Dear friends,

The Real Jacobian Conjecture has been proved to be FALSE by Serguey PINCHUK (May 20, 1994). Below I describe his proof. All the formulas can be easily checked by a computer algebra system like MAPLE (I did that).

COUNTEREXAMPLE

Define in \(k[x, y] \) the following polynomials:

\[

t = xy - 1, \\
h = t(xt + 1), \\
f = ((h + 1)/x)(xt + 1)^2, \\
p = f + h, \quad \text{and} \\
Q = -t^2 - 6th(h + 1).
\]

Then one can check that

\[
J(p, Q) = J^+ - fv,
\]

where

\[
J^+ = t^2 + (t + f(13 + 15h))^2 + f^2 \\
\quad \text{and} \\
v = v(f, h) = f + f(13 + 15h)^2 + 12h + 12h^2
\]

Lemma. There exist a polynomial \(u = u(f, h) \) such that \(J(p, u) = -fv \).

Proof: By the Chain rule \(J(f + h, u) = (-f)(du/dh - du/df) \), where one uses that \(J(f, h) = -f \) (also this last formula is easy to check). So one has to solve

\[
\frac{du}{dh} - \frac{du}{df} = v(f, h)
\]

which is easy, for example

\[
u = 170fh + 91h^2 + 195fh^2 + 69h^3 + 75h^3f + (75/4)h^4.
\]

Now put \(q = Q - u \), then by (*) and Lemma we get \(J(p, q) = J^+ \). Observe that \(J^+ > 0 \) on \(\mathbb{R}^2 \) since it is a sum of squares, which can only be zero if both \(t \) and \(f \) are zero. But if \(t = 0 \) then \(f = 1/x \), so \(f \) cannot be zero.

Finally put \(F = (p, q) \). It remains to see that \(F \) is not a global diffeomorphism. Then Pinchuk finishes his proof as follows: “\(p = 0 \) contains the set \(xt + 1 = 0 \), which can be written in the form \(y = (x - 1)/x^2 \). Thus the set \(xt + 1 = 0 \) is a disconnected algebraic set. This is impossible if \((p, q) \) is a global diffeomorphism.”

END!
Acknowledgement:
I like to thank Armengol Gasull for sending me a Fax of a preprint of Pinchuk’s paper.
With the most friendly regards, Arno van den Essen.

Note added December 25, 1995, by G. H. Meisters:
Pinchuk’s paper was published as follows—

Pinčuk gives a beautiful example of a non-injective polynomial mapping from \mathbb{R}^2 into itself, of degree $(p, q) = (10, 25)$, whose Jacobian determinant is everywhere positive on \mathbb{R}^2. The more famous Jacobian Conjecture of O.-H. Keller remains open: A Polynomial map of \mathbb{C}^n [or of \mathbb{R}^n] into itself, for $n > 1$, whose Jacobian determinant is constant on \mathbb{C}^n [or on \mathbb{R}^n, respectively], is necessarily injective (and also surjective with a polynomial inverse). Another name for *The Real Jacobian Conjecture* is *The Strong Jacobian Conjecture*.