (0,1) is trivial then any Dehn surgery with
invariant (1,n) yields a homology sphere. 3. Branched coverings. If L is a link,
then any finite-sheeted covering space of S — L can be compactified in a canonical
way by adding circles which cover L to give a closed manifold, M. M is called a
branched covering of S® over L. There is a canonical projection p : M — S3, which is
a local diffeomorphism away from p~!(L). If K C S® is a knot, the simplest branched
coverings of S3 over K are then n-fold cyclic branched covers, which come from the
covering spaces of S® — K whose fundamental group is the kernel of the composition
m (8% — K) — H\(S* — K) = Z — Z,. In other words, they are unwrapping S°
from K n times. If K is the trivial knot the cyclic branched covers are S3. It
seems intuitively obvious (but it is not known) that this is the only way S® can be
obtained as a cyclic branched covering of itself over a knot. Montesinos and Hilden
(independently) showed that every oriented three-manifold is a branched cover of S*
with 3 sheets, branched over some knot. These branched coverings are not in general
regular: there are no covering transformations.

The formation of irregular branched coverings is somehow a much more flexible
construction than the formation of regular branched coverings. For instance, it is not
hard to find many different ways in which S® is an irregular branched cover of itself.
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1. GEOMETRY AND THREE-MANIFOLDS

5. Heegaard decompositions. Every three-manifold can be obtained from two
handlebodies (of some genus) by gluing their boundaries together.

The set of possible gluing maps is large and complicated. It is hard to tell, given
two gluing maps, whether or not they represent the same three-manifold (except
when there are homological invariants to distinguish them).

6. Identifying faces of polyhedra. Suppose Py, ..., P are polyhedra such that the
number of faces with K sides is even, for each K.

Choose an arbitrary pattern of orientation-reversing identifications of pairs of
two-faces. This yields a three-complex, which is an oriented manifold except near the
vertices. (Around an edge, the link is automatically a circle.)

There is a classical criterion which says that such a complex is a manifold if and
only if its Euler characteristic is zero. We leave this as an exercise.

In any case, however, we may simply remove a neighborhood of each bad vertex,
to obtain a three-manifold with boundary.

The number of (at least not obviously homeomorphic) three-manifolds grows very
quickly with the complexity of the description. Consider, for instance, different ways
to obtain a three-manifold by gluing the faces of an octahedron. There are

8!
2141
possibilities. For an icosahedron, the figure is 38,661 billion. Because these polyhedra
are symmetric, many gluing diagrams obviously yield homeomorphic results—but this
reduces the figure by a factor of less than 120 for the icosahedron, for instance.

In two dimensions, the number of possible ways to glue sides of 2n-gon to obtain an
oriented surface also grows rapidly with n: it is (2n)!/(2"n!). In view of the amazing
fact that the Euler characteristic is a complete invariant of a closed oriented surface,
huge numbers of these gluing patterns give identical surfaces. It seems unlikely that

3% = 8,505
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1. GEOMETRY AND THREE-MANIFOLDS

such a phenomenon takes place among three-manifolds; but how can we tell?

ExXAMPLE. Here is one of the simplest possible gluing diagrams for a three-
manifold. Begin with two tetrahedra with edges labeled:

There is a unique way to glue the faces of one tetrahedron to the other so that
arrows are matched. For instance, A is matched with A’. All the /— arrows are
identified and all the //— arrows are identified, so the resulting complex has 2
tetrahedra, 4 triangles, 2 edges and 1 vertex. Its Euler characteristic is +1, and (it
follows that) a neighborhood of the vertex is the cone on a torus. Let M be the
manifold obtained by removing the vertex.

It turns out that this manifold is homeomorphic with the complement of a figure-
eight knot.

"Figure eight knot."
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1. GEOMETRY AND THREE-MANIFOLDS

&

Another view of the figure-eight knot

1.6

This knot is familiar from extension cords, as the most commonly occurring knot,

after the trefoil knot

In order to see this homeomorphism we can draw a more suggestive picture of the
figure-eight knot, arranged along the one-skeleton of a tetrahedron. The knot can be

Tetrahedron with figure-eight knot, viewed from above
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1. GEOMETRY AND THREE-MANIFOLDS

spanned by a two-complex, with two edges, shown as arrows, and four two-cells, one
for each face of the tetrahedron, in a more-or-less obvious way: 17

This pictures illustrates the typical way in which a two-cell is attached. Keeping in
mind that the knot is not there, the cells are triangles with deleted vertices. The two
complementary regions of the two-complex are the tetrahedra, with deleted vertices.

We will return to this example later. For now, it serves to illustrate the need for
a systematic way to compare and to recognize manifolds.

NOTE. Suggestive pictures can also be deceptive. A trefoil knot can similarly be
arranged along the one-skeleton of a tetrahedron: 1.8

N2
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1. GEOMETRY AND THREE-MANIFOLDS

From the picture, a cell-division of the complement is produced. In this case,
however, the three-cells are not tetrahedra.

The boundary of a three-cell, flattened out on the plane.
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CHAPTER 2
Elliptic and hyperbolic geometry

There are three kinds of geometry which possess a notion of distance, and which
look the same from any viewpoint with your head turned in any orientation: these
are elliptic geometry (or spherical geometry), Euclidean or parabolic geometry, and
hyperbolic or Lobachevskiian geometry. The underlying spaces of these three geome-
tries are naturally Riemannian manifolds of constant sectional curvature +1, 0, and
—1, respectively.

Elliptic n-space is the n-sphere, with antipodal points identified. Topologically
it is projective n-space, with geometry inherited from the sphere. The geometry of
elliptic space is nicer than that of the sphere because of the elimination of identical,
antipodal figures which always pop up in spherical geometry. Thus, any two points
in elliptic space determine a unique line, for instance.

In the sphere, an object moving away from you appears smaller and smaller, until
it reaches a distance of 7/2. Then, it starts looking larger and larger and optically,
it is in focus behind you. Finally, when it reaches a distance of 7, it appears so large
that it would seem to surround you entirely.

In elliptic space, on the other hand, the maximum distance is 7/2, so that ap-
parent size is a monotone decreasing function of distance. It would nonetheless be

Thurston — The Geometry and Topology of 3-Manifolds 9
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

distressing to live in elliptic space, since you would always be confronted with an im-
age of yourself, turned inside out, upside down and filling out the entire background
of your field of view. Euclidean space is familiar to all of us, since it very closely
approximates the geometry of the space in which we live, up to moderate distances.
Hyperbolic space is the least familiar to most people. Certain surfaces of revolution
in R? have constant curvature —1 and so give an idea of the local picture of the
hyperbolic plane.

The simplest of these is the pseudosphere, the surface of revolution generated by
a tractrix. A tractrix is the track of a box of stones which starts at (0,1) and is
dragged by a team of oxen walking along the z-axis and pulling the box by a chain of
unit length. Equivalently, this curve is determined up to translation by the property
that its tangent lines meet the z-axis a unit distance from the point of tangency. The
pseudosphere is not complete, however—it has an edge, beyond which it cannot be
extended. Hilbert proved the remarkable theorem that no complete C? surface with
curvature —1 can exist in R®. In spite of this, convincing physical models can be
constructed.

We must therefore resort to distorted pictures of hyperbolic space. Just as it is
convenient to have different maps of the earth for understanding various aspects of its
geometry: for seeing shapes, for comparing areas, for plotting geodesics in navigation;
so it is useful to have several maps of hyperbolic space at our disposal.

2.1. The Poincaré disk model.

Let D™ denote the disk of unit radius in Euclidean n-space. The interior of D"
can be taken as a map of hyperbolic space H". A hyperbolic line in the model is any
Euclidean circle which is orthogonal to dD"; a hyperbolic two-plane is a Euclidean
sphere orthogonal to 0D"; etc. The words “circle” and “sphere” are here used in

10 Thurston — The Geometry and Topology of 3-Manifolds
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2.2. THE SOUTHERN HEMISPHERE.

the extended sense, to include the limiting case of a line or plane. This model
is conformally correct, that is, hyperbolic angles agree with Euclidean angles, but
distances are greatly distorted. Hyperbolic arc length v/ds? is given by the formula

ds* = <1 —17"2>2dx2’

where vdz? is Euclidean arc length and r is distance from the origin. Thus, the
Euclidean image of a hyperbolic object, as it moves away from the origin, shrinks in
size roughly in proportion to the Euclidean distance from 0D™ (when this distance
is small). The object never actually arrives at dD", if it moves with a bounded
hyperbolic velocity.

Lines -

People

The sphere D™ is called the sphere at infinity. It is not actually in hyperbolic
space, but it can be given an interpretation purely in terms of hyperbolic geometry,
as follows. Choose any base point py in H". Consider any geodesic ray R, as seen
from po. R traces out a segment of a great circle in the visual sphere at py (since
po and R determine a two-plane). This visual segment converges to a point in the
visual sphere. If we translate H" so that pg is at the origin of the Poincaré disk

model, we see that the points in the visual sphere correspond precisely to points
in the sphere at infinity, and that the end of a ray in this visual sphere corresponds
to its Euclidean endpoint in the Poincaré disk model.

2.2. The southern hemisphere.

The Poincaré disk D™ C R is contained in the Poincaré disk D"*! c R*™! as a
hyperbolic n-plane in hyperbolic (n + 1)-space.

Thurston — The Geometry and Topology of 3-Manifolds 11
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

Stereographic projection (Euclidean) from the north pole of D" sends the
Poincaré disk D™ to the southern hemisphere of D"+,

Souﬂ\_e,f'“
Hemisphete

Thus hyperbolic lines in the Poincaré disk go to circles on S™ orthogonal to the
equator S 1.

There is a more natural construction for this map, using only hyperbolic geometry.
For each point p in H™ C H™"!, consider the hyperbolic ray perpendicular to H™ at
p, and downward normal. This ray converges to a point on the sphere at infinity, 26
which is the same as the Euclidean stereographic image of p.

2.3. The upper half-space model.

This is closely related to the previous two, but it is often more convenient for
computation or for constructing pictures. To obtain it, rotate the sphere S™ in
R"*! so that the southern hemisphere lies in the half-space z,, > 0 is R**!. Now

12 Thurston — The Geometry and Topology of 3-Manifolds



2.4. THE PROJECTIVE MODEL.

stereographic projection from the top of S™ (which is now on the equator) sends the
southern hemisphere to the upper half-space x,, > 0 in R**!,

A hyperbolic line, in the upper half-space, is a circle perpendicular to the bounding
plane R"~! C R". The hyperbolic metric is ds* = (1/z,)* dz?. Thus, the Euclidean
image of a hyperbolic object moving toward R"~! has size precisely proportional to
the Euclidean distance from R"~!.

2.4. The projective model.

This is obtained by Euclidean orthogonal projection of the southern hemisphere
of S™ back to the disk D™. Hyperbolic lines become Euclidean line segments. This
model is useful for understanding incidence in a configuration of lines and planes.
Unlike the previous three models, it fails to be conformal, so that angles and shapes
are distorted.

It is better to regard this projective model to be contained not in Euclidean
space, but in projective space. The projective model is very natural from a point of
view inside hyperbolic (n + 1)-space: it gives a picture of a hyperplane, H", in true
perspective. Thus, an observer hovering above H™ in H"*!, looking down, sees H"

Thurston — The Geometry and Topology of 3-Manifolds 13
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

as the interior of a disk in his visual sphere. As he moves farther up, this visual disk
shrinks; as he moves down, it expands; but (unlike in Euclidean space), the visual
radius of this disk is always strictly less than 7/2. A line on H? appears visually
straight.

It is possible to give an intrinsic meaning within hyperbolic geometry for the
points outside the sphere at infinity in the projective model. For instance, in the
two-dimensional projective model, any two lines meet somewhere. The conventional
sense of meeting means to meet inside the sphere at infinity (at a finite point). If
the two lines converge in the visual circle, this means that they meet on the circle at
infinity, and they are called parallels. Otherwise, the two lines are called ultraparallels;
they have a unique common perpendicular L and they meet in some point = in the
Mobius band outside the circle at infinity. Any other line perpendicular to L passes
through x, and any line through x s perpendicular to L.

/ A V4

To prove this, consider hyperbolic two-space as a plane P C H3. Construct
the plane @ through L perpendicular to P. Let U be an observer in H3. Drop a
perpendicular M from U to the plane (). Now if K is any line in P perpendicular

14 Thurston — The Geometry and Topology of 3-Manifolds
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2.4. THE PROJECTIVE MODEL. 2.8a
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Evenly spaced lines. The region inside the circle is a plane, with a base line and a family of
its perpendiculars, spaced at a distance of .051 fundamental units, as measured along the base
line shown in perspective in hyperbolic 3-space (or in the projective model). The lines have been
extended to their imaginary meeting point beyond the horizon. U, the observer, is directly above
the X (which is .881 fundamental units away from the base line). To see the view from different
heights, use the following table (which assumes that the Euclidean diameter of the circle in your
printout is about 5.25 inches or 13.3cm):

To see the view of hold the picture a To see the view of hold the picture a
U at a height of distance of U at a height of distance of
2 units 11" ( 28 cm) 5 units 17" (519 cm)
3 units 27" ( 69 cm) 10 units 2523" (771 m )
4 units 6’ (191 cm) 20 units 10528.75 miles (16981 km)

For instance, you may imagine that the fundamental distance is 10 meters. Then the lines are
spaced about like railroad ties. Twenty units is 200 meters: U is in a hot air balloon.

Thurston — The Geometry and Topology of 3-Manifolds 15



2. ELLIPTIC AND HYPERBOLIC GEOMETRY

to L, the plane determined by U and K is perpendicular to ), hence contains M;
hence the visual line determined by K in the visual sphere of U passes through the
visual point determined by K. The converse is similar.

This gives a one-to-one correspondence between the set of points x outside the
sphere at infinity, and (in general) the set of hyperplanes L in H". L corresponds
to the common intersection point of all its perpendiculars. Similarly, there is a
correspondence between points in H™ and hyperplanes outside the sphere at infinity:
a point p corresponds to the union of all points determined by hyperplanes through p.

2.5. The sphere of imaginary radius.

A sphere in Euclidean space with radius r has constant curvature 1/r?. Thus,
hyperbolic space should be a sphere of radius 7. To give this a reasonable interpreta-
tion, we use an indefinite metric dz? = dz? + - -+ + da? — da? , in R"*'. The sphere
of radius ¢ about the origin in this metric is the hyperboloid

2 2 2
i+t ay, —x,, = —L

16 Thurston — The Geometry and Topology of 3-Manifolds
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2.6. TRIGONOMETRY.

The metric dx? restricted to this hyperboloid is positive definite, and it is not
hard to check that it has constant curvature —1. Any plane through the origin is d?-
orthogonal to the hyperboloid, so it follows from elementary Riemannian geometry
that it meets the hyperboloid in a geodesic. The projective model for hyperbolic space
is reconstructed by projection of the hyperboloid from the origin to a hyperplane in
R™. Conversely, the quadratic form a3 + --- + 22 — 22, can be reconstructed from
the projective model. To do this, note that there is a unique quadratic equation of

the form
n
Z aijxixj =1

ij=1
defining the sphere at infinity in the projective model. Homogenization of this equa-
tion gives a quadratic form of type (n,1) in R""1 as desired. Any isometry of the
quadratic form % + -+ + 22 — 22, induces an isometry of the hyperboloid, and
hence any projective transformation of P" that preserves the sphere at infinity in-
duces an isometry of hyperbolic space. This contrasts with the situation in Euclidean
geometry, where there are many projective self-homeomorphisms: the affine transfor-
mations. In particular, hyperbolic space has no similarity transformations except
isometries. This is true also for elliptic space. This means that there is a well-defined
unit of measurement of distances in hyperbolic geometry. We shall later see how this
is related to three-dimensional topology, giving a measure of the “size” of manifolds.

2.6. Trigonometry.

Sometimes it is important to have formulas for hyperbolic geometry, and not just
pictures. For this purpose, it is convenient to work with the description of hyperbolic

Thurston — The Geometry and Topology of 3-Manifolds 17
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

space as one sheet of the “sphere” of radius ¢ with respect to the quadratic form
Q(X) :X12+"‘+X2_XZ+1

in R"*!. The set R"*!, equipped with this quadratic form and the associated inner
product

XY =) XiVi = Xpp1Vosn,
i=1
is called E™!. First we will describe the geodesics on level sets S, = {X : Q(X) = r?}
of ). Suppose that X; is such a geodesic, with speed

s =1/Q(X,).

We may differentiate the equations

Xt'Xt:T2> Xt'XtZSQa
to obtain

Xt'XtZO, Xt'Xt:O,
and

Xt . Xt = —Xt . Xt = —82.

Since any geodesic must lie in a two-dimensional subspace, X, must be a linear
combination of X; and X;, and we have

. S\ 2
2.6.1. % =-(3) x
r
This differential equation, together with the initial conditions
XO'X0:7"2> XO'X0:32, XO'X0:0>
determines the geodesics.
Given two vectors X and Y in E™!, if X and Y have nonzero length we define
the quantity
XY
(X)Y)= ——
X[ Y]]
where || X|| = v X - X is positive real or positive imaginary. Note that
c(X,Y) =c(AX,uY),

where A and p are positive constants, that ¢(—X,Y) = —¢(X,Y), and that ¢(X, X) =
1. In Euclidean space E"*1 ¢(X,Y) is the cosine of the angle between X and Y. In
E™! there are several cases.

We identify vectors on the positive sheet of S; (X,,+1 > 0) with hyperbolic space.
If Y is any vector of real length, then @ restricted to the subspace Y+ is indefinite
of type (n — 1, 1). This means that Y intersects H" and determines a hyperplane.

18 Thurston — The Geometry and Topology of 3-Manifolds
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2.6. TRIGONOMETRY.

We will use the notation Y to denote this hyperplane, with the normal orientation
determined by Y. (We have seen this correspondence before, in 2.4.)

2.6.2. If X and Y € H", then ¢(X,Y) = coshd (X,Y),

where d (X,Y) denotes the hyperbolic distance between X and Y.

To prove this formula, join X to Y by a geodesic X; of unit speed. From 2.6.1 we 2.14
have

Xt:Xt7 Xt'X0:07
so we get ¢( Xy, Xp) = (X, Xy), ¢(Xo, Xo) = 0, ¢(X, Xo) = 1; thus ¢(X, X;) = cosht.
When t = d(X,Y), then X; =Y, giving 2.6.2.
If X+ and Y are distinct hyperplanes, then
2.6.3.
X+ and Y+ intersect
<= ( is positive definite on the subspace (X,Y’) spanned by X and Y
— c¢(X,Y) <1
= ¢(X,Y) =cos Z(X,Y) = —cos (X, V™).

To see this, note that X and Y intersect in H" <= ( restricted to X+ NY* is
indefinite of type (n —2,1) <= (@ restricted to (X,Y’) is positive definite. ({(X,Y")
is the normal subspace to the (n — 2) plane X+ NY). 2.15
There is a general elementary formula for the area of a parallelogram of sides X
and Y with respect to an inner product:

area = /X - XY Y —(X-Y)2=|X| -|IY]-V1-cX,Y)2

This area is positive real if X and Y span a positive definite subspace, and pos-
itive imaginary if the subspace has type (1,1). This shows, finally, that X+ and
Y1 intersect <= ¢(X,Y)? < 1. The formula for ¢(X,Y’) comes from ordinary
trigonometry.
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

2.6.4.
X+ and Y+ have a common perpendicular <= @ has type (1,1) on (X,Y)

— o(X,Y)2>1
— ¢(X,Y) = £ cosh(d(X*+,Y7)).

The sign is positive if the normal orientations of the common perpendiculars coincide,
and negative otherwise.

O0<ec (X, 1Y)

cosh d4(X , Y) 916

The proof is similar to 2.6.2. We may assume X and Y have unit length. Since
(X,Y) intersects H™ as the common perpendicular to X+ and Y+, Q restricted to
(X,Y) has type (1,1). Replace X by —X if necessary so that X and Y lie in the
same component of S;N(X,Y). Join X to Y by a geodesic X; of speed i. From 2.6.1,
X, = X,. There is a dual geodesic Z; of unit speed, satisfying Z; - X; = 0, joining
X+ to Y+ along their common perpendicular, so one may deduce that

o, (X,Y)=+94EY — 4q(xt vh.

There is a limiting case, intermediate between 2.6.3 and 2.6.4:

2.6.5. X+ and Yt are parallel
<= (@ restricted to (X,Y’) is degenerate
— c(X,Y) =1

In this case, we say that X+ and Y+ form an angle of 0 or 7. X+ and Y+ actually
have a distance of 0, where the distance of two sets U and V is defined to be the
infimum of the distance between points u € U and v € V.
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2.6. TRIGONOMETRY.

There is one more case in which to interpret c¢(X,Y):

2.6.6. If X is a point in H™ and Y+ a hyperplane, then
sinh(d (X, Y"))

o X,Y) =

I

7

where d (X,Y™) is the oriented distance.

The proof is left to the untiring reader.

With our dictionary now complete, it is easy to derive hyperbolic trigonometric
formulae from linear algebra. To solve triangles, note that the edges of a triangle
with vertices u, v and w in H? are U+, V+ and W+, where U is a vector orthogonal
to v and w, etc. To find the angles of a triangle from the lengths, one can find
three vectors u, v, and w with the appropriate inner products, find a dual basis, and
calculate the angles from the inner products of the dual basis. Here is the general
formula. We consider triangles in the projective model, with vertices inside or outside
the sphere at infinity. Choose vectors vy, v and vz of length i or 1 representing these
points. Let ¢ = v; - v;, €; = /&€ and c¢i; = c(v;,v;). Then the matrix of inner
products of the v; is

€1 €12C12  €13C13
C = | e12012 €2 €23C23

€13C13  €23Ca3 €3

The matrix of inner products of the dual basis {v!,v* v3} is C~!. For our pur-
poses, though, it is simpler to compute the matrix of inner products of the basis
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY
{V/—det C*},

—adjC = (—detC)-C' =

—6263(1 - 033) —61263(013023 - C12) —61362(012023 - 013)
—61263(013023 - 012) —6163(1 - 6%3) —62361(012013 - 023)
—61362(012023 - 013) —62361(012013 - 623) —6162(1 - C%g)

If v, 0%, 0% is the dual basis, and ¢ = ¢(v®,v7), we can compute

— €13C23 — C12
B 2 2’
V1 —c3/1 — ciy

where it is easy to deduce the sign

2.6.7. c'?

—€12€3
V —€2€34/ —€1€3

directly. This specializes to give a number of formulas, in geometrically distinct cases.
In a real triangle,

€ =

cos v cos 3 + cosy

2.6.8. coshC =

Y

sin asin 3

cosh A cosh B — coshC
sinh A sinh B ’

or coshC' = cosh Acosh B — sinh Asinh Bcosc. (See also 2.6.16.) In an all right
hexagon,

2.6.9. cosy =
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2.6. TRIGONOMETRY.

l
! /
(éee a.lgo' 2.6.18)
I
I A,
L 7
! [
(4
‘79‘
9 6.10 L cosh a cosh 3 + cosh
.6.10. coshC' = .

sinh a:sinh (3

(See also 2.6.18.) Such hexagons are useful in the study of hyperbolic structures on
surfaces. Similar formulas can be obtained for pentagons with four right angles, or
quadrilaterals with two adjacent right angles:

2.20

By taking the limit of 2.6.8 as the vertex with angle v tends to the circle at
infinity, we obtain useful formulas:
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

1
2.6.11. cosh € — o8 acos B+

sin acsin (3

and in particular

1

2.6.12. coshC = ——.
sin «v

These formulas for a right triangle are worth mentioning separately, since they are

particularly simple.
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2.6. TRIGONOMETRY.

oL
B C
Y
A g
From the formula for cosy we obtain the hyperbolic Pythagorean theorem:
2.6.13. cosh C' = cosh A cosh B.
Also,
2.6.14. cosh A = C(,)S a.
sin 8
(Note that (cosa)/(sin#) = 1 in a Euclidean right triangle.) By substituting
(cosh C)
(cosh A)
for cosh B in the formula 2.6.9 for cos «, one finds:
inh A
2.6.15. In a right triangle, sina = S?n .
sinh C'

This follows from the general law of sines,

sinh A B sinh B B sinh C

2.6.16. In any triangle, — - = — .
sin v sin (3 sin 7y

2.22
Similarly, in an all right pentagon,
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2. ELLIPTIC AND HYPERBOLIC GEOMETRY

one has
2.6.17. sinh Asinh B = cosh D.
It follows that in any all right hexagon,

there is a law of sines:
sinh A B sinh B B sinh C
sinha  sinh  sinhy’

2.6.18.
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CHAPTER 3
Geometric structures on manifolds

A manifold is a topological space which is locally modelled on R™. The notion of
what it means to be locally modelled on R™ can be made definite in many different
ways, yielding many different sorts of manifolds. In general, to define a kind of
manifold, we need to define a set § of gluing maps which are to be permitted for
piecing the manifold together out of chunks of R™. Such a manifold is called a G-
manifold. G should satisfy some obvious properties which make it a pseudogroup of
local homeomorphisms between open sets of R™:

(i) The restriction of an element g € G to any open set in its domain is also in
g.
(ii) The composition g; o g, of two elements of G, when defined, is in G.
(iii) The inverse of an element of G is in G.
(iv) The property of being in G is local, so that if U = |J,, U, and if g is a local
homeomorphism g : U — V whose restriction to each U, isin G, then g € G.

It is convenient also to permit G to be a pseudogroup acting on any manifold,
although, as long as § is transitive, this doesn’t give any new types of manifolds. See
Haefliger, in Springer Lecture Notes #197, for a discussion.

A group G acting on a manifold X determines a pseudogroup which consists of
restrictions of elements of G to open sets in X. A (G, X)-manifold means a manifold
glued together using this pseudogroup of restrictions of elements of G.

ExaMPLES. If G is the pseudogroup of local C" diffeomorphisms of R", then
a G-manifold is a C"-manifold, or more loosely, a differentiable manifold (provided
r>1).

If G is the pseudogroup of local piecewise-linear homeomorphisms, then a §-
manifold is a PL-manifold. If G is the group of affine transformations of R", then a
(G,R™)-manifold is called an affine manifold. For instance, given a constant A\ > 1
consider an annulus of radii 1 and A+ e€. Identify neighborhoods of the two boundary
components by the map z — A\x. The resulting manifold, topologically, is T2.
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

Here is another method, due to John Smillie, for constructing affine structures
on T? from any quadrilateral @ in the plane. Identify the opposite edges of @) by
the orientation-preserving similarities which carry one to the other. Since similarities
preserve angles, the sum of the angles about the vertex in the resulting complex is
27, so it has an affine structure. We shall see later how such structures on 72 are
intimately connected with questions concerning Dehn surgery in three-manifolds.

The literature about affine manifolds is interesting. Milnor showed that the only
closed two-dimensional affine manifolds are tori and Klein bottles. The main unsolved
question about affine manifolds is whether in general an affine manifold has Euler
characteristic zero.

If G is the group of isometries of Euclidean space E", then a (G, E™)-manifold
is called a Fuclidean manifold, or often a flat manifold. Bieberbach proved that a
Euclidean manifold is finitely covered by a torus. Furthermore, a Euclidean structure
automatically gives an affine structure, and Bieberbach proved that closed Euclidean
manifolds with the same fundamental group are equivalent as affine manifolds. If G
is the group O(n + 1) acting on elliptic space P™ (or on S™), then we obtain elliptic
manifolds.

CONJECTURE. Every three-manifold with finite fundamental group has an elliptic
structure.
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3.1. A HYPERBOLIC STRUCTURE ON THE FIGURE-EIGHT KNOT COMPLEMENT.

This conjecture is a stronger version of the Poincaré conjecture; we shall see the
logic shortly. All known three-manifolds with finite fundamental group certainly have
elliptic structures.

As a final example (for the present), when G is the group of isometries of hyper-
bolic space H", then a (G, H")-manifold is a hyperbolic manifold. For instance, any
surface of negative Euler characteristic has a hyperbolic structure. The surface of
genus two is an illustrative example.

e, >

Topologically, this surface is obtained by identifying the sides of an octagon, in
the pattern above, for instance. An example of a hyperbolic structure on the surface
is obtained form any hyperbolic octagon whose opposite edges have equal lengths
and whose angle sum is 27, by identifying in the same pattern. There is a regular
octagon with angles 7/4, for instance.

3.1. A hyperbolic structure on the figure-eight knot complement.

Consider a regular tetrahedron in Euclidean space, inscribed in the unit sphere,
so that its vertices are on the sphere. Now interpret this tetrahedron to lie in the
projective model for hyperbolic space, so that it determines an ideal hyperbolic sim-
plex: combinatorially, a simplex with its vertices deleted. The dihedral angles of the
hyperbolic simplex are 60°. This may be seen by extending its faces to the sphere at
infinity, which they meet in four circles which meet each other in 60° angles.

By considering the Poincaré disk model, one sees immediately that the angle
made by two planes is the same as the angle of their bounding circles on the sphere
at infinity.

Take two copies of this ideal simplex, and glue the faces together, in the pattern
described in Chapter 1, using Euclidean isometries, which are also (in this case)
hyperbolic isometries, to identify faces. This gives a hyperbolic structure to the
resulting manifold, since the angles add up to 360° around each edge.

Thurston — The Geometry and Topology of 3-Manifolds 29

3.4

3.5
3.6

3.7



3. GEOMETRIC STRUCTURES ON MANIFOLDS

e S

e SISV it

A regular octagon with angles /4,
whose sides can be identified to give a surface of genus 2.

A tetrahedron inscribed in the unit sphere, top view.

According to Magnus, Hyperbolic Tesselations, this manifold was constructed by
Gieseking in 1912 (but without any relation to knots). R. Riley showed that the
figure-eight knot complement has a hyperbolic structure (which agrees with this one).
This manifold also coincides with one of the hyperbolic manifolds obtained by an
arithmetic construction, because the fundamental group of the complement of the

30 Thurston — The Geometry and Topology of 3-Manifolds



3.2. A HYPERBOLIC MANIFOLD WITH GEODESIC BOUNDARY.
figure-eight knot is isomorphic to a subgroup of index 12 in PSLy(Z|w]), where w is
a primitive cube root of unity.
3.2. A hyperbolic manifold with geodesic boundary.

Here is another manifold which is obtained from two tetrahedra. First glue the two
tetrahedra along one face; then glue the remaining faces according to this diagram:

In the diagram, one vertex has been removed so that the polyhedron can be
flattened out in the plane. The resulting complex has only one edge and one vertex.
The manifold M obtained by removing a neighborhood of the vertex is oriented with
boundary a surface of genus 2.

Consider now a one-parameter family of regular tetrahedra in the projective model
for hyperbolic space centered at the origin in Euclidean space, beginning with the
tetrahedron whose vertices are on the sphere at infinity, and expanding until the
edges are all tangent to the sphere at infinity. The dihedral angles go from 60° to 0°,
so somewhere in between, there is a tetrahedron with 30° dihedral angles. Truncate
this simplex along each plane v+, where v is a vertex (outside the unit ball), to obtain
a stunted simplexr with all angles 90° or 30°:
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

3.9
Two copies glued together give a hyperbolic structure for M, where the boundary

of M (which comes from the triangular faces of the stunted simplices) is totally geo-

desic. A closed hyperbolic three-manifold can be obtained by doubling this example,

i.e., taking two copies of M and gluing them together by the “identity” map on the

boundary.

3.3. The Whitehead link complement.

The Whitehead link may be spanned by a two-complex which cuts the complement
into an octahedron, with vertices deleted:

) )

;
/
L

The one-cells are the three arrows, and the attaching maps for the two-cells are
indicated by the dotted lines. The three-cell is an octahedron (with vertices deleted), 3.10
and the faces are identified thus:
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3.4. THE BORROMEAN RINGS COMPLEMENT.

4
A.<
5

CI

A hyperbolic structure may be obtained from a Euclidean regular octahedron in-
scribed in the unit sphere. Interpreted as lying in the projective model for hyperbolic
space, this octahedron is an ideal octahedron with all dihedral angles 90°.

Gluing it in the indicated pattern, again using Euclidean isometries between the
faces (which happen to be hyperbolic isometries as well) gives a hyperbolic structure
for the complement of the Whitehead link.

3.4. The Borromean rings complement.

This is spanned by a two-complex which cuts the complement into two ideal
octahedra:
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

Borromean rings A spenning 2-complex

Here is the corresponding gluing pattern of two octahedra. Faces are glued to
their corresponding faces with 120° rotations, alternating in directions like gears.

3.5. The developing map.

Let X be any real analytic manifold, and G' a group of real analytic diffeomor-
phisms of X. Then an element of GG is completely determined by its restriction to
any open set of X.

Suppose that M is any (G, X)-manifold. Let Uy, Us, ... be coordinate charts for
M, with maps ¢; : U; — X and transition functions v;; satisfying

Vij © Pi = @;.
In general the 7;;’s are local G-diffeomorphisms of X defined on ¢;(U; N Uj) so they
are determined by locally constant maps, also denoted +;;, of U; N U; into G.

Consider now an analytic continuation of ¢; along a path « in M beginning
in U;. It is easy to see, inductively, that on a component of o N U;, the analytic
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3.5. THE DEVELOPING MAP.

continuation of ¢; along « is of the form v o ¢;, where v € G. Hence, ¢ can be
analytically continued along every path in M. It follows immediately that there is
a global analytic continuation of ¢; defined on the universal cover of M. (Use the
definition of the universal cover as a quotient space of the paths in A.) This map,

D:M— X,

is called the developing map. D is a local (G, X )-homeomorphism (i.e., it is an im-
mersion inducing the (G, X)-structure on M.) D is clearly unique up to composition
with elements of G.

Although G acts transitively on X in the cases of primary interest, this condition
is not necessary for the definition of D. For example, if G is the trivial group and
X is closed then closed (G, X )-manifolds are precisely the finite-sheeted covers of X,
and D is the covering projection.

From this uniqueness property of D, we have in particular that for any covering

transformation 7, of M over M, there is some (unique) element g, € G such that
DoT,=g,0D.
Since DoT,0T3=g,0Do0Ts=g,0ggo D it follows that the correspondence
H:aw- g,

is a homomorphism, called the holonomy of M.
In general, the holonomy of M need not determine the (G, X)-structure on M,
but there is an important special case in which it does.

DEFINITION. M is a complete (G, X )-manifold if D : M — X is a covering map.
(In particular, if X is simply-connected, this means D is a homeomorphism.)

If X is similarly connected, then any complete (G, X)-manifold M may easily be
reconstructed from the image I' = H(m(M)) of the holonomy, as the quotient space
X/T.

Here is a useful sufficient condition for completeness.

PROPOSITION 3.6. Let G be a group of analytic diffeomorphisms acting transi-
tively on a manifold X, such that for any x € X, the isotropy group G, of x is
compact. Then every closed (G, X)-manifold M is complete.

PROOF. Let @) be any positive definite on the tangent space T, (X) of X at some
point x. Average the set of transforms ¢(Q), g € G, using Haar measure, to obtain
a quadratic form on T).(X) which is invariant under G,. Define a Riemannian metric
(ds?*), = g(Q) on X, where g € G is any element taking x to y. This definition
is independent of the choice of g, and the resulting Riemannian metric is invariant
under G.
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3. GEOMETRIC STRUCTURES ON MANIFOLDS

Therefore, this metric pieces together to give a Riemannian metric on any (G, X)-
manifold, which is invariant under any (G, X)- map.

If M is any closed (G, X )-manifold, then there is some € > 0 such that the e-ball
in the Riemannian metric on M is always convex and contractible. If x is any point
in X, then D™!(B,/2(x)) must be a union of homeomorphic copies of B(z) in M.
D evenly covers X, so it is a covering projection, and M is complete. 0

For example, any closed elliptic three-manifold has universal cover S®, so any
simply-connected elliptic manifold is S®. Every closed hyperbolic manifold or Eu-
clidean manifold has universal cover hyperbolic three-space or Euclidean space. Such
manifolds are consequently determined by their holonomy.

Even for G and X as in proposition 3.6, the question of whether or not a non-
compact (G, X)-manifold M is complete can be much more subtle. For example,
consider the thrice-punctured sphere, which is obtained by gluing together two tri-
angles minus vertices in this pattern:

A hyperbolic structure can be obtained by gluing two ideal triangles (with all vertices
on the circle at infinity) in this pattern. Each side of such a triangle is isometric to
the real line, so a gluing map between two sides may be modified by an arbitrary
translation; thus, we have a family of hyperbolic structures in the thrice-punctured
sphere parametrized by R3. (These structures need not be, and are not, all distinct.)
Exactly one parameter value yields a complete hyperbolic structure, as we shall see
presently.

Meanwhile, we collect some useful conditions for completeness of a (G, X )-struc-
ture with (G, X) as in 3.6. For convenience, we fix some natural metrics on (G, X)-
structures.

PropoSITION 3.7. With (G, X) as above, a (G, X)-manifold M is complete if
and only if any of the following equivalent conditions is satisfied.

(a) M is complete as a metric space.
(b) There is some € > 0 such that each closed e-ball in M is compact.
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3.5. THE DEVELOPING MAP.

The developing map of an affine torus constructed from a quadrilateral (see p. 3.3).
The torus is plainly not complete. FEzxercise: construct other affine toruses with the
same holonomy as this one. (Hint: walk once or twice around this page.)
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(c) For every k >0, all closed k-balls are compact.
(d) There is a family {S:};t € R, of compact sets which exhaust M, such that
Siia contains a neighborhood of radius a about S;.

PROOF. Suppose that M is metrically complete. Then M is also metrically com-
plete. We will show that the developing map D : M — X is a covering map by
proving that any path oy in X can be lifted to M. In fact, let T C [0, 1] be a maxi-
mal connected set for which there is a lifting. Since D is a local homeomorphism, T’
is open, and because M is metrically complete, T is closed: hence, o can be lifted,
so M is complete.

It is an elementary exercise to see that (b) <= (¢) <= (d) = (a). For any
point 2o € X there is some e such that the ball B,(x) is compact; this € works for
all z € X since the group G of (G, X)-diffeomorphisms of X is transitive. Therefore
X satisfies (a), (b), (¢) and (d). Finally if M is a complete (G, X )-manifold, it is
covered by X so it satisfies (b). The proposition follows. O

3.8. Horospheres.

To analyze what happens near the vertices of an ideal polyhedron when it is glued
together, we need the notion of horospheres (or, in the hyperbolic plane, they are
called horocycles.) A horosphere has the limiting shape of a sphere in hyperbolic
space, as the radius goes to infinity. One property which can be used to determine
the spheres centered at a point X is the fact that such a sphere is orthogonal to all
lines through X. Similarly, if X is a point on the sphere at infinity, the horospheres
“centered” at X are the surfaces orthogonal to all lines through X. In the Poincaré
disk model, a hyperbolic sphere is a Euclidean sphere in the interior of the disk,
and a horosphere is a Euclidean sphere tangent to the unit sphere. The point X of
tangency is the center of the horosphere.
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3.8. HOROSPHERES.

Concentric horocycles and orthogonal lines.

_——-———//

Translation along a line through X permutes the horospheres centered at X.
Thus, all horospheres are congruent. The convex region bounded by a horosphere is
a horoball. For another view of a horosphere, consider the upper half-space model. In
this case, hyperbolic lines through the point at infinity are Euclidean lines orthogonal
to the plane bounding upper half-space. A horosphere about this point is a horizontal
Euclidean plane. From this picture one easily sees that a horosphere in H™ is isometric
to Euclidean space E"~!. One also sees that the group of hyperbolic isometries fixing
the point at infinity in the upper half-space model acts as the group of similarities
of the bounding Euclidean plane. One can see this action internally as follows. Let
X be any point at infinity in hyperbolic space, and h any horosphere centered at X.
An isometry g of hyperbolic space fixing X takes h to a concentric horosphere h'.
Project h' back to h along the family of parallel lines through X. The composition
of these two maps is a similarity of h.

Consider two directed lines [; and [y emanating from the point at infinity in the
upper half-space model. Recall that the hyperbolic metric is ds? = (1/x2) dz?. This
means that the hyperbolic distance between [; and [, along a horosphere is inversely
proportional to the Euclidean distance above the bounding plane. The hyperbolic
distance between points X; and X5 on [y at heights of hy and hy is |log(hs) —log(hy)].
It follows that for any two concentric horospheres h; and hs which are a distance d
apart, and any pair of lines [; and [ orthogonal to hy and hs, the ratio of the distance
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F1GURE 1. Horocycles and lines in the upper half-plane

between [; and [y measured along h; to their distance measured along hs is exp(d).

Q‘L Qg,
C
‘ T ha

ced

3.9. Hyperbolic surfaces obtained from ideal triangles.

Consider an oriented surface S obtained by gluing ideal triangles with all vertices
at infinity, in some pattern. Fzercise: all such triangles are congruent. (Hint: you
can derive this from the fact that a finite triangle is determined by its angles—see
2.6.8. Let the vertices pass to infinity, one at a time.)

Let K be the complex obtained by including the ideal vertices. Associated with
each ideal vertex v of K, there is an invariant d(v), defined as follows. Let h be a
horocycle in one of the ideal triangles, centered about a vertex which is glued to v
and “near” this vertex. Extend h as a horocycle in S counter clockwise about v. It
meets each successive ideal triangle as a horocycle orthogonal to two of the sides,
until finally it re-enters the original triangle as a horocycle A’ concentric with h, at a
distance +d(v) from h. The sign is chosen to be positive if and only if the horoball
bounded by A’ in the ideal triangle contains that bounded by h.
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3.9. HYPERBOLIC SURFACES OBTAINED FROM IDEAL TRIANGLES.

The surface S is complete if and only if all invariants d(v) are 0. Suppose, for
instance, that some invariant d(v) < 0. Continuing h further round v; the length
of each successive circuit around v is reduced by a constant factor < 1, so the total
length of h after an infinite number of circuits is bounded. A sequence of points
evenly spaced along h is a non-convergent Cauchy sequence.

If all invariants d(v) = 0, on the other hand, one can remove horoball neighbor-
hoods of each vertex in K to obtain a compact subsurface Sy. Let S; be the surface
obtained by removing smaller horoball neighborhoods bounded by horocycles a dis-
tance of ¢ from the original ones. The surfaces S; satisfy the hypotheses of 3.7(d)
1—hence S is complete.

3.22
For any hyperbolic manifold M, let M be the metric completion of M. In general,

M need not be a manifold. However, it S is a surface obtained by gluing ideal

hyperbolic triangles, then S is a hyperbolic surface with geodesic boundary. There is
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one boundary component of length |d(v)| for each vertex v of K such that d(v) # 0.
S is obtained by adjoining one limit point for each horocycle which “spirals toward” a
vertex v in K. The most convincing way to understand S is by studying the picture:

3.10. Hyperbolic manifolds obtained by gluing ideal polyhedra.

Consider now the more general case of a hyperbolic manifold M obtained by
gluing together the faces of polyhedra in H™ with some vertices at infinity. Let K
be the complex obtained by including the ideal vertices. The link of an ideal vertex
v is (by definition) the set L(v) of all rays through that vertex. From 3.7 it follows
that the link of each vertex has a canonical (similarities of E"~', E"~1 ) structure,
or similarity structure for short. An extension of the analysis in 3.9 easily shows
that M is complete if and only if the similarity structure on each link of an ideal
vertex is actually a Fuclidean structure, or equivalently, if and only if the holonomy
of these similarity structures consists of isometries. We shall be concerned mainly
with dimension n = 3. It is easy to see from the Gauss-Bonnet theorem that any
similarity two-manifold has Euler characteristic zero. (Its tangent bundle has a flat
orthogonal connection). Hence, if M is oriented, each link L(v) of an ideal vertex
is topologically a torus. If L(v) is not Euclidean, then for some o € m L(v), the
holonomy H («) is a contraction, so it has a unique fixed point xy. Any other element
B € m(L(v)) must also fix xg, since  commutes with . Translating zo to 0, we
see that the similarity two-manifold L(v) must be a (C*, C — 0)-manifold where C* is
the multiplicative group of complex numbers. (Compare p. 3.15.) Such a structure
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3.10. HYPERBOLIC MANIFOLDS OBTAINED BY GLUING IDEAL POLYHEDRA.

is automatically complete (by 3.6), and it is also modelled on
(C*,C - 0),

or, by taking logs, on (C,C). Here the first C is an additive group and the second
C is a space. Conversely, by taking exp, any (C,C) structure gives a similarity
structure. (C,C) structures on closed oriented manifolds are easy to describe, being
determined by their holonomy, which is generated by an arbitrary pair (z1,2) of 3.24
complex numbers which are linearly independent over R.

We shall return later to study the spaces M in the three-dimensional case. They

are sometimes closed hyperbolic manifolds obtained topologically by replacing neigh-
borhoods of the vertices by solid toruses.
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CHAPTER 4
Hyperbolic Dehn surgery

A hyperbolic structure for the complement of the figure-eight knot was con-
structed in 3.1. This structure was in fact chosen to be complete. The reader may
wish to verify this by constructing a horospherical realization of the torus which is
the link of the ideal vertex. Similarly, the hyperbolic structure for the Whitehead
link complement and the Borromean rings complement constructed in 3.3 and 3.4 are
complete.

There is actually a good deal of freedom in the construction of hyperbolic struc-
tures for such manifolds, although most of the resulting structures are not complete.
We shall first analyze the figure-eight knot complement. To do this, we need an
understanding of the possible shapes of ideal tetrahedra.

4.1. Ideal tetrahedra in H3.

The link L(v) of an ideal vertex v of an oriented ideal tetrahedron T' (which by
definition is the set of rays in the tetrahedron through that vertex) is a Euclidean
triangle, well-defined up to orientation-preserving similarity. It is concretely realized
as the intersection with 7' of a horosphere about v. The triangle L(v) actually
determines T" up to congruence. To see this, picture T  in the upper half-space model
and arrange it so that v is the point at infinity. The other three vertices of T form
a triangle in E? which is in the same similarity class as L(v). Consequently, if two
tetrahedra T" and T” have vertices v and v with L(v) similar to L(v’), then 7" can
be transformed to T by a Euclidean similarity which preserves the plane bounding
upper half-space. Such a similarity is a hyperbolic isometry.
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N

Ve

It follows that T is determined by the three dihedral angles «, § and ~ of edges
incident to the ideal vertex v, and that a + 8 + v = w. Using similar relations
among angles coming from the other three vertices, we can determine the other three
dihedral angles:

Thus, dihedral angles of opposite edges are equal, and the oriented similarity
class of L(v) does not depend on the choice of a vertex v! A geometric explanation of
this phenomenon can be given as follows. Any two non-intersecting and non-parallel
lines in H? admit a unique common perpendicular. Construct the three common
perpendiculars s,t and u to pairs of opposite edges of T'. Rotation of 7 about s, for
instance, preserves the edges orthogonal to s, hence preserves the four ideal vertices
of T, so it preserves the entire figure. It follows that s, t and v meet in a point and
that they are pairwise orthogonal. The rotations of m about these three axes are the
three non-trivial elements of 2z @ 2 acting as a group of symmetries of 7'
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4.1. IDEAL TETRAHEDRA IN H3.

4.4
In order to parametrize Euclidean triangles up to similarity, it is convenient to
regard E? as C. To each vertex v of a triangle A(¢,u,v) we associate the ratio

(t—U) = Z\vU
(U,—’U)_ ( )

of the sides adjacent to v. The vertices must be labelled in a clockwise order, so that

2(v)-1
" Z(V)
/’///
y .A__% o L
w 2(W) = 1= 20y)
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Im(z(v)) > 0. Alternatively, arrange the triangle by a similarity so that v is at 0
and u at 1; then ¢ is at z(v). The other two vertices have invariants

At) =

2(u) = pi(v)‘

4.1.1.

Denoting the three invariants z1, 29, 23 in clockwise order, with any starting point, we
have the identities

21 k9 %3 — —1

4.1.2. | — 2+ 212 = 0

We can now translate this to a parametrization of ideal tetrahedra. Each edge
e is labelled with a complex number z(e), opposite edges have the same label, and
the three distinct invariants satisfy 4.1.2 (provided the ordering is correct.) Any z;
determines the other two, via 4.1.2.

4.2. Gluing consistency conditions.

Suppose that M is a three-manifold obtained by gluing tetrahedra 73, ..., T; and
then deleting the vertices, and let K be the complex which includes the vertices.

Any realization of T1,...,T} as ideal hyperbolic tetrahedra determines a hyper-
bolic structure on (M — (1 — skeleton)), since any two ideal triangles are congruent.
Such a congruence is uniquely determined by the correspondence between the ver-
tices. (This fact may be visualized concretely from the subdivision of an ideal triangle
by its altitudes.)
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4.2. GLUING CONSISTENCY CONDITIONS.

The condition for the hyperbolic structure on (M — (1 — skeleton)) to give a
hyperbolic structure on M itself is that its developing map, in a neighborhood of each
edge, should come from a local homeomorphism of M itself. In particular, the sum
of the dihedral angles of the edges ey, ..., ex must be 27r. Even when this condition
is satisfied, though, the holonomy going around an edge of M might be a non-trivial
translation along the edge. To pin down the precise condition, note that for each ideal
vertex v, the hyperbolic structure on M — (1 — skeleton) gives a similarity structure
to L(v) — (0 —skeleton). The hyperbolic structure extends over an edge e of M if and
only if the similarity structure extends over the corresponding point in L(v), where
v is an endpoint of e. Equivalently, the similarity classes of triangles determined by
z(e1),...,z(ex) must have representatives which can be arranged neatly around a
point in the plane:

The algebraic condition is

4.2.1. z(ey) - z(eg) - -+ - z(eg) = 1.

This equation should actually be interpreted to be an equation in the universal
cover C*, so that solutions such as
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are ruled out. In other words, the auxiliary condition
4.2.2. argzy + - +argz, = 27w

must also be satisfied, where 0 < arg z; < 7.

4.3. Hyperbolic structure on the figure-eight knot complement.

Consider two hyperbolic tetrahedra to be identified to give the figure eight knot
complement:
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4.3. HYPERBOLIC STRUCTURE ON THE FIGURE-EIGHT KNOT COMPLEMENT.

We read off the gluing consistency conditions for the two edges:
(/=) zowiwy = 1 ( J— )23 z0wiws = 1.
From 4.1.2, note that the product of these two equations,
(212023)* (wywows)® = 1

is automatically satisfied. Writing 2z = 2;, and w = wy, and substituting the expres-
sions from 4.1.1 into (#£—), we obtain the equivalent gluing condition,

4.3.1. 2(z—1w(w—1) =1.
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We may solve for 2z in terms of w by using the quadratic formula.

L 1+ /14 4/ww—1)
B 2

We are searching only for geometric solutions

4.3.2.

Im(z) >0 Im(w)>0

so that the two tetrahedra are non-degenerate and positively oriented. For each
value of w, there is at most one solution for z with Im(z) > 0. Such a solution exists
provided that the discriminant 1 + 4/w(w — 1) is not positive real. Solutions are
therefore parametrized by w in this region of C: 4.10

3L

Rt d

- ).(ori iY\a'
solwtion

} 4 e A e
L | v 5}

Ey -1 o . ! 3

Note that the original solution given in 3.1 corresponds to w = z = v/—1 = % + \/752

The link L of the single ideal vertex has a triangulation which can be calculated
from the gluing diagram: 411
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4.3. HYPERBOLIC STRUCTURE ON THE FIGURE-EIGHT KNOT COMPLEMENT.

Now let us compute the derivative of the holonomy of the similarity structure on
L. To do this, regard directed edges of the triangulation as vectors. The ratio of any
two vectors in the same triangle is known in terms of z or w. Multiplying appropriate
ratios, we obtain the derivative of the holonomy:
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A Bt RO S S 555

B2 —
):'@1‘03)1 w1 W

(Z2,2;) %,
= 2% (WWs)™

H(z) = 2ww)? = (3)?
H(y) = 2 =w(l-2).

Observe that if M is to be complete, then H'(z) = H'(y) = 1, so z = w. From
4.3.1, (2(z —1))?> = 1. Since z(z — 1) < 0, this means z(z — 1) = —1, so that the only
possibility is the original solution w = z = v/—1.

4.4. The completion of hyperbolic three-manifolds obtained from ideal
polyhedra.

Let M be any hyperbolic manifold obtained by gluing polyhedra with some ver-
tices at infinity, and let K be the complex obtained by including the ideal vertices.
The completion M is obtained by completing a deleted neighborhood N(v) of each
ideal vertex v in k, and gluing these completed neighborhoods N(v) to M. The
developing map for the hyperbolic structure on N(v) may be readily understood in
terms of the developing map for the similarity structure on L(v). To do this, choose
coordinates so that v is the point at infinity in the upper half-space model. The
developing images of corners of polyhedra near v are “chimneys” above some poly-
gon in the developing image of L(v) on C (where C is regarded as the boundary of
upper half-space.) If M is not complete near v, we change coordinates if necessary
by a translation of R? so that the developing image of L(v) is C — 0. The holonomy
for N(v) now consists of similarities of R* which leave invariant the z-axis and the
x — y plane (C). Replacing N(v) by a smaller neighborhood, we may assume that
the developing image I of N(v) is a solid cone, minus the z-axis.
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4.4. COMPLETION OF HYPERBOLIC THREE-MANIFOLDS

-
The completion of I is clearly the solid cone, obtained by adjoining the z-axis to
I. 1t follows easily that the completion of

N(w) =1

is also obtained by adjoining a single copy of the z-axis.
The projection

e~

p:N(v) — N(v)

extends to a surjective map p between the completions. [p exists because p does not
increase distances. p is surjective because a Cauchy sequence can be replaced by a

Cauchy path, which lifts to N(v).] Every orbit of the holonomy action of m (N(v))
on the z-axis is identified to a single point. This action is given by

H(«):(0,0,2) — |H' ()] - (0,0, 2)

where the first H(«a) is the hyperbolic holonomy and the second is the holonomy of
L(v). There are two cases:

Case 1. The group of moduli {|H'(«)|} is dense in R,. Then the completion of
N(v) is the one-point compactification.

Case 2. The group of moduli {|H'(«)|} is a cyclic group. Then the completion
N(v)
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is topologically a manifold which is the quotient space (Y/H, and it is obtained
by adjoining a circle to N(v). Let a3 € m(L(v)) be a generator for the kernel of
a — |H'(a)] and let 1 < |H'(aq)| generate the image, so that «; and ay generate
m(L(v)) = Z @& Z. Then the added circle in

N(v)
has length log |H'(as)|. A cross-section of N(v) perpendicular to the added circle

is a cone (Cy, obtained by taking a two-dimensional hyperbolic sector Sy of angle 6,
[0 < 6 < oo] and identifying the two bounding rays:

It is easy to make sense of this even when 6 > 27. The cone angle 6 is the argument
of the element H'(ag) € C*. In the special case § = 2w, Cjy is non-singular, so

N(v)
is a hyperbolic manifold. N(v) may be seen directly in this special case, as the solid
cone I U (z — axis) modulo H.

4.5. The generalized Dehn surgery invariant.

Consider any three-manifold M which is the interior of a compact manifold M
whose boundary components Py, ..., P are tori. For each 7, choose generators a;, b;
for m(P;). If M is identified with the complement of an open tubular neighborhood
of a link L in S3, there is a standard way to do this, so that a; is a meridian (it
bounds a disk in the solid torus around the corresponding component of L) and b; is
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a longitude (it is homologous to zero in the complement of this solid torus in S?). In
this case we will call the generators m; and ;.

We will use the notation M, g)).....(ax,3,) t0 denote the manifold obtained by
gluing solid tori to M so that a meridian in the i-th solid torus goes to «;, a; + 3;b;.
If an ordered pair (a4, 3;) is replaced by the symbol oo, this means that nothing is
glued in near the i-th torus. Thus, M = M. .

These notions can be refined and extended in the case M has a hyperbolic struc-
ture whose completion M is of the type described in 4.4. (In other words, if M is
not complete near P;, the developing map for some deleted neighborhood N; of P,
should be a covering of the deleted neighborhood I of radius r about a line in H3.)
The developing map D of N; can be lifted to I, with holonomy H. The group of
isometries of I is R @ R, parametrized by (translation distance, angle of rotation);
this parametrization is well-defined up to sign.

DEFINITION 4.5.1. The generalized Dehn surgery invariants (a;, 3;) for M are
solutions to the equations

o H(a;) + B:H(b;) = (rotation by =+ 2m),
(or, (e, B;) = oo if M is complete near F;).

Note that (o, 3;) is unique, up to multiplication by —1, since when M is not
complete near P;, the holonomy H : m(N;) — R ® R is injective. We will say that
M is a hyperbolic structure for

M(a1761)7'”7(ak7ﬁ1€) :

If all (a;, 5;) happen to be primitive elements of Z@Z, then M is the topological man-
ifold Mqa, g)),....(ax,8;) With a non-singular hyperbolic structure, so that our extended
definition is compatible with the original. If each ratio «;/; is the rational number
pi/q; in lowest terms, then M is topologically the manifold Mpy 1), (prsar) - The hy-
perbolic structure, however, has singularities at the component circles of M — M with
cone angles of 27 (p;/ay) [since the holonomy H of the primitive element p;a; + ¢;b;
in 7 (F;) is a pure rotation of angle 27 (p; /).

There is also a topological interpretation in case the (o, 3;) € Z & Z, although
they may not be primitive. In this case, all the cone angles are of the form 27 /n;,
where each n; is an integer. Any branched cover of M which has branching index
n; around the i-th circle of M — M has a non-singular hyperbolic structure induced
from M.
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4. HYPERBOLIC DEHN SURGERY
4.6. Dehn surgery on the figure-eight knot.

For each value of w in the region R of C shown on p. 4.10, the associated hyperbolic
structure on S®— K, where K is the figure-eight knot, has some Dehn surgery invariant
d(w) = £ (pu(w), AM(w)). The function d is a continuous map from R to the one-point
compactification R?/ & 1 of R? with vectors v identified to —v. Every primitive
element (p,q) of Z @ Z which lies in the image d(R) describes a closed manifold
(5% — K)(p,q) which possesses a hyperbolic structure.

Actually, the map d can be lifted to a map d: R — RQ, by using the fact that
the sign of a rotation of

—_——

(H3 — z-axis)

is well-defined. (See §4.4. The extra information actually comes from the orientation
of the z-axis determined by the direction in which the corners of tetrahedra wrap
around it). d is defined by the equation d(w) = (u, A) where

pH(m) + NH?(1) = (a rotation by +2m)

In order to compute the image J(R), we need first to express the generators [ and
m for m1(P) in terms of the previous generators x and y on p. 4.11. Referring to
page 6, we see that a meridian which only intersects two two-cells can be constructed
in a small neighborhood of K. The only generator of 7 (L(v)) (see p. 4.11) which
intersects only two one-cells is +y, so we may choose m = y. Here is a cheap way to
see what [ is. The figure-eight knot can be arranged (passing through the point at
infinity) so that it is invariant by the map v — —v of R® = 3.

This map can be made an isometry of the complete hyperbolic structure constructed
for S — K. (This can be seen directly; it also follows immediately from Mostow’s
Theorem, ... ). This hyperbolic isometry induces an isometry of the Euclidean struc-
ture on L(v) which takes m to m and [ to —I. Hence, a geodesic representing [ must

4.18

be orthogonal to a geodesic representing m, so from the diagram on the bottom of 4.19

p. 4.11 we deduce that the curve | = +x + 2y is a longitude. (Alternatively, it is not
hard to compute m and [ directly).
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From p. 4.12, we have

H(m) = w(l-2z2)

46.1. H) = 2201 2y

The behavior of the map d near the boundary of R is not hard to determine.
For instance, when w is near the ray Im(w) = 0, Re(w) > 1, then z is near the ray

Im(z) = 0, Re(z) < 0. The arguments of H(m) and H(l) are easily computed by
analytic continuation from the complete case w = z = v/—1 (when the arguments
are 0) to be

arg H(m) =0 arg H(I) ~ +2m.
Consequently, (u, \) is near the line A = +1. As w — 1 we see from the equation
z1—2)w(l—w)=1
that
|2 Jw| — 1
so (p1, A) must approach the line 1+4\ = 0. Similarly, as w — 400, then |2 |w[* — 1,

so (u, A) must approach the line g — 4\ = 0. Then the map d extends continuously
to send the line segment

1,400
to the line segment 4.20
(—4,4+1), (+4,+1).

There is an involution 7 of the region R obtained by interchanging the solutions
z and w of the equation z(l — z) w(l —w) = 1. Note that this involution takes H(m)
to 1/H(m) = H(—m) and H(l) to H(—1). Therefore d(tw) = —d(w). It follows that
d extends continuously to send the line segment

—00, 0

to the line segment

(+4,—1),(—4,-1).
When |w| is large and 0 < arg(w) < 7/2, then |z| is small and
arg(z) = m — 2arg(w).

Thus arg H(m) ~ argw, arg H(l) ~ 21 — 4argw so pargw + \(21 — dargw) = 2.
By considering |H(m)| and |H(I)|, we have also pn — 4X = 0, so (u, A) =~ (4,1).
There is another involution o of R which takes w to

1—w
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(and z to T — 2). From 4.6.1 we conclude that if d(w) = (u, A), then d(ow) = (11, —\).
With this information, we know the boundary behavior of d except when w or 7w is
near the ray r described by

ﬁ

Re(w) =3, Im(w)> %24

The image of the two sides of this ray is not so neatly described, but it does not
represent a true boundary for the family of hyperbolic structures on S® — K, as w
crosses  from right to left, for instance, z crosses the real line in the interval (0, 3).
For a while, a hyperbolic structure can be constructed from the positively oriented
simplex determined by w and the negatively oriented simplex determined by z, by
cutting the z-simplex into pieces which are subtracted from the w-simplex to leave a
polyhedron P. P is then identified to give a hyperbolic structure for S — K.

For this reason, we give only a rough sketch of the boundary behavior of d near
ror 7(r):

TSR

A a

e e e 8 18 TR ey 1 e e Al bt W 3 A oo Y e e

o L 1

N

A

> 6
¢ 1) M ) . .»' ()
» v - . (qoo) » . ” v

oAl N . . (4,-1)

d : <
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4.8. DEGENERATION OF HYPERBOLIC STRUCTURES.

Since the image of d in R2 does not contain the origin, and since d sends a curve
winding once around the boundary of R to the curve abed in RQ, it follows that the
image of d(R) contains the exterior of this curve.

In particular

THEOREM 4.7. Every manifold obtained by Dehn surgery along the figure-eight
knot K has a hyperbolic structure, except the six manifolds:

(8% = K) gy = (87 = K) ()
where (u, \) is (1,0), (0,1), (1,1), (2,1), (3,1) or (4,1).

The equation
(5% = K)ap = (5% = K(—ap)
follows from the existence of an orientation reversing homeomorphism of S® — K.

I first became interested in studying these examples by the beautiful ideas of
Jorgensen (compare Jorgensen, “Compact three-manifolds of constant negative cur-
vature fibering over the circle,” Annals 106 (1977) 61-72). He found the hyperbolic
structures corresponding to the ray = 0, A > 1, and in particular, the integer and
half-integer (!) points along this ray, which determine discrete groups.

The statement of the theorem is meant to suggest, but not imply, the true fact
that the six exceptions do not have hyperbolic structures. Note that at least

5% = (5 = K)n,)

does not admit a hyperbolic structure (since 71(S%) is finite). We shall arrive at
an understanding of the other five exceptions by studying the way the hyperbolic
structures are degenerating as (1, A) tends to the line segment

(—4,1),(4,1).

4.8. Degeneration of hyperbolic structures.

DEFINITION 4.8.1. A codimension-k foliation of an n-manifold M is a G-struc-
ture, on M, where G is the pseudogroup of local homeomorphisms of R" % x R* which
have the local form

oz, y) = (f(x, ), 9(y))-

In other words, G takes horizontal (n — k)-planes to horizontal (n — k)-planes.
These horizontal planes piece together in M as (n — k)-submanifolds, called the
leaves of the foliation. M, like a book without its cover, is a disjoint union of its
leaves.
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For any pseudogroup H of local homeomorphisms of some k-manifold N*, the
notion of a codimension-k foliation can be refined:

DEFINITION 4.8.2. An H-foliation of a manifold M™ is a G-structure for M™,
where G is the pseudogroup of local homeomorphisms of R*~* x N* which have the
local form

oz, y) = (f(z,y), 9(v))

with g € H. If I is the pseudogroup of local isometries of hyperbolic k-space, then
an H-foliation shall, naturally, be called a codimension-k£ hyperbolic foliation. A
hyperbolic foliation determines a hyperbolic structure for each k-manifold transverse
to its leaves.

When w tends in the region R C C to a point R — [0, 1], the w-simplex and the
z-simplex are both flattening out, and in the limit they are flat: 4.24

If we regard these flat simplices as projections of nondegenerate simplices A and B
(with vertices deleted), this determines codimension-2 foliations on A and B, whose
leaves are preimages of points in the flat simplices:
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A and B glue together (in a unique way, given the combinatorial pattern) to
yield a hyperbolic foliation on S® — K. You should satisfy yourself that the gluing
consistency conditions for the hyperbolic foliation near an edge result as the limiting
case of the gluing conditions for the family of squashing hyperbolic structures.

The notation of the developing map extends in a straightforward way to the case
of an H-foliation on a manifold M, when H is the set of restrictions of a group J of
real analytic diffeomorphisms of N¥; it is a map

D: M"™— N¥.

Note that D is not a local homeomorphism, but rather a local projection map, or a
submersion. The holonomy

H:m(M)—J
is defined, as before, by the equation
DoT,=H(a)oD.
Here is the generalization of proposition 3.6 to H-foliations. For simplicity, assume

that the foliation is differentiable:

PROPOSITION 4.8.1. If J is transitive and if the isotropy subgroups J, are com-
pact, then the developing map for any H-foliation F of a closed manifold M s a
fibration

D:M"™— N*.
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PROOF. Choose a plane field 7% transverse to J (so that 7 is a complementary
subspace to the tangent space to the leaves of &, called TF, at each point). Let h
be an invariant Riemannian metric on N* and let g be any Riemannian metric on
M. Note that there is an upper bound K for the difference between the g-length of
a nonzero vector in 7 and the k-length of its local projection to N*.

Define a horizontal path in M to be any path whose tangent vector always lies
in 7. Let a : [0,1] — N be any differentiable path, and let &y be any point in
the preimage D~!(ag). Consider the problem of lifting o to a horizontal path in M
beginning at &y. Whenever this has been done for a closed interval (such as [0,0]),
it can be obviously extended to an open neighborhood. When it has been done for
an open interval, the horizontal lift & is a Cauchy path in M, so it converges. Hence,
by “topological induction”, « has a (unique) global horizontal lift beginning at dy.
Using horizontal lifts of the radii of disks in IV, local trivializations for D : M — N
are obtained, showing that D is a fibration. 0

DEFINITION. An H-foliation is complete if the developing map is a fibration.

Any three-manifold with a complete codimension-2 hyperbolic foliation has uni-
versal cover H2 x R, and covering transformations act as global isometries in the first
coordinate. Because of this strong structure, we can give a complete classification of
such manifolds. A Seifert fibration of a three-manifold M is a projection p: M — B
to some surface B, so that p is a submersion and the preimages of points are circles
in M. A Seifert fibration is a fibration except at a certain number of singular points
T1,..., o5 The model for the behavior in p~(N.(z;)) is a solid torus with a foliation
having the core circle as one leaf, and with all other leaves winding p times around
the short way and ¢ times around the long way, where 1 < p < ¢ and (p,q) = 1.

The projection of a meridian disk of the solid torus to its image in B is g-to-one,
except at the center where it is one-to-one.

A group of isometries of a Riemannian manifold is discrete if for any x, the orbit
of = intersects a small neighborhood of = only finitely often. A discrete group I' of
orientation-preserving isometries of a surface N has quotient N/T" a surface. The
projection map N — N/T" is a local homeomorphism except at points x where the
isotropy subgroup I', is nontrivial. In that case, I', is a cyclic group Z/qZ for some
q > 1, and the projection is similar to the projection of a meridian disk cutting across
a singular fiber of a Seifert fibration.

THEOREM 4.9. Let F be a hyperbolic foliation of a closed three-manifold M. Then
either
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A meridian disk of the solid torus wraps ¢ times around its image disk. Here p =1
and ¢ = 2.

(a) The holonomy group H(m M) is a discrete group of isometries of H?, and
the developing map goes down to a Seifert fibration

Dimnr : M — H?/H(m M),

or
(b) The holonomy group is not discrete, and M fibers over the circle with fiber
a torus.

The structure of F and M in case (b) will develop in the course of the proof.

PROOF. (a) If H(m M) is discrete, then H?/H(m M) is a surface. Since M is
compact the fibers of the fibration D : M® — H? are mapped to circles under the
projection 7 : M3 — M?3. It follows that D/H(mM) : M® — H?/H(mM) is a
Seifert fibration.

(b) When H (7 M) is not discrete, the proof is more involved. First, let us assume
that the foliation is oriented (this means that the leaves of the foliation are oriented,
or in other words, it is determined by a vector field). We choose a m; M-invariant
Riemannian metric ¢ in M3 and let 7 be the plane field which is perpendicular to
the fibers of D : M3 — H2. We also insist that along 7, ¢ be equal to the pullback
of the hyperbolic metric on H2.

By construction, g defines a metric on M3, and, since M? is compact, there is an
infimum I to the length of a nontrivial simple closed curve in M3 when measured
with respect to g. Given gy, g2 € my M, we say that they are comparable if there is a
y € M3 such that

d(D(g1(y)), D(92(y))) <1,
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where d( , ) denotes the hyperbolic distance in H?. In this case, take the geodesic
in H? from D(g;(y)) to D(g2(y)) and look at its horizontal lift at go(y). Suppose
its other endpoint e where ¢;(y). Then the length of the lifted path would be equal
to the length of the geodesic in H?, which is less than I. Since gig, ' takes g2(y) to
g1(y), the path represents a nontrivial element of 71 M and we have a contradiction.
Now if we choose a trivialization of H? x R, we can decide whether or not g;(z) is
greater than e. If it is greater than e we say that g; is greater than ¢, and write
g1 > go, otherwise we write g; < go. To see that this local ordering does not depend
on our choice of y, we need to note that

U(gi,92) = {z | d(H(g1(2)), H(gz(z))) < I}

is a connected (in fact convex) set. This follows from the following lemma, the proof
of which we defer.

LEMMA 4.9.1. f,, 5, (2) = d(g12,g27) is a a convex function on H?.

One useful property of the ordering is that it is invariant under left and right
multiplication. In other words ¢g; < g» if and only if, for all g3, we have g3g1 < ¢392
and g193 < g2g93. To see that the property of comparability is equivalent for these
three pairs, note that since H(m H?) acts as isometries on H?,

d(Dg1y, Dgay) < I implies that d(Dgsg1y, Dgsgay) < I.

Also, if d(Dgyy, Dgay) then d(Dgsgi(gs'y), Dgsga(gs 'y)) < I, so that gigs and gags
are comparable. The invariance of the ordering easily follows (using the fact that
m1 M preserves orientation of the R factors).

For a fixed z € H? we let G.(X) C m M be those elements whose holonomy
acts on x in a way C' — e-close to the identity. In other words, for ¢ € G.(z),
d(z,Hy(x)) < € and the derivative of H,(z) parallel translated back to x, is e-close
to the identity.

PROPOSITION 4.9.2. There is an €y so that for all € < € |G, G| C G..

PROOF. For any Lie group the map [*,%] : G x G — G has derivative zero at
(id,id). Since for any g € G, (g,id) + id and (id, g) — 1. The tangent spaces of
G x id and id xG span the tangent space to G x G at (id,id). Apply this to the
group of isometries of H2. 0

From now on we choose € < I/8 so that any two words of length four or less in G.
are comparable. We claim that there is some 3 € G, which is the “smallest” element
in G, which is > id. In other words, if id < o € G, a # 3, then o > (3. This can be
seen as follows. Take an e-ball B of x € H? and look at its inverse image B under D.
Choose a point y in B and consider y and a(y), where a € G.. We can truncate B
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There are only finitely many translates of y in this region.

by the lifts of B (using the horizontal lifts of the geodesics through x) through y and
a(y). Since this is a compact set there are only a finite number of images of y under
m1M contained in it. Hence there is one [(y) whose R coordinate is the closest to
that of y itself. (3 is clearly our minimal element.

Now consider a > 8 > 1, a € G.. By invariance under left and right multiplica-
tion, a? > B, > v and a > o !Ba > 1. Suppose a 'Ba < 3. Then > a 1fBa > 1
so that 1 > a~1B8aB~! > B371. Similarly if a=!Ba > 8 > 1 then 3 > afBa~! > 1
so that 1 > afa 1371 > 371 Note that by multiplicative invariance, if g1 > ¢»
then g,' = g7'g195" > 97 920957 = g;'. We have either 1 < Ba ' 'a < 3 or
1 < Bafta™! < 3 which contradicts the minimality of 3 . Thus o~ !8a = 3 for all
a € G..

We need to digress here for a moment to classify the isometries of H?. We will
prove the following:

PROPOSITION 4.9.3. If g : H?> — H? is a non-trivial isometry of H* which
preserves orientation, then exactly one of the following cases occurs:

(i) g has a unique interior fixed point or
(i) g leaves a unique invariant geodesic or
(iii) g has a unique fived point on the boundary of H?.

Case (i) is called elliptic, case (ii) hyperbolic, case (iii) parabolic.
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PRrROOF. This follows easily from linear algebra, but we give a geometric proof.
Pick an interior point z € H? and connect x to gz by a geodesic l;. Draw the
geodesics Iy, Iy at gz and g?x which bisect the angle made by [y and g¢ly, gly and g2l
respectively. There are three cases: 4.33

(i) 1, and [y intersect in an interior point y
(ii) There is a geodesic I3 perpendicular to [y, Iy
(iii) [y, [y are parallel, i.e., they intersect at a point at infinity xs.

[«

o b

case (Ll)
Nt it
| g¥X pEn
L
3%
6 d
cace (i) .
PQ{'& kOl‘C_
X

In case (i) the length of the arc gz, y equals that of ¢g*z,y since A(gx, g*z,y) is
an isoceles triangle. It follows that y is fixed by g.
In case (ii) the distance from gz to I3 equals that from g*z to I3. Since I3 meets
[y and [5 in right angles it follows that [3 is invariant by g. 4.34

Finally, in case (iii) g takes {; and Iy, both of which hit the boundary of H? in
the same point x3. It follows that g fixes x3 since an isometry takes the boundary to
itself.

Uniqueness is not hard to prove. ([l

Using the classification of isometries of H?, it is easy to see that the centralizer
of any non-trivial element g in isom(H?) is abelian. (For instance, if g is elliptic with
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fixed point xg, then the centralizer of g consists of elliptic elements with fixed point
xg). It follows that the centralizer of § in m (M) is abelian; let us call this group N.

Although G(z) depends on the point z, for any point ' € H?, if we choose ¢
small enough, then G (2') C G.(z). In particular if x = H(g)z, g € m M, then
all elements of G (x') commute with 3. It follows that N is a normal subgroup of
m(M).

Consider now the possibility that 3 is elliptic with fixed point o and n € N
fixes g we see that all of 7y M must fix zy. But the function f,, : H*> — R which
measures the distance of a point in H? from x¢ is H(m; M) invariant so that it lifts
to a function f on M3. However, M? is compact and the image of f is non-compact,
which is impossible. Hence (3 cannot be elliptic.

If 5 were hyperbolic, the same reasoning would imply that H(m M) leaves invari-
ant the invariant geodesic of 3. In this case we could define f, : H> — R to be the
distance of a point from [. Again, the function lifts to a function on M? and we have
a contradiction.

The case when 8 is parabolic actually does occur. Let xg be the fixed point of
on the circle at infinity. N must also fix 2. Using the upper half-plane model for H?
with 2 at 0o, 3 acts as a translation of R? and N must act as a group of similarities;
but since they commute with (3, they are also translations. Since N is normal, w3 M
must act as a group of similarities of R? (preserving the upper half-plane).

Clearly there is no function on H? measuring distance from the point x( at infinity.
If we consider a family of finite points x, — X, and consider the functions f,_, even
though f, blows up, its derivative, the closed 1-form df,_, converges to a closed 1
form w. Geometrically, w vanishes on tangent vectors to horocycles about xg and
takes the value 1 on unit tangents to geodesics emanating from x.

The non-singular closed 1-form w on H? is invariant by H (7, M), hence it defines
a non-singular closed one-form w on M. The kernel of @ is the tangent space to
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the leaves of a codimension one foliation F of M. The leaves of the corresponding
foliation F on M are the preimages under D of the horocycles centered at xy. The
group of periods for w must be discrete, for otherwise there would be a translate of
the horocycle about xg through x close to z, hence an element of GG, which does not
commute with 3. Let py be the smallest period. Then integration of w defines a
map from M to S = R/(py), which is a fibration, with fibers the leaves of F. The
fundamental group of each fiber is contained in N, which is abelian, so the fibers are
toruses.

It remains to analyze the case that the hyperbolic foliation is not oriented. In this
case, let M’ be the double cover of M which orients the foliation. M’ fibers over S*
with fibration defined by a closed one-form w. Since w is determined by the unique
fixed point at infinity of H(m M’), w projects to a non-singular closed one-form on
M. This determines a fibration of M with torus fibers. (Klein bottles cannot occur
even if M is not required to be orientable.) U

We can construct a three-manifold of type (b) by considering a matrix
AeSL(2,7)

which is hyperbolic, i.e., it has two eigenvalues A\, Ay and two eigenvectors Vi, V5.
Then A‘/l = )\1‘/1,14‘/2 = /\2‘/2 and )\2 = 1//\1

Since A € SL(2,7Z) preserves Z @ Z its action on the plane descends to an action
on the torus 72. Our three-manifold M, is the mapping torus of the action of A
on T2. Notice that the lines parallel to V; are preserved by A so they give a one-
dimensional foliation on M. Of course, the lines parallel to V5 also define a foliation.
The reader may verify that both these foliations are hyperbolic. When

2 1
=[]
then M, is the manifold (S® — K')(p,+1) obtained by Dehn surgery on the figure-eight

knot. The hyperbolic foliations corresponding to (0,1) and (0, —1) are distinct, and
they correspond to the two eigenvectors of

2 1
)

All codimension-2 hyperbolic foliations with leaves which are not closed are obtained
by this construction. This follows easily from the observation that the hyperbolic
foliation restricted to any fiber is given by a closed non-singular one-form, together
with the fact that a closed non-singular one-form on 72 is determined (up to isotopy)
by its cohomology class.

The three manifolds (S* — K)@,1y, (S® — K)@1) and (S* — K)(3,1) also have
codimension-2 hyperbolic foliations which arise as “limits” of hyperbolic structures.
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Since they are rational homology spheres, they must be Seifert fiber spaces. A Seifert
fiber space cannot be hyperbolic, since (after passing to a cover which orients the
fibers) a general fiber is in the center of its fundamental group. On the other hand,
the centralizer of an element in the fundamental group of a hyperbolic manifold is
abelian.

4.10. Incompressible surfaces in the figure-eight knot complement.

Let M? be a manifold and S C M? a surface with 0S C M. Assume that
S # 52, IP?% or a disk D? which can be pushed into M. Then S is incompressible
if every loop (simple closed curve) on S which bounds an (open) disk in M — S
also bounds a disk in S. Some people prefer the alternate, stronger definition that
S is (strongly) incompressible if m(S) injects into 71 (M). By the loop theorem of
Papakyriakopoulos, these two definitions are equivalent if S is two-sided. If S has
boundary, then S is also 0-incompressible if every arc o in S (with d(«) C 9S) which
is homotopic to M is homotopic in S to 95.

0- incompr&’ssiy |

If M is oriented and irreducible (every two-sphere bounds a ball), then M is
sufficiently large if it contains an incompressible and 0J-incompressible surface. A
compact, oriented, irreducible, sufficiently large three-manifold is also called a Haken-
manifold. It has been hard to find examples of three-manifolds which are irreducible
but can be shown not to be sufficiently large. The only previously known examples
are certain Seifert fibered spaces over S? with three exceptional fibers. In what follows
we give the first known examples of compact, irreducible three-manifolds which are
not Haken-manifolds and are not Seifert fiber spaces.
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NOTE. If M is a compact oriented irreducible manifold # D3, and either OM # ()
or H'(M) # 0, then M is sufficiently large. In fact, OM # 0 = H'(M) # 0.
Think of a non-trivial cohomology class a as dual to an embedded surface; an easy
argument using the loop theorem shows that the simplest such surface dual to « is
incompressible and 0-incompressible.

The concept of an incompressible surface was introduced by W. Haken (Inter-
national Congress of Mathematicians, 1954), (Acta. Math. 105 (1961), Math A. 76
(1961), Math Z 80 (1962)). If one splits a Haken-manifold along an incompressible
and O-incompressible surface, the resulting manifold is again a Haken-manifold. One
can continue this process of splitting along incompressible surfaces, eventually arriv-
ing (after a bounded number of steps) at a union of disks. Haken used this to give
algorithms to determine when a knot in a Haken-manifold was trivial, and when two
knots were linked.

Let K be a figure-eight knot, M = 5% — N(K). M is a Haken manifold by
the above note [M is irreducible, by Alexander’s theorem that every differentiable
two-sphere in S bounds a disk (on each side)].

Here is an enumeration of the incompressible and 0-incompressible surfaces in M.
There are six reasonably obvious choices to start with;

e 5 is a torus parallel to OM,

o Sy = T?-disk = Seifert surface for K. To construct S, take 3 circles lying
above the knot, and span each one by a disk. Join
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the disks by a twist for each crossing at K to get a surface S, with
boundary the longitude (0, £1). S is oriented and has Euler characteristic
= —1, so it is T?-disk.
e 55 = (Klein bottle-disk) is the unoriented surface pictured.

e S, = O (tubular neighborhood of S3) = T? — 2 disks. 89S, = (+4,1),
(depending on the choice of orientation for the meridian).
e S5 = (Klein bottle-disk) is symmetric with Ss.

iy
e S = O (tubular neighborhood of S5 ) = T? — 2 disks. 0S5 = (+4,1).

It remains to show that

THEOREM 4.11. FEwvery incompressible and 0-incompressible connected surface in
M s isotopic to one of Sy through Sg.

COROLLARY. The Dehn surgery manifold My, is irreducible, and it is a Haken-
manifold if and only if (m,l) = (0,£1) or (+4,£1).

In particular, none of the hyperbolic manifolds obtained from M by Dehn surgery
is sufficiently large. (Compare 4.7.) Thus we have an infinite family of examples of
oriented, irreducible, non-Haken-manifolds which are not Seifert fiber spaces. It
seems likely that Dehn surgery along other knots and links would yield many more
examples.

PROOF OF COROLLARY FROM THEOREM. Think of M, ; as M union a solid
torus, D? x S, the solid torus being a thickened core curve. To see that M)
is irreducible, let S be an embedded S? in My, transverse to the core curve a
(S intersects the solid torus in meridian disks). Now isotope S to minimize its
intersections with a.. If S doesn’t intersect o then it bounds a ball by the irreducibility
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of M. If it does intersect o we may assume each component of intersection with the
solid torus D? x S! is of the form D? x z. If SN M is not incompressible, we may
divide S into two pieces, using a disk in SN M, each of which has fewer intersections
with a. If S does not bound a ball, one of the pieces does not bound. If SN M is
O-incompressible, we can make an isotopy of S to reduce the number of intersections
with a by 2. Eventually we simplify S so that if it does not bound a ball, SN M
is incompressible and O-incompressible. Since none of the surfaces Si,...,Sg is a
submanifold of S2, it follows from the theorem that S in fact bounds a ball.

The proof that M, is not a Haken-manifold if (m,l) # (0,%£1) or (£4,+£1) is
similar. Suppose S is an incompressible surface in M, ;). Arrange the intersections
with D? x S' as before. If SN M is not incompressible, let D be a disk in M with
0D C SN M not the boundary of a disk in S N M. Since S in incompressible,
0D = 0D’ for some disk D’ C S which must intersect a. The surface S’ obtained
from S by replacing D’ with D is incompressible. (It is in fact isotopic to S, since
M is irreducible; but it is easy to see that S’ is incompressible without this.) S’
has fewer intersections with o than does S. If S is not 0-incompressible, an isotopy
can be made as before to reduce the number of intersections with a. Eventually we
obtain an incompressible surface (which is isotopic to S) whose intersection with M
is incompressible and d-incompressible. S cannot be S; (which is not incompressible
in M(m,1)), so the corollary follows from the theorem. O

PROOF OF THEOREM 4.11. Recall that M = S3 — N(K) is a union of two
tetrahedra-without-vertices. To prove the theorem, it is convenient to use an al-
ternate description of M at T? x I with certain identifications on 7% x {1} (compare
Jorgensen, “Compact three-manifolds of constant negative curvature fibering over the
circle”, Annals of Mathematics 106 (1977), 61-72, and R. Riley). One can obtain
this from the description of M as the union of two tetrahedra with corners as follows.
Each tetrahedron = (corners) x I with certain identifications on (corners) x {1}.

. :: = s
\} o ,
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This “product” structure carries over to the union of the two tetrahedra. The
boundary torus has the triangulation (p. 4.11)

L 4.45

VAR

T? x {1} has the dual subdivision, which gives T? as a union of four hexagons.
The diligent reader can use the gluing patters of the tetrahedra to check that the
identifications on T2 x {1} are
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where we identify the hexagons by flipping through the dotted lines.

The complex N = T? x {1} /identifications is a spine for N. It has a cell subdivi-
sion with two vertices, four edges, and two hexagons. N is embedded in M, and its
complement is 72 x [0, 1).

If S is a connected, incompressible surface in M, the idea is to simplify it with
respect to the spine N (this approach is similar in spirit to Haken’s). First isotope S
so it is transverse to each cell of N. Next isotope S so that it doesn’t intersect any
hexagon in a simple closed curve. Do this as follows.

If S N hexagon contains some loops, pick an innermost loop a. Then a bounds
an open disk in M? — S (it bounds one in the hexagon), so by incompressibility it
bounds a disk in S. By the irreducibility of M we can push this disk across this
hexagon to eliminate the intersection . One continues the process to eliminate all
such loop intersections. This does not change the intersection with the one-skeleton

S now intersects each hexagon in a collection of arcs. The next step is to isotope
S to minimize the number of intersections with N(;). Look at the preimage of SN V.
We can eliminate any arc which enters and leaves a hexagon in the same edge by
pushing the arc across the edge.

If at any time a loop intersection is created with a hexagon, eliminate it before
proceeding.

Next we concentrate on corner connections in hexagons, that is, arcs which con-
nect two adjacent edges of a hexagon. Construct a small ball B about each vertex,
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and push S so that the corner connections are all contained in B, and so that S
is transverse to 0B. S intersects OB in a system of loops, and each component of
intersection of S with B contains at least one corner connection, so it intersects Ny
at least twice. If any component of S N B is not a disk, there is some “innermost”
such component S;; then all of its boundary components bound disks in B, hence in
S. Since S is not a sphere, one of these disks in S contains S;. Replace it by a disk in
B. This can be done without increasing the number of intersections with Ny, since
every loop in OB bounds a disk in B meeting N(;) at most twice.

Now if there are any two corner connections in B which touch, then some compo-
nent of S'NB meets N(j) at least three times. Since this component is a disk, it can
be replaced by a disk which meets N(;y at most twice, thus simplifying S. (Therefore
at most two corners can be connected at any vertex.)

Assume that S now has the minimum number of intersections with Ny in its
isotopy class. Let I, I, ITI, and IV denote the number of intersections of S with edges
I, II, 111, and IV, respectively (no confusion should result from this). It remains to
analyze the possibilities case by case.

Suppose that none of I, II, III, and IV are zero. Then each hexagon has connec-
tions at two corners. Here are the possibilities for corner connections in hexagon A.

o £
PA
b e
/£
¢ d

If the corner connections are at a and b then the picture in hexagon A is of the
form
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a I g

X A I
C I J,

This implies that IT = I+ 111+ 114 14 IV, which is impossible since all four numbers
are positive in this case. A similar argument also rules out the possibilities c-d, d-e,
a-f, b-f, and c-e in hexagon, and h-i, i-j, k-1, g-1, g-k and h-j in hexagon B.

The possibility a-c¢ cannot occur since they are adjacent corners. For the same
reason we can rule out a-e, b-d, d-f, g-i, i-k, h-1, and j-1.

Since each hexagon has at least two corner connections, at each vertex we must
have connections at two opposite corners. This means that knowing any one corner

connection also tells you another corner connection. Using this one can rule out all
possible corner connections for hexagon A except for a-d.

If a-d occurs, then I 4+ IV 4 II = I + III + II, or III = IV. By the requirement of

opposite corners at the vertices, in hexagon B there are corner connections at i and
1, which implies that I = II. Let = III and y = [. The picture is then

We may reconstruct the intersection of S with a neighborhood of N, say N(N),
from this picture, by gluing together x + y annuli in the indicated pattern. This
yields x +y punctured tori. If an x-surface is pushed down across a vertex, it yields a
y-surface, and similarly, a y-surface can be pushed down to give an z-surface. Thus,
SNN(N) is x + y parallel copies of a punctured torus, which we see is the fiber of a
fibration of N(NN) ~ M over S*. We will discuss later what happens outside N(V).
(Nothing.)

Now we pass on to the case that at least one of I, II, III, and IV are zero. The
case I = 0 is representative because of the great deal of symmetry in the picture.
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4.10. INCOMPRESSIBLE SURFACES IN THE FIGURE-EIGHT KNOT COMPLEMENT.

First consider the subcase I = 0 and none of II, III, and IV are zero. If hexagon
B had only one corner connection, at h, then we would have I11 + IV = II + IV + III,

9 ¥ y

contradicting IT > 0. By the same reasoning for all the other corners, we find that
hexagon B needs at least two corner connections. At most one corner connection can
occur in a neighborhood of each vertex in N, since no corner connection can involve 4.51
the edge I. Thus, hexagon B must have exactly two corner connections, and hexagon
A has no corner connections. By checking inequalities, we find the only possibility is
corner connections at g-h. If we look at the picture in the pre-image T? x {1} near I
we see that there is a loop around I. This loop bounds a disk in .S by incompressibility,

and pushing the disk across the hexagons reduces the number of intersections
with Ny by at least two (you lose the four intersections drawn in the picture, and
gain possibly two intersections, above the plane of the paper). Since S already has
minimal intersection number with Ny already, this subcase cannot happen.

Now consider the subcase I = 0 and II = 0. In hexagon A the picture is
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I
1 jIi

r I
I- 4.52

implying IIT = IV. The picture in hexagon B is

with y the number of corner connections at corner [ and x = IV — y. The three
subcases to check are z and y both nonzero, x = 0, and y = 0.

If both = and y are nonzero, there is a loop in S around

edges I and II. The loop bounds a disk in S, and pushing the disk across the
hexagons reduces the number of intersections by at least two, contradicting minimal-
ity. So x and y cannot both be nonzero.

IfI=1I=0and z =0, then SNN(N) is y parallel copies of a punctured torus. 453
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4.10. INCOMPRESSIBLE SURFACES IN THE FIGURE-EIGHT KNOT COMPLEMENT.

IfI =1 =0and y = 0, then SNN(N) consists of |x/2]| copies of a twice
punctured torus, together with one copy of a Klein bottle if z is odd.

Now consider the subcase I = III = 0. If S intersects the spine N, then II # 0 454
because of hexagon A and IV # 0 because of hexagon B. But this means that there
is a loop around edges I and III, and S can be simplified further, contradicting
minimality.
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The subcase I = IV = 0 also cannot occur because of the minimality of the
number of intersections of S and N(;y. Here is the picture.

By symmetric reasoning, we find that only one more case can occur, that III =
IV =0, with I = II. The pictures are symmetric with preceding ones:
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4.10. INCOMPRESSIBLE SURFACES IN THE FIGURE-EIGHT KNOT COMPLEMENT.

To finish the proof of the theorem, it remains to understand the behavior of .S
in M —N(N) =T?x [0,.99]. Clearly, SN (T2 x [0,.99]) must be incompressible.
(Otherwise, for instance, the number of intersections of S with N3y could be reduced.)
It is not hard to deduce that either S is parallel to the boundary, or else a union
of annuli. If one does not wish to assume S is two-sided, this may be accomplished
by studying the intersection of S N (T?% x [0,.99]) with a non-separating annulus.
If any annulus of S N (7% x [0,.99]) has both boundary components in 7% x .99,
then by studying the cases, we find that S would not be incompressible. It follows
that S N (7% x [0,.99]) can be isotoped to the form (circles x [0,.99]). There are
five possibilities (with S connected). Careful comparisons lead to the descriptions of
So, ..., S¢ given on pages 4.40 and 4.41. ([l
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CHAPTER 5

Flexibility and rigidity of geometric structures

In this chapter we will consider deformations of hyperbolic structures and of
geometric structures in general. By a geometric structure on M, we mean, as usual,
a local modelling of M on a space X acted on by a Lie group G. Suppose M is
compact, possibly with boundary. In the case where the boundary is non-empty
we do not make special restrictions on the boundary behavior. If M is modelled
on (X, G) then the developing map M 25 X defines the holonomy representation
H :m M — G. In general, H does not determine the structure on M. For example,
the two immersions of an annulus shown below define Fuclidean structures on the
annulus which both have trivial holonomy but are not equivalent in any reasonable
sense.

However, the holonomy is a complete invariant for (G, X)-structures on M near
a given structure My, up to an appropriate equivalence relation: two structures M;
and M, near M, are equivalent deformations of M, if there are submanifolds M] and
M, containing all but small neighborhoods of the boundary of M; and M,, with a
(G, X) homeomorphism between them which is near the identity.

Let M; denote a fixed structure on M, with holonomy H.

PROPOSITION 5.1. Geometric structures on M near My are determined up to
equivalency by holonomy representations of mM in G which are near Hy, up to
conjugacy by small elements of G.
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5. FLEXIBILITY AND RIGIDITY OF GEOMETRIC STRUCTURES

PROOF. Any manifold M can be represented as the image of a disk D with
reasonably nice overlapping near dD. Any structure on M is obtained from the
structure induced on D, by gluing via the holonomy of certain elements of m (M).

Any representation of m; M near Hy gives a new structure, by perturbing the
identifications on D. The new identifications are still finite-to-one giving a new
manifold homeomorphic to M.

- -

If two structures near M, have holonomy conjugate by a small element of G, one
can make a small change of coordinates so that the holonomy is identical. The two
structures then yield nearby immersions of D into X, with the same identifications;
restricting to slightly smaller disks gives the desired (G, X)-homeomorphism. O

5.2

As a first approximation to the understanding of small deformations we can de-
scribe M in terms of a set of generators § = {g¢1,...,9,} and a set of relators
R ={r1,...,r}. [Eachr; is a word in the g;’s which equals 1 in 71 M.] Any represen-
tation p : m M — G assigns each generator g; an element in G, p(g;). This embeds
the space of representations R in GY. Since any representation of M must respect
the relations in 7 M, the image under p of a relator r; must be the identity in G.
If p: G5 — G® sends a set of elements in G to the |R| relators written with these
elements, then D is just p~!(1,...,1). If p is generic near Hy, (i.e., if the derivative
dp is surjective), the implicit function theorem implies that R is just a manifold of
dimension (|G| — |R]) - (dim G). One might reasonably expect this to be the case,
provided the generators and relations are chosen in an efficient way. If the action of G
on itself by conjugation is effective (as for the group of isometries of hyperbolic space)
then generally one would also expect that the action of G on G¥ by conjugation, near
Hy, has orbits of the same dimension as G. If so, then the space of deformations of
My would be a manifold of dimension

dim G - (|G| — |R| — 1).
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ExXAMPLE. Let’s apply the above analysis to the case of hyperbolic structures on
closed, oriented two-manifolds of genus at least two. G in this case can be taken
to be PSL(2,R) acting on the upper half-plane by linear fractional transformations.
m(M,) can be presented with 2g generators aq, by, . . . a4, b, (see below) together with
the single relator [],_,[a;, bi].

— b
i
; i
..94:__/‘— - >3

Since PSL(2,R) is a real three-dimensional Lie group the expected dimension of the
deformation space is 3(2g — 1 — 1) = 6g — 6. This can be made rigorous by showing
directly that the derivative of the map p : G5 — G® is surjective, but since we will
have need for more global information about the deformation space, we won’t make

the computation here.
5.5

ExXAMPLE. The initial calculation for hyperbolic structures on an oriented three-
manifold is less satisfactory. The group of isometries on H? preserves planes which,
in the upper half-space model, are hemispheres perpendicular to C U oo (denoted
@) Thus the group G can be identified with the group of circle preserving maps
of C. This is the group of all linear fractional transformations with complex coef-
ficients PSL(2,C). (All transformations are assumed to be orientation preserving).
PSL(2,C), is a complez Lie group with real dimensions 6. M? can be built from one
zero-cell, a number of one- and two-cells, and (if M is closed), one 3-cell.

If M is closed, then (M) = 0, so the number & of one-cells equals the number of
two-cells. This gives us a presentation of 7 M with k generators and k relators. The
expected (real) dimension of the deformation space is 6(k — k — 1) = —6.

If OM +# (), with all boundary components of positive genus, this estimate of the
dimension gives

5.2.1. 6- (—x(M)) = 3(—x(dM)).

This calculation would tend to indicate that the existence of any hyperbolic struc-
ture on a closed three-manifold would be unusual. However, subgroups of PSL(2, C)
have many special algebraic properties, so that certain relations can follow from other
relations in ways which do not follow in a general group. 5.6

The crude estimate 5.2.1 actually gives some substantive information when
X(M) < 0.
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PROPOSITION 5.2.2. If M? possesses a hyperbolic structure My, then the space of
small deformations of My has dimension at least 6 - (—x(M)).

PRrROOF. PSL(2,C)? is a complex algebraic variety, and the map
p: PSL(2,C)% — PSL(2,C)*%

is a polynomial map (defined by matrix multiplication). Hence the dimension of the
subvariety p = (1,...,1) is at least as great as the number of variables minus the
number of defining equations. O

We will later give an improved version of 5.2.2 whenever M has boundary com-
ponents which are tori.

5.3

In this section we will derive some information about the global structure of the
space of hyperbolic structures on a closed, oriented surface M. This space is called
the Teichmiiller space of M and is defined to be the set of hyperbolic structures on M
where two are equivalent if there is an isometry homotopic to the identity between
them. In order to understand hyperbolic structures on a surface we will cut the
surface up into simple pieces, analyze structures on these pieces, and study the ways
they can be put together. Before doing this we need some information about closed
geodesics in M.

PRoOPOSITION 5.3.1. On any closed hyperbolic n-manifold M there is a unique,
closed geodesic in any non-trivial free homotopy class.

PRrOOF. For any a € m M consider the covering transformation 7, on the uni-
versal cover H™ of M. It is an isometry of H". Therefore it either fixes some interior
point of H" (elliptic), fixes a point at infinity (parabolic) or acts as a translation
on some unique geodesic (hyperbolic). That all isometries of H? are of one of these
types was proved in Proposition 4.9.3; the proof for H" is similar.

NoOTE. A distinction is often made between “loxodromic” and “hyperbolic” trans-
formations in dimension 3. In this usage a loxodromic transformation means an isom-
etry which is a pure translation along a geodesic followed by a non-trivial twist, while
a hyperbolic transformation means a pure translation. This is usually not a useful
distinction from the point of view of geometry and topology, so we will use the term
“hyperbolic” to cover either case.
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Since T, is a covering translation it can’t have an interior fixed point so it can’t
be elliptic. For any parabolic transformation there are points moved arbitrarily small
distances. This would imply that there are non-trivial simple closed curves of arbi-
trarily small length in M. Since M is closed this is impossible. Therefore T, trans-
lates a unique geodesic, which projects to a closed geodesic in M. Two geodesics
corresponding to the translations 7, and 7], project to the same geodesic in M if
and only if there is a covering translation taking one to the other. In other words,
o' = gag~! for some g € m M, or equivalently, « is free homotopic to a. 0

PROPOSITION 5.3.2. Two distinct geodesics in the universal cover H™ of M which
are 1nvariant by two covering translations have distinct endpoints at oo.

PRroOF. If two such geodesics had the same endpoint, they would be arbitrarily
close near the common endpoint. This would imply the distance between the two
closed geodesics is uniformly < e for all €, a contradiction. 0

PROPOSITION 5.3.3. In a hyperbolic two-manifold M? a collection of homotopi-
cally distinct and disjoint nontrivial simple closed curves is represented by disjoint,
sitmple closed geodesics.

PROOF. Suppose the geodesics corresponding to two disjoint curves intersect.
Then there are lifts of the geodesics in the universal cover H? which intersect. Since
the endpoints are distinct, the pairs of endpoints for the two geodesics must link
each other on the circle at infinity. Consider any homotopy of the closed geodesics
in M?2. Tt lifts to a homotopy of the geodesics in H?. However, no homotopy of the
geodesics moving points only a finite hyperbolic distance can move their endpoints;
thus the images of the geodesics under such a homotopy will still intersect, and this
intersection projects to one in M?2.

The proof that the closed geodesic corresponding to a simple closed curve is
simple is similar. The argument above is applied to two different lifts of the same
geodesic. 0

Now we are in a position to describe the Teichmiiller space for a closed surface.
The coordinates given below are due to Nielsen and Fenchel.

Pick 3g — 3 disjoint, non-parallel simple closed curves on M?. (This is the max-
imum number of such curves on a surface of genus g.) Take the corresponding
geodesics and cut along them. This divides M? into 2¢g — 2 surfaces homeomorphic
to S?—three disks (called “pairs of pants” from now on) with geodesic boundary.

=@
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5. FLEXIBILITY AND RIGIDITY OF GEOMETRIC STRUCTURES

L7

On each pair of pants P there is a unique arc connecting each pair of boundary
components, perpendicular to both. To see this, note that there is a unique homotopy
class for each connecting arc. Now double P along the boundary geodesics to form
a surface of genus two. The union of the two copies of the arcs connecting a pair
of boundary components in P defines a simple closed curve in the closed surface.
There is a unique geodesic in its free homotopy class and it is invariant under the
reflection which interchanges the two copies of P. Hence it must be perpendicular to
the geodesics which were in the boundary of P.

This information leads to an easy computation of the Teichmiiller space of P.

PROPOSITION 5.3.4. T(P) is homeomorphic to R® with coordinates

(10g ll, IOg ZQ, log lg),
where l; = length of the i-th boundary component.

PRrROOF. The perpendicular arcs between boundary components divide P into two
right-angled hexagons. The hyperbolic structure of an all-right hexagon is determined
by the lengths of three alternating sides. (See page 2.19.) The lengths of the con-
necting arcs therefore determine both hexagons so the two hexagons are isometric.
Reflection in these arcs is an isometry of the hexagons and shows that the boundary
curves are divided in half. The lengths [;/2 determine the hexagons; hence they also
determine P. Any positive real values for the [; are possible so we are done. 0
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In order to determine the hyperbolic structure of the closed two-manifold from
that of the pairs of pants, some measurement of the twist with which the boundary
geodesics are attached is necessary. Find 3g — 3 more curves in the closed manifold
which, together with the first set of curves, divides the surface into hexagons.

In the pairs of pants the geodesics corresponding to these curves are arcs connect-
ing the boundary components. However, they may wrap around the components. In
P it is possible to isotope these arcs to the perpendicular connecting arcs discussed
above. Let 2d; denote the total number of degrees which this isotopy moves the feet
of arcs which lie on the ¢-th boundary component of p.

Of course there is another copy of this curve in another pair of pants which has
a twisting coefficient d;. When the two copies of the geodesic are glued together
they cannot be twisted independently by an isotopy of the closed surface. Therefore
(d; — df) = 7; is an isotopy invariant.

REMARK. If a hyperbolic surface is cut along a closed geodesic and glued back
together with a twist of 27n degrees (n an integer), then the resulting surface is
isometric to the original one. However, the isometry is not isotopic to the identity so
the two surfaces represent distinct points in Teichmiiller space. Another way to say
this is that they are isometric as surfaces but not as marked surfaces. It follows that
7; is a well-defined real number, not just defined up to integral multiples of 2.

THEOREM b5.3.5. The Teichmiiller space T(M) of a closed surface of genus g is
homeomorphic to R%=5. There are explicit coordinates for T(M), namely

(10gl1,7'1»10gl277'27 . 710gl3g—377—3g—3)a

where l; is the length and T; the twist coefficient for a system of 3g — 3 simple closed
geodesics.
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In order to see that it takes precisely 3g — 3 simple closed curves to cut a surface
of genus ¢ into pairs of pants P; notice that y(P;) = —1. Therefore the number of
P;’s is equal to —x(M,) = 2g — 2. Each P, has three curves, but each curve appears
in two P;’s. Therefore the number of curves is %(29 —2) = 39 — 3. We can rephrase
Theorem 5.3.5 as

T(M) ~ R™3XM),
It is in this form that the theorem extends to a surface with boundary.

The Fricke space F(M) of a surface M with boundary is defined to be the space
of hyperbolic structures on M such that the boundary curves are geodesics, modulo
isometries isotopic to the identity. A surface with boundary can also be cut into pairs
of pants with geodesic boundary. In this case the curves that were boundary curves
in M have no twist parameter. On the other hand these curves appear in only one
pair of pants. The following theorem is then immediate from the gluing procedures
above.

THEOREM 5.3.6. F(M) is homeomorphic to R=3X(M),

The definition of Teichmiiller space can be extended to general surfaces as the
space of all metrics of constant curvature up to isotopy and change of scale. In the
case of the torus T2, this space is the set of all Euclidean structures (i.e., metrics
with constant curvature zero) on T2 with area one. There is still a closed geodesic
in each free homotopy class although it is not unique. Take some simple, closed
geodesic on T2 and cut along it. The Euclidean structure on the resulting annulus is
completely determined by the length of its boundary geodesic. Again there is a real
twist parameter that determines how the annulus is glued to get T?. Therefore there
are two real parameters which determine the flat structures on 72, the length [ of a
simple, closed geodesic in a fixed free homotopy class and a twist parameter 7 along
that geodesic.

THEOREM 5.3.7. The Teichmiiller space of the torus is homeomorphic to R? with
coordinates (logl, T), where I, T are as above.

5.4. Special algebraic properties of groups of isometries of H3.

On large open subsets of PSL(2, C)Y, the space of representations of a generating
set G into PSL(2, C), certain relations imply other relations. This fact was anticipated
in the previous section from the computation of the expected dimension of small
deformations of hyperbolic structures on closed three manifolds. The phenomenon
that dp is not surjective (see 5.3) suggests that, to determine the structure of m M?
as a discrete subgroup of PSL(2,C), not all the relations in m;M? as an abstract
group are needed. Below are some examples.
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5.4. SPECIAL ALGEBRAIC PROPERTIES OF GROUPS OF ISOMETRIES OF HS.
gJorgensen

PROPOSITION 5.4.1 (Jgrgensen). Let a,b be two isometries of H® with no common
fized point at infinity. If w(a,b) is any word such that w(a,b) = 1 then w(a™',b7) =
1. If a and b are conjugate (i.e., if Trace(a) = 4 Trace(b) in PSL(2,C) ) then also
w(b,a) = 1.

PRroOOF. If a and b are hyperbolic or elliptic, let [ be the unique common perpen-
dicular for the invariant geodesics l,, [, of a and b. (If the geodesics intersect in a
point x, [ is taken to be the geodesic through = perpendicular to the plane spanned
by I, and ;). If one of a and b is parabolic, (say b is) [ should be perpendicular to
l, and pass through b’s fixed point at co. If both are parabolic, [ should connect the
two fixed points at infinity. In all cases rotation by 180° in [ takes a to a~! and b and
b=!, hence the first assertion.

If a and b are conjugate hyperbolic elements of PSL(2, C) with invariant geodesics
l, and [, take the two lines m and n which are perpendicular to [ and to each other
and which intersect [ at the midpoint between g, and [,. Also, if g, is at an angle of
0 to I, along [ then m should be at an angle of §/2 and n at an angle of 6 + /2.

Rotations of 180° through m or n take [, to [, and vice versa. Since a and b
are conjugate they act the same with respect to their respective fixed geodesics. It
follows that the rotations about m and n conjugate a to b (and b to a) or a to b™!
(and b to a™1).

If one of a and b is parabolic then they both are, since they are conjugate. In this
case take m and n to be perpendicular to [ and to each other and to pass through
the unique point x on [ such that d(z,ax) = d(z,bxr). Again rotation by 180° in m
and n takes a to b or a to b1 O

REMARKS. 1. This theorem fails when a and b are allowed to have a common
fixed point. For example, consider

11 ,_[r 0
“=1o 1| “lo At
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where A € C*. Then
_ _ 1IN
(b~"ab")' = b~*a'b" = [0 Ll

If X is chosen so that A\? is a root of a polynomial over Z, say 1 + 2X? = 0, then a
relation is obtained: in this case

w(a,b) = (a)(bab™")? = I.

However, w(a™t,b~') = I only if A™2 is a root of the same polynomial. This is not
the case in the current example.

2. The geometric condition that a and b have a common fixed point at infinity
implies the algebraic condition that a and b generate a solvable group. (In fact, the
commutator subgroup is abelian.)

GEOMETRIC COROLLARY 5.4.2. Any complete hyperbolic manifold M3 whose
fundamental group is generated by two elements a and b admits an involution s (an
isometry of order 2) which takes a to a™" and b tob='. If the generators are conjugate,
there is a Zo ® Zso action on M generated by s together with an involution t which
interchanges a and b unless a and b have a common fixed point at infinity.

PROOF. Apply the rotation of 180° about [ to the universal cover H3. This
conjugates the group to itself so it induces an isometry on the quotient space M?3.
The same is true for rotation around m and n in the case when a and b are conjugate.
It can happen that a and b have a common fixed point x at infinity, but since the
group is discrete they must both be parabolic. A 180° rotation about any line through
x sends a to a~! and b to b~1. There is not generally a symmetry group of order four
in this case. 0

As an example, the complete hyperbolic structure on the complement of the figure-
eight knot has symmetry implied by this corollary. (In fact the group of symmetries
extends to S? itself, since for homological reasons such a symmetry preserves the
meridian direction.)
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A [n
Here is another illustration of how certain relations in subgroups of PSL(2, C) can
imply others:

PROPOSITION 5.4.3. Suppose a and b are not elliptic. If a™ = b™ for some
n,m # 0, then a and b commute.

PRrROOF. If a™ = b™ is hyperbolic, then so are a and b. In fact they fix the same
geodesic, acting as translations (perhaps with twists) so they commute. If a” = ™
is parabolic then so are a and b. They must fix the same point at infinity so they act
as Euclidean transformations of any horosphere based there. It follows that a and b
commute. 0]

PROPOSITION 5.4.3. If a is hyperbolic and a* is conjugate to a' then k = +I.

PROOF. Since translation distance along the fixed line is a conjugacy invariant
and p(a®) = +kp(a) (where p( ) denotes translation distance), the proposition is
easy to see. [

Finally, along the same vein, it is sometimes possible to derive some nontriv-
ial topological information about a hyperbolic three-manifold from its fundamental

group.

PROPOSITION 5.4.4. If M? is a complete, hyperbolic three-manifold, a,b € 7 M3
and [a,b] = 1, then either
(i) @ and b belong to an infinite cyclic subgroup generated by x and ' = a,
2 =0, or
(i) M has an end, E, homeomorphic to T? x [0,00) such that the group gen-
erated by a and b is conjugate in ™ M?> to a subgroup of finite index in

7T1E.

PRrROOF. If a and b are hyperbolic then they translate the same geodesic. Since
w1 M? acts as a discrete group on H?, a and b must act discretely on the fixed geodesic.
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Thus, (i) holds.

If a and b are not both hyperbolic, they must both be parabolic, since they
commute. Therefore they can be thought of as Euclidean transformations on a set of
horospheres. If the translation vectors are not linearly independent, a and b generate a
group of translations of R and (i) is again true. If the vectors are linearly independent,
a and b generate a lattice group L,, on R?. Moreover as one approaches the fixed
point at infinity, the hyperbolic distance a point z is moved by a and b goes to zero.

Recall that the subgroup G.(X) of m M? generated by transformations that moves
a point x less than € is abelian. (See pages 4.34-4.35). Therefore all the elements of
G.(X) commute with a and b and fix the same point p at infinity. By discreteness
G(X) acts as a lattice group on the horosphere through x and contains L, as a
subgroup of finite index.

Consider a fundamental domain of G.(X) acting on the set of horocycles at p
which are “contained” in the horocycle H, through x. It is homeomorphic to the
product of a fundamental domain of the lattice group acting on H, with [0, c0) and
is moved away from itself by all elements in 71 M? not in G.(X). Therefore it is
projected down into M? as an end homeomorphic to 7% x [0, 1]. This is case (ii). O

5.5. The dimension of the deformation space of a hyperbolic
three-manifold.

Consider a hyperbolic structure My on 72 x I. Let o and 3 be generators for
Z®7Z = m(T? x I); they satisfy the relation [a, 3] = 1, or equivalently a3 = Sa.
The representation space for Z @ Z is defined by the equation

H(a) H(B) = H(B) H(w),
where H(a), H(f) € PSL(2,C). But we have the identity
Tr(H(a) H(B)) = Tr(H(B) H()),
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as well as det (H(«) H()) = det (H(B) H(a)) = 1, so this matrix equation is equiva-
lent to two ordinary equations, at least in a neighborhood of a particular non-trivial
solution. Consequently, the solution space has a complex dimension four, and the de-
formation space of My has complex dimension two. This can easily be seen directly:
H(«a) has one complex degree of freedom to conjugacy, and given H(«) # id, there is
a one complex-parameter family of transformations H () commuting with it. This
example shows that 5.2.2 is not sharp. More generally, we will improve 5.2.2 for any
compact oriented hyperbolic three-manifold M, whose boundary contains toruses,
under a mild nondegeneracy condition on the holonomy of M:

THEOREM 5.6. Let My be a compact oriented hyperbolic three-manifold whose
holonomy satisfies

(a) the holonomy around any component of OM homeomorphic with T? is not
trivial, and
(b) the holonomy has no fized point on the sphere at co.

Under these hypotheses, the space of small deformations of My has dimension at least
as great as the total dimension of the Teichmiiller space of OM, that is,

+3[x((0M)s)|  if x((9M);) < 0,
dime(Def(M)) > ) <1 if XﬁﬁgMilg =0,

REMARK. Condition (b) is equivalent to the statement that the holonomy repre-
sentation in PSL(2,C) is irreducible. It is also equivalent to the condition that the
holonomy group (the image of the holonomy) be solvable.

ExXAMPLES. If N is any surface with nonempty boundary then, by the immersion
theorem [Hirsch] there is an immersion ¢ of N x S* in N x I so that ¢ sends m(N)
to m (N x I) = m(IN) by the identity map. Any hyperbolic structure on N x [
has a —6x(/N) complex parameter family of deformations. This induces a (—6x(V))-
parameter family of deformations of hyperbolic structures on N x S, showing that
the inequality of 5.6 is not sharp in general.

Another example is supplied by the complement M}, of k unknotted unlinked solid
tori in S®. Since 7 (M}) is a free group on k generators, every hyperbolic structure
on Mj has at least 3k — 3 degrees of freedom, while 5.6 guarantees only k& degrees of
freedom. Other examples are obtained on more interesting manifolds by considering
hyperbolic structures whose holonomy factors through a free group.

ProOF OF 5.6. We will actually prove that for any compact oriented manifold
M, the complex dimension of the representation space of w1 M, near a representation
satisfying (a) and (b), is at least 3 greater than the number given in 5.6; this suffices,

Thurston — The Geometry and Topology of 3-Manifolds 97



5. FLEXIBILITY AND RIGIDITY OF GEOMETRIC STRUCTURES

by 5.1. For this stronger assertion, we need only consider manifolds which have no
boundary component homeomorphic to a sphere, since any three-manifold M has the
same fundamental group as the manifold M obtained by gluing a copy of D? to each
spherical boundary component of M.

REMARK. Actually, it can be shown that when M # 0, a representation
p:mM — PSL(2,C)

is the holonomy of some hyperbolic structure for M if and only if it lifts to a repre-
sentation in SL(2,C). (The obstruction to lifting is the second Stiefel-Whitney class
wy of the associated H3-bundle over M.) It follows that if Hy is the holonomy of a
hyperbolic structure on M, it is also the holonomy of a hyperbolic structure on M ,
provided &M # ). Since we are mainly concerned with structures which have more
geometric significance, we will not discuss this further.

Let Hy denote any representation of m M satisfying (a) and (b) of 5.6. Let
Ti,..., T, be the components of M which are toruses.

LEMMA 5.6.1. For each i, 1 < i <k, there is an element co; € m (M) such that
the group generated by Ho(cy) and Ho(m(T;)) has no fized point at co. One can
choose «; so Hy(w;) is not parabolic.

PROOF OF 5.6.1. If Hy(mT;) is parabolic, it has a unique fixed point = at oo
and the existence of an « not fixing x is immediate from condition (b). If Hy(mT;)
has two fixed points x; and x5, there is Hy(f;) not fixing x; and Hy(f2) not fixing
xo. If Ho(y) and Hy(f2) each have common fixed points with Hy(mT;), o) = (152
does not.

If Hy(c) is parabolic, consider the commutators 7, = [}, §] where f € mT; is
some element such that Hy(5) # 1. If Hylal™, 3] has a common fixed point x with
Hy(B) then also oG~ fixes x so ( fixes o "x; this happens for at most three

values of n. We can, after conjugation, take Hy(ca) = [(1) H Write
i—1p-1_ |@ b
e

where a +d = 2 and ¢ # 0 since [é] is not an eigenvector of 3. We compute
Tr(7,) = 2 + n’c; it follows that 7, can be parabolic (< Tr(y,) = £2) for at most 3
values of n. This concludes the proof of Lemma 5.6.1. U

Let {a;,1 < i < k} be a collection of simple disjoint curves based on 7T; and
representing the homotopy classes of the same names. Let N C M be the manifold
obtained by hollowing out nice neighborhoods of the «;. Each boundary component
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of N is a surface of genus > 2, and M is obtained by attaching k two-handles along
non-separating curves on genus two surfaces Si,..., Sy C ON.

Let «a; also be represented by a curve of the same name on S;, and let (3; be a
curve on S; describing the attaching map for the i-th two-handle. Generators ~;, d;
can be chosen for m;T; so that «a;, 3;,7;, and §; generate m B; and [ay, 3] - [:, 6] = 1.
m M is obtained from m M by adding the relations 3; = 1.

LEMMA 5.6.2. A representation p of m{ N near Hy gives a representation of m M
if and only if the equations 5.27

Tr(p(8:) =2
and Tr (p oy, Bi]) =2
are satisfied.
PROOF OF 5.6.2. Certainly if p gives a representation of m M, then p(3;) and

play, Bi] are the identity, so they have trace 2.
To prove the converse, consider the equation

Tr[A, Bl =2
in SL(2,C) . If A is diagonalizable, conjugate so that
A0
)
Write
—1p-1 _ a b
e )

We have the equations
at+d=XA+"
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Tr[A, Bl =Xa+ A "'d=2
which imply that
a=\"1d=\

Since ad — bc = 1 we have bc = 0. This means B has at least one common eigenvector

[(1)] or [[1)] with A; if [A, B] # 1, this common eigenvector is the unique eigenvector

of [A, B] (up to scalars). As in the proof of 5.6.1, a similar statement holds if A is
parabolic. (Observe that [A, B] = [—A, B], so the sign of Tr A is not important).

It follows that if Tr play, ;] = 2, then since [v;, &;] = [y, ], either p (o), p (5;),
p (7;) and p (8;) all have a common fixed point on the sphere at infinity, or pla;, ;] = 1.

By construction Hj, m.5; has no fixed point at infinity, so for p near HypmS;
cannot have a fixed point either; hence p[a, ;] = 1.

The equation Tr p (5;) = 2 implies p (5;) is parabolic; but it commutes with p (3;),
which is hyperbolic for p near Hy. Hence p(;) = 1. This concludes the proof of
Lemma 5.6.2. O

To conclude the proof of 5.6, we consider a handle structure for N with one zero-
handle, m one-handles, p two-handles and no three-handles (provided OM = ). This
gives a presentation for my N with m generators and p relations, where

L—=m+p=x(N)=x(M) -k

The representation space R C PSL(2,C)™ for m M, in a neighborhood of H, is
defined by the p matrix equations

ri=1, (1<i<p),
where the r; are products representing the relators, together with 2k equations
Trp(3;) =2
Trp(lew, Bi]) =2 [1 <i <K

The number of equations minus the number of unknowns (where a matrix variable is
counted as three complex variables) is

3m —3p — 2k = =3x(M) + k + 3.
U

REMARK. If M is a closed hyperbolic manifold, this proof gives the estimate of
0 for dimc def(M): simply remove a non-trivial solid torus from M, apply 5.6, and
fill in the solid torus by an equation Tr(y) = 2.
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There is a remarkable, precise description for the global deformation space of
hyperbolic structures on closed manifolds in dimensions bigger than two:

THEOREM 5.7.1 (Mostow’s Theorem [algebraic version]). Suppose I'y and T'y are
two discrete subgroups of the group of isometries of H™, n > 3 such that H"/T'; has
finite volume and suppose ¢ : I'y — I's 1s a group isomorphism. Then I'y and I'y are
conjugate subgroups.

This theorem can be restated in terms of hyperbolic manifolds since a hyperbolic
manifold has universal cover H" with fundamental group acting as a discrete group
of isometries.

THEOREM 5.7.2 (Mostow’s Theorem [geometric version]). If M{* and MY are com-
plete hyperbolic manifolds with finite total volume, any isomorphism of fundamental
groups ¢ : T My — m My is realized by a unique isometry.

REMARK. Multiplication by an element in either fundamental group induces the
identity map on the manifolds themselves so that ¢ needs only to be defined up to
composition with inner automorphisms to determine the isometry from M; to Ms.

Since the universal cover of a hyperbolic manifold is H™, it is a K (, 1). Two such
manifolds are homotopy equivalent if and only if there is an isomorphism between
their fundamental groups.

COROLLARY 5.7.3. If My and My are hyperbolic manifolds which are complete
with finite volume, then they are homeomorphic if and only if they are homotopy
equivalent. (The case of dimension two is well known.)

For any manifold M, there is a homomorphism Diff M — Out(m M), where
Out(m M) = Aut(m M)/ Inn(m M) is the group of outer automorphisms. Mostow’s
Theorem implies this homomorphism splits, if M is a hyperbolic manifold of dimen-
sion n > 3. It is unknown whether the homomorphism splits when M is a surface.
When n = 2 the kernel Diffo(M) is contractible, provided x (M) < 0. If M is a Haken
three-manifold which is not a Seifert fiber space, Hatcher has shown that Diffy M is
contractible.

COROLLARY 5.7.4. If M™ is hyperbolic (complete, with finite total volume) and
n > 3, then Out(m; M) is a finite group, isomorphic to the group of isometries of M™.

PROOF. By Mostow’s Theorem any automorphism of 71 M induces a unique isom-
etry of M. Since any inner automorphism induces the identity on M, it follows that
the group of isometries is isomorphic to Out(m M). That Out(m; M) is finite is im-
mediate from the fact that the group of isometries, Isom(M™), is finite.
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To see that Isom(M™) is finite, choose a base point and frame at that point and
suppose first that M is compact. Any isometry is completely determined by the
image of this frame (essentially by “analytic continuation”). If there were an infinite
sequence of isometries there would exist two image frames close to each other. Since
M is compact, the isometries, @1, ¢, corresponding to these frames would be close
on all of M. Therefore ¢, is homotopic to ¢,. Since the isometry ¢, ¢, induces the
trivial outer automorphism on 7y M, it is the identity; i.e., ¢2 = ¢;.

If M is not compact, consider the submanifold M, C M which consists of points
which are contained in an embedded hyperbolic disk of radius e. Since M has finite
total volume, M, is compact. Moreover, it is taken to itself under any isometry. The
argument above applied to M, implies that the group of isometries of M is finite even
in the non-compact case. 0

REMARK. This result contrasts with the case n = 2 where Out(m; M?) is infinite
and quite interesting.

The proof of Mostow’s Theorem in the case that H"/I" is not compact was com-
pleted by Prasad. Otherwise, 5.7.1 and 5.7.2 (as well as generalizations to other
homogeneous spaces) are proved in Mostow. We shall discuss Mostow’s proof of this
theorem in 5.10, giving details as far as they can be made geometric. Later, we will
give another proof due to Gromov, valid at least for n = 3.

5.8. Generalized Dehn surgery and hyperbolic structures.

Let M be a non-compact, hyperbolic three-manifold, and suppose that M has a
finite number of ends FEy, ..., By, each homeomorphic to T? x [0,00) and isometric
to the quotient space of the region in H? (in the upper half-space model) above
an interior Euclidean plane by a group generated by two parabolic transformations
which fix the point at infinity. Topologically M is the interior of a compact manifold
M whose boundary is a union of T3, . .., T}, tori.

Recall the operation of generalized Dehn surgery on M (§4.5); it is parametrized
by an ordered pair of real numbers (a;, b;) for each end which describes how to glue
a solid torus to each boundary component. If nothing is glued in, this is denoted by
oo so that the parameters can be thought of as belonging to S? (i.e., the one point
compactification of R? ~ H;(T? R)). The resulting space is denoted by My, 4,
where d; = (a;, b;) or oo.

In this section we see that the new spaces often admit hyperbolic structures. Since
My, .4, 1s a closed manifold when d; = (a;,b;) are primitive elements of Hy(T? Z),
this produces many closed hyperbolic manifolds. First it is necessary to see that
small deformations of the complete structure on M induce a hyperbolic structure on

some space My, _ q,.
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LEMMA 5.8.1. Any small deformation of a “standard” hyperbolic structure on
T? x [0,1] extends to some (D? x SY)4. d = (a,b) is determined up to sign by the
traces of the matrices representing generators o, 3 of mT?.

PROOF. A “standard” structure on 72 x [0, 1] means a structure as described on
an end of M truncated by a Euclidean plane. The universal cover of T? x [0, 1] is the
region between two horizontal Euclidean planes (or horospheres), modulo a group
of translations. If the structure is deformed slightly the holonomy determines the
new structure and the images of o and (3 under the holonomy map H are slight