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Preface

Science is built up with facts, as a house is built with stones. But a collection of facts is no
more a science than a heap of stones is a house.

Jules Henri Poincaré

There are several outstanding mathematical biology books at the advanced under-
graduate and beginning graduate level, each with its own set of topics and point of
view. Personal favorites include the books by Britton, Brauer and Castillo-Chavez,
and Otto and Day. These books are largely inaccessible to biologists simply be-
cause they require more mathematical background than most biologists have. This
book began as lecture notes for a course intended to help biologists bridge the gap
between the mathematics they already know and what they need to know to read ad-
vanced books. The only prerequisite for the course was the first semester of the cal-
culus sequence. Topics included mathematical modeling, probability, and dynamical
systems. My original notes included a brief review of calculus, which I subsequently
expanded into the first chapter of this book so that it could be used for courses that
do not require a calculus prerequisite or by biologists whose calculus experience is
but a distant memory. Most students will probably find this book to be more chal-
lenging than the typical calculus book, albeit in a different way. I do not make as
many demands on students’ computational skills, but I require a greater conceptual
understanding and an ability to harness that conceptual understanding for service in
mathematical modeling.

A Focus on Modeling

In its early days, science consisted of careful observation and experimentation, with
a focus on collecting facts. However, as eloquently stated by the French mathemati-
cian, philosopher, and scientist Henri Poincare, this is not enough to make science
work.
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In contrast with science, mathematics is a purely mental discipline focused en-
tirely on structures that we create in our minds. It can be very useful in science,
but it has to be connected to science carefully if scientifically valid results are to be
achieved. The connection is perhaps best made by a metaphor:

The muscles of mathematics are connected to the bones of experimental science by the
tendons of mathematical modeling.

As you read through this book, you will see that mathematical modeling goes far
beyond the “application” problems that mathematics text authors include so as to
make mathematics appear relevant. The problem is that what little modeling work
appears in these problems is generally done by the author rather than the students.
At best, the experience of doing these problems only benefits science students if
their science instructors are also good enough to do the modeling work for them.

This book is written from a modeling perspective rather than a mathematics or
biology perspective. The lack of modeling content in the standard mathematics and
science curricula means that the typical reader will have little or no modeling ex-
perience. Readers may find the modeling skills of Section 1.1 and Chapter 2 to be
difficult to learn, but the effort to do so will be well rewarded in the remainder of the
book and in any subsequent attempts to read biological literature with quantitative
content. While it is unreasonable to expect readers of this book to become expert
modelers, my primary goal is to make them sufficiently comfortable with mathe-
matical modeling that they can successfully read scientific papers that have some
mathematical content.

Pedagogy

There are a lot of connections between mathematics and biology, yet most students—
and even many mathematicians and biologists—are unaware of these connections.
One reason for this situation is that neither the historical development nor the peda-
gogical introduction of either subject involves the other.

Biology grew out of natural philosophy, which was entirely descriptive. Mod-
ern biology curricula generally begin with descriptive biology, either organismal or
cellular. The mathematically-rich areas of genetics, ecology, and physiology make
their appearance in advanced courses, after students have come to see biology as a
non-mathematical subject.

Calculus and calculus-based mathematics were developed to meet the mathe-
matical needs of physics, and it remains standard practice to use physics to motivate
calculus-based mathematics. Other areas of mathematics, such as game theory and
difference equations, were motivated to some extent by biology,1 but these topics ap-
pear in specialized courses generally taken only by mathematics majors. Probability
is another mathematical topic with strong connections to biology, but it is generally
encountered in statistics courses that emphasize social science applications.

1 Leonardo of Pisa, more commonly known as Fibonacci, developed his famous sequence as the
solution of a difference equation model of population growth.
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The basic premise of this book is that there is a lot of mathematics that is
useful in some life science context and can be understood by people with a
limited background in calculus, provided it is presented at an appropriate
level and connected to life science ideas.

This is a mathematics book, but it is intended for non-mathematicians. Math-
ematicians like to have a mathematical definition for a concept and consider the
meaning of the concept to be a consequence of the mathematical definition. Con-
trary to that plan, I prefer to begin with a functional definition and then present
the mathematical definition as the solution of a problem. In probability, for exam-
ple, I define each distribution according to its purpose rather than its mathematical
representation and then present the mathematical representation as a result. This is
pedagogically appropriate; there are infinitely many functions that satisfy the math-
ematical definition of a probability distribution and we should only be interested in
those that have some practical value. The context should precede the mathematical
definition.

A mathematics book for non-mathematicians needs to be clear about the extent
to which rigor matters. A colleague of mine once started a talk to undergraduates
with a joke: “An engineer, a physicist, and a mathematician are traveling in a train in
Scotland when the train passes a black sheep standing along the track. The engineer
concludes that sheep in Scotland are black. The physicist concludes that there is at
least one black sheep in Scotland. The mathematician concludes that ...” Mathemati-
cians have no trouble finishing the joke: the mathematician concludes that there is a
sheep in Scotland that is black on one side. This insistence on rigor is both a strength
and a weakness. It was long the common practice in calculus books (and such books
are still popular) not to introduce the logarithm function until after the definite in-
tegral, even though the students have seen logarithm functions in precalculus. This
example and others support my contention that “Mathematicians are people who
believe you should not drive a car until you have built one yourself.”

It is my aim to provide a balanced approach to mathematical precision. Conclu-
sions should be backed by solid evidence and methods should be supported by an
understanding of why they work, but that evidence and understanding need not have
the rigor of a mathematical proof. At the risk of stern rebukes from my mathematics
colleagues, I will say up front that I believe that students should focus on how we
use mathematical results to solve problems. For this goal, we need to know why
mathematical results are true, but we do not need to know how we prove them to be
true. An example is the limit result needed to derive the formula for the derivative
of the exponential function. The proof of this result appears in most calculus books
and is indeed a beautiful piece of mathematics; however, understanding it does not
help us compute derivatives or apply them to solve problems. Graphs and numeri-
cal computations strongly hint at the correct limit result; while not rigorous, these
methods are more convincing to anyone but a professional mathematician and use
problem solving skills that will be useful in other contexts. Similarly, the derivation
of the Akaike information criterion (AIC) is very difficult, else it would have been
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done prior to its actual discovery in the 1970s; nevertheless, it is not difficult to ex-
plain AIC in general terms. The mathematical error of presenting it without proof is
far less serious in this book than would be the modeling error of omitting it.

Most of the sections are highly focused, often on one extended example. Math-
ematics experts know that we learn much more from a deep study of one problem
than from many superficial examples. Many of my biological settings are in ecology,
the area of biology I know best, but I have also tried to find settings of very broad
interest such as environmental biology, conservation biology, physiology, and the
biology of DNA. In particular, these areas are more likely to interest lower-division
undergraduates, many of whom are pre-medicine majors rather than biology majors,
and most of whom have very little knowledge of biology.

I have attempted to be brief, in the hope that readers will work harder to read a
short presentation than a long one. I use examples as contexts in which to present
ideas rather than instances where a formula is used to obtain an answer. Hence,
the number of examples is limited, but each example is treated with some depth.
Similarly, I include only a small number of figures. Each figure is essential to the
presentation, and the reader should work hard to understand each one. Being able to
explain2 a figure represents a high level of understanding.

Broad modeling problems require a variety of mathematical approaches. Hence,
there are topics that are ideal for problems that are distributed among the relevant
sections rather than being incorporated into a single project. I have indicated these
connections within the problems themselves and also called attention to them in
each chapter introduction. It is possible to combine all of the problems on a given
model into one large project if desired.

Technology

Some mathematical modeling work must be done by hand, while other work is
greatly facilitated by the use of computers. I view both hand methods and com-
putational methods as tools in my modeling toolbox. I try to identify the best tool
for any particular task without a bias either for or against technology. I do have a
bias against using computer algebra systems to do routine algebra and calculus; this
stems from frequently encountering problems where valuable results can be found
only with the careful use of algebraic substitution and simplification that requires a
human touch. I could not resist the temptation to point some of these out in the text.

There are a multitude of platforms for doing mathematical modeling tasks on
computers. None of these is ideal, and the choice of which to use is a matter of
taste. Rather than trying to find the very best tool for each individual task, my pref-
erence is to work with one tool that is reasonably good for any task (save symbolic
computation) and is readily available. By these criteria, my choice is R, which runs
smoothly in any standard operating system and is popular among biologists. Matlab
is also an excellent choice. Both R and Matlab are programming environments, as

2 An explanation includes context and analysis in addition to mere description.
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opposed to packaged software or programming languages. Spreadsheets and other
packaged software provide easy access to mathematics because of their intuitive
graphical interface; however, programming is limited and the details of formulas are
hidden from view, making it impossible to see the overall structure of a program at a
glance. Reusability is limited, as anyone who has tried to modify a spreadsheet cre-
ated by another author can attest. By comparison, one can see an entire R or Matlab
program at a glance and adapt prior work to a similar context with minimal changes.
High-level languages, such as Java and C++, offer sophisticated programming capa-
bility, but they are difficult to learn compared to the languages used in programming
environments such as R or Matlab. The choice between R and Matlab is a matter
of personal taste. It is easier to get professional-quality graphics with Matlab, but R
has more intuitive syntax that facilitates programming. Matlab requires an add-on
toolbox for probability and statistics, while R requires supplementation for dynam-
ical systems. I use R because students can get it for free and install it seamlessly
in any operating system. R lacks the excellent documentation that comes with Mat-
lab; however, I maintain a collection of R scripts for various algorithms presented
in the text, and these are readily available from my web page. These scripts are de-
signed to be simple rather than robust; that is, compared to professionally written
programs, they are easier to understand but less efficient and they lack error detec-
tion machinery. Their presence allows students to evade the difficulty of having to
learn R from scratch, replacing it with the much lesser difficulty of having to be able
to read an R program and make minor modifications. A detailed set of R scripts with
commentary can be found on the web site for the book.

Topics

Of course no book on mathematics for the life sciences can be complete. Some
important areas do not appear here at all because they do not fall into the broad
categories of mathematical modeling, probability, and dynamical systems. Several
concessions have been made in the interest of accessibility. Some topics are given
only a partial treatment as compared to the treatment they would receive in a higher-
level course; for example, I do not find eigenvectors for complex eigenvalues, since
these are not generally needed in biology. Others are presented in a roundabout way.

Finding the “correct” order of topics in this book was an insoluble problem.
Mathematics is a hierarchical subject, but the hierarchy is not linear. Arguments
can be given for significant rearrangements of the topics that are included here. Ul-
timately, the only reasonable solution was to group topics into related clusters. In
particular, parts 2 and 3 could easily have been reversed. Those who read this book
for their own benefit or to design a course should be flexible in the way they structure
their study. Each part introduction contains a graph with sections as nodes and ar-
rows indicating which sections are necessary background for others. A syllabus that
moves frequently between chapters is entirely possible, but for me to have written
the book in that way would have been to exclude other topic orders.
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One feature of mathematical models that causes difficulties for students is the
appearance of parameters, which are constants whose values are not necessarily as-
signed. Without parameters, a function is merely an example to be used for routine
calculations. With parameters, a function can be a model, which can serve as an en-
vironment for theoretical experimentation. Even the reader with a solid background
in calculus should study Section 1.1.

The remainder of Chapter 1 can serve as a review of calculus or a conceptually-
oriented calculus primer. This chapter is not a complete treatment of calculus, which
would require far more space than is available in one chapter. I present here only
those aspects of calculus that provide the necessary background for the modeling,
probability, and dynamical systems that make up the rest of the book. The reader
who works through this chapter will be well equipped with the calculus background
needed for the purpose at hand. The material in this book has been used successfully
with life science graduate students who had no background in calculus. Anyone who
requires a more complete understanding of calculus can consult any calculus book.

After the calculus primer comes a chapter on mathematical modeling, which is
the necessary focus of any study of mathematics for those whose purpose is to use
mathematics to better understand science. Even the most mathematical of topics,
such as probability, are best seen by scientists from a viewpoint of mathematical
modeling. Unfortunately for the science student, mathematical modeling has not
been granted a place in the standard mathematics and science curricula. In mathe-
matics books, we generally present mathematical ideas and then look for their appli-
cations to science. The result is a collection of idiosyncratic examples devoid of the
analysis necessary for good mathematical modeling. In science books, the mathe-
matics is usually presented as a collection of formulas, to be used as facts when
required. Neither approach teaches modeling skills. If we are to use mathematics to
improve our understanding of the natural and physical world, we must focus on the
connections of mathematics to science.

Chapters 3 and 4 present the basic ideas and some applications of probabil-
ity, including applications commonly classified as statistics. The treatment given
here is organized differently from the treatment of this topic in statistics or prob-
ability books. Mathematicians generally use an axiomatic approach to introduce
probability. My colleagues in biology helped me appreciate that the central topic of
probability for scientists is that of the probability distribution, and this topicis best
approached informally by thinking of a probability distribution as a mathematical
model of a data set. My aim has been to get to probability distributions as quickly
as possible while saving other topics, such as conditional probability, for later. The
essentials of probability distributions form the subject of Chapter 3. Chapter 4 in-
cludes additional topics that build onto or supplement the basic material on proba-
bility distributions. The high point of these two chapters is Section 4.4, which looks
at the question of how likely it is that a subpopulation used to provide sample data
is distinct from some larger population.

The final three chapters introduce the mathematics of dynamical systems, which
consist of one or more related quantities that change in time according to prescribed
rules. These rules may be in the form of difference equations, where time is taken
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as discrete, or differential equations, where time is taken as continuous. It is usual
to make this the primary distinction within the area of dynamical systems; however,
there are valuable connections to be made between the two kinds, particularly for
models with only one dynamic quantity. For this reason, I have chosen to treat all
dynamic models of one variable together in Chapter 5 before presenting multivari-
able discrete systems in Chapter 6 and multivariable continuous systems in Chapter
7. For reasons presented in the modeling chapter, I believe that continuous mod-
els are almost always preferable to discrete models. Nevertheless, the analysis of
continuous models requires an understanding of some discrete mathematics. Hence,
Chapter 6 precedes Chapter 7. The reader whose primary interest is in continuous
dynamical systems needs the tools developed in Section 6.3, and these tools are
more easily acquired with Sections 6.1 and 6.2 as background. The high points of
the three chapters on dynamical systems are the graphical and analytical tools used
for continuous systems; these are the topics of Section 7.3 and 7.5 respectively. The
book contains two additional sections on discrete dynamical systems, presented as
appendices.

Advice for the Reader

How one reads a book depends on what one wishes to get from the reading. I assume
that the reader wants a working knowledge of mathematics that will enable him/her
to read biological literature with quantitative content or to read a more advanced
book on mathematical biology. At the same time, many readers will be interested in
only a portion of the topics presented here. As noted above, each part begins with
a schematic diagram showing the logical relationships among the topics of that part
and any essential topics from earlier parts. In particular, the reader is cautioned not
to skip Chapters 1 and 2 so as to get to some other topic more quickly. People who
try to learn to play the organ without having already learned to play the piano are
starting with an enormous handicap; the same is true for someone who attempts to
learn probability or dynamical systems without an adequate mastery of calculus and
mathematical modeling. Not every section in Chapters 1 and 2 is essential for the re-
mainder of the book; however, parts of these chapters are indispensable background
and should be mastered before moving on. In particular, understanding of param-
eters (Section 1.1) and basic concepts of mathematical modeling (Section 2.2) are
essential.

It is natural to try to work a large number of problems as quickly as possible.
However, this is not the best way to learn mathematics. When a mathematician
learns something new (s)he works through a relatively small number of examples
carefully rather than a large number of examples superficially. At a talk I heard
on mathematics pedagogy, the speaker asked the audience, “Why do we ask our
students to work problems? Is it because we want to know the answer?” Usually we
don’t care about the answer; we work problems to learn mathematics. Keep this in
mind when you are working a problem: your goal is to learn mathematics, not to get
the answer to the problem. There are only a small number of routine problems in
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this book. Most problems are guided case studies and will take quite a bit of time for
a thorough understanding. Carefully working a small number of these will benefit
the reader more than a cursory look at a larger number.

Course Designs

There is no standard curriculum of mathematics for biology. Mathematical biol-
ogy can be incorporated into a calculus course, or calculus can be incorporated into
a mathematical biology course for students who have not had calculus. There are
also mathematical biology courses with a calculus prerequisite, and these can be for
students with or without backgrounds in linear algebra and differential equations.
While many institutions treat probability/statistics as being distinct from mathe-
matics, the difficulty of finding room for either in the program of a biology major
suggests the possibility of incorporating some probability and some topics often in-
cluded in a statistics course within the mathematical biology or calculus for biology
course. I have tried to make this book suitable for a variety of plans.

Before listing possible course plans using the material in this book, it is im-
portant to start with a broad discussion of pacing. Books for calculus and other
lower-division courses are generally written under the assumption that each section
will require one day of class. At this pace, it is not difficult to put more than 30
sections into a standard 3-credit course. This is typically what is done in a differen-
tial equations course, but not a calculus course. At the University of Nebraska, we
cover something like 32 sections in our first-semester calculus course; however, we
structure this course with a lecture-recitation format and offer it for 5 credits. This
means that our actual rate of coverage is more like 6 sections per credit hour than
10 sections per credit hour. My own mathematics for biology course was originally
a 5-credit course with a one-semester calculus prerequisite, and I covered approx-
imately 32 sections of this book, which is again an average of only 6 sections per
credit hour. The next time I use this book for a course, it will be a 5-credit calculus-
for-biology course with three hours of lecture and two hours of recitation/laboratory.
I expect to do only the 21 sections of Chapters 1, 2, and 5 and perhaps the first three
sections of Chapter 6. For students at the calculus level, I would certainly not try to
do more than 16 sections for a 3-credit course. A slightly faster pace could be used
with students who are more sophisticated or very highly motivated. I spend less
than half of the total class time presenting lectures; in particular, I mark out days for
laboratory-style activities such as collecting data from a virtual laboratory, writing
a computer program to run a computer simulation, or working through one of the
more difficult problems either in small groups or as a committee-of-the-whole. The
standard requirement that mathematics courses cover as much material as possible
sacrifices depth for breadth; a mathematics course for biology students should have
some balance between the two, with some case studies coming at the expense of
broad coverage.
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A 2-Course Sequence of 4-Credit Courses

It should be possible to do almost the entire book with a total of 8 credit hours. I
would do Chapters 1, 2, and 5 in a first-semester Calculus for Biology course and
most of Chapters 3, 4, 6, and 7 in a second-semester Probability and Dynamical
Systems course.

A 2-Course Sequence of 3-Credit Calculus-for-Biology Courses

Given two courses for students with no calculus background, I would use Chapters 1
and 2 for the first semester and then make the second semester a dynamical systems
course that would include Chapters 5 through 7, probably without Section 6.4, and
possibly with one or both topics of Appendix A. Both of these courses would be well
focused, and the second course could be open to strong students with a background
somewhat beyond one course in calculus.

A 3-Credit Calculus-for-Biology Course

In a 3-credit calculus for biology course, I would expect to complete all of Chapter
1 in about half of the semester or perhaps a little more. I would probably try to do
some dynamical systems rather than a complete treatment of Chapter 2. It would be
possible to do Sections 1, 2, 5, and 6 from Chapter 2 along with all of Chapter 5. I
would present only a minimal version of Section 2.5, the point being to do whatever
is required to set up Section 2.6.

A 3-Credit Empirical Modeling and Probability Course with a Calculus I
Prerequisite

One could teach a course on empirical modeling and probability as an alternative to
a standard statistics course. For such a course, I would do Sections 1.1, 2.1 through
2.4, 2.7, all of Chapter 3, and as much of Chapter 4 as could be done without rushing.

A 3-credit Dynamical Systems Course with a Calculus I Prerequisite

A course on dynamical systems could not reasonably assume an adequate modeling
background, so it would be necessary to start with Sections 1.1, 2.1, 2.2, 2.5, and
2.6, with 2.1 done in a cursory manner. It would then be possible to do all of the
material in Chapters 5 through 7 except for Section 6.4. If any extra time is available,
Section A.1 would round out the course.
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Calculus and Modeling



2

The first two chapters contain core material in mathematics: calculus and the basic
elements of mathematical modeling. Section 1.1 is an essential preparatory section
for the entire book. A significant part of the power of mathematics lies in its capacity
for generalization. A single symbol can represent a range of numerical values, al-
lowing the mathematical work to be done on a whole class of problems rather than
an individual example. One cannot read any quantitative work in biology or any
other science without an ability to understand how symbols are used in a particular
context. This is a topic that most readers will find difficult, but one that is essential
to master.

Aside from the opening section, Chapter 1 contains five sections on differential
calculus and three on integral calculus. Each of these topics includes material on
concepts, techniques, and applications. Contrary to the view of most students, cal-
culus is largely a conceptual topic. Concepts are needed to understand the important
applications of calculus; hence, the reader should spend enough time on the con-
ceptual material for a thorough understanding. In particular, the derivative concept
is essential to understanding dynamical systems, while the definite integral concept
is essential for continuous probability distributions. The amount of effort to be ex-
pended on techniques is a matter of taste. Differentiation techniques are needed in
the rest of the book, but all such cases are fairly elementary. Integration techniques
are not needed for the rest of the book. Both of these can be done using computer
algebra systems if desired. The applications that appear in Chapter 1 can generally
be considered as ends in themselves, and can be accorded as much or as little inter-
est as the reader desires. There a re a few exceptions. Related rates (in Section 1.6)
are vital background for nondimensionalization, which appears in Section 2.6, and
linear approximation (in Section 1.4) is vital background for the nonlinear dynamics
that appears in Chapters 5 and 7 and Appendix A.1.

In the preface, I described mathematical modeling as the tendons that connect
the muscle of mathematics to the bones of science. Colleagues who teach science
and engineering courses often say that their students do not seem to be able to do
the mathematics necessary for their subject. The real problem is not so much an
inability to do mathematics but an inability to harness the power of mathematics in
a scientific context. More or different mathematics will not address this problem; it
requires attention to mathematical modeling, which is largely absent from courses
in either mathematics or science. This is the purpose of Chapter 2. The first two
sections provide basic terminology and ideas. There does not seem to be a lot of
material in these sections, and there are very few associated problems. The reader
should plan to reread these sections several times while working through the rest of
the book, as the ideas in them are hard to understand well without prior experience
in mathematical modeling. The remainder of the chapter is divided into sections on
mechanistic modeling, which starts with assumptions about the scientific setting,
and empirical modeling, which starts with examination of data. The three sections
on empirical modeling are of value to anyone who collects and analyzes data, but
they are not essential background for the rest of the book. The basic ideas of mech-
anistic modeling (Section 2.5) are helpful to try to work through, but the reader
does not need to be expert on this subject. Most biologists need to be able to read



and understand mechanistic models but do not need to be able to create them. The
reader of Part III of this book is often asked to interpret mathematical models mech-
anistically, but is never asked to construct one. In contrast, nondimensionalization
(Section 2.6) is a vital skill for anyone who wants to do any work with dynamical
systems. It would have been impossible to write a useful introduction to dynamical
system using complete versions of well-known models without relying on the power
of nondimensionalization to simplify model analysis.

The accompanying sketch shows the interdependencies of the sections in Part I.
Sections 1.1, 1.2, 1.3, and 2.2 are necessary background for the remainder of the
book. Sections 1.7 and 1.8 are needed for Part II, while Sections 2.5 and 2.6 are
needed for Part III. Sections 1.4, 1.5, 1.6, and 1.9 are important topics in calculus,
but are not necessary for the rest of the book; similarly, the empirical modeling
topics in Sections 2.3, 2.4, and 2.7 are not needed later.
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Part II
Probability



174

Chapters 3 and 4 provide a foundation in probability and a small amount of inferen-
tial statistics. In most books, probability appears in the context of statistics. I prefer
to think of probability as a subject in its own right. Descriptive statistics is essential
background for probability and appears in Section 3.1. I can then present probability
as the study of mathematical models of data sets. This viewpoint places the focus
on probability distributions, which play a prominent role in the characterization of
data and are needed to run simulations for stochastic dynamical system models.

Much of statistics is concerned with the assessment of inferences, and one can
see Chapter 3 and Sections 4.1 through 4.3 as providing the necessary background
for the brief treatment of inferential statistics that occupies section 4.4. A full treat-
ment of this subject lies beyond the scope of this book. I do not present analysis of
variation, which asks questions such as “Does this characteristic explain variation
in that characteristic?” My treatment of inferential statistics is limited to questions
such as “Is the population from which this data was collected different from the
general population?,” which can be addressed using the standard distributions that
characterize simple data sets. Section 4.4 focuses on using probability models, with
minimal attention to the statistical rules of thumb that convert probability results
into answers of “yes” or “no.”

The material on conditional probability (Sections 4.6 and 4.7) is normally pre-
sented before probability distributions and could be studied immediately after Sec-
tion 3.2. I have placed this material at the end of part II so as not to interrupt the flow
toward Section 4.4. I also believe that it is better pedagogy to focus on independent
random variables in detail before examining dependence.

The problem sets include several case studies that are split over multiple sections:

Section 3.1, 3.4 3.5 3.6 3.6,3.7 4.2 4.4 4.5
Dopamine and psychosis 3.1.3 4.2.1 4.4.2 4.5.1
Fruitfly egg production 3.1.4 4.2.2 4.4.3 4.5.2
Weight gain in rats 3.1.5 4.2.3 4.4.4 4.5.3
Blood pressure medication 3.1.6 4.4.6
Resting pulse rates 3.1.7 3.6.9 4.2.5
Left-handed presidents 3.4.5 4.4.8
Chest sizes of soldiers 3.5.2 3.6.6
Cuckoo egg measurements 3.5.3 3.6.7
Butterfat in cow milk 3.5.4 3.6.12 3.6.13 4.2.4 4.4.5 4.5.4
Iris sepal lengths 3.5.5 3.5.6 3.6.10 3.6.11 4.2.7 4.5.5
Malaria parasite counts 3.7.6 4.5.9
Spiders under boards 3.7.7 4.5.10
Nerve pulse times 3.7.13 4.2.8



The accompanying sketch shows the interdependencies of the sections in Part II
and connections to prerequisite topics.
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Part III
Dynamical Systems



Chapters 5 through 7 provide a treatment of dynamical systems, beginning with
one-variable discrete and continuous equations in Chapter 5, progressing to discrete
linear systems in Chapter 6, and concluding with nonlinear continuous systems in
Chapter 7. It is easy to see how to interpret discrete systems and use them for sim-
ulations. Their advantages end there, and the remaining advantages are with con-
tinuous models. Continuous systems have superior graphical methods and simpler
mathematical properties. These advantages, which will become apparent in Chapter
5, more than offset the initial advantages of discrete models. In general, one should
only use discrete models when synchronicity of events dictates discrete time.

The importance of good nondimensionalization of models is a recurring theme.
This is one additional advantage of continuous models, which allow for nondimen-
sionalization of time. At minimum, nondimensionalization reduces the number of
parameters requiring estimated values for simulation or study in analysis. Beyond
that, it can sometimes be used to reduce the number of essential components in a
model. As will be seen in Chapter 7 in particular, analysis of models becomes more
difficult as the number of components increases, while graphical methods are gen-
erally limited to one-component discrete models and two-component continuous
models. Any reader who has skipped Section 2.6 so as to get to this point sooner is
strongly urged to go back and study that section in detail before continuing.

The reader should have noticed that there is no mention of discrete nonlinear
models in the description of the chapters in this part. I have not omitted these models
entirely, but have relegated them to an appendix. This choice makes the material
accessible to those who need it, while deemphasizing it according to the author’s
professional judgment.

The accompanying sketch shows the interdependencies of the sections in Part III
and connections to prerequisite topics.
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Index

Accuracy, 115
Akaike information criterion, 165–169
Asymptotic stability, 421
Atlantic croakers, 138

Basic reproductive number, 15
Bayes’ formula, 306
Bernoulli trial, 209
Beverton-Holt model, 324
Bieber fever, 16
Bifurcation, 13–14, 453
Binomial distribution, 209–212, 251
Birthday problem (probability), 196
Boolean function, 484
Boolean network, 484
Boolean variable, 482
Briggs-Haldane approximation, 411
BUGBOX-population, 373
BUGBOX-predator, 103
Butterfat content of milk, 224, 233

Carbon dioxide, 21
Central limit theorem, 272
CG ratio, 193
Chain rule, 36, 65–67
Characteristic equation, 435
Chauvenet’s test, 262
Cheetahs, 392
Chemostat, 150, 414
Cobweb diagram, 327–330, 349
Codon, 189
Colorado potato beetles, 325
Compartment analysis, 148, 396–400
Complement rules (probability), 195
Conceptual model, 109
Conditional probability, 296–300
Confidence intervals, 285–286

Continuous probability distribution, 218
Cramer-von Mises test, 260–261
Critical point, 43
Cuckoo eggs, 224, 232
Cumulative distribution function, 202,

217–220

Decay model, 12, 141–143
Deepwater Horizon oil spill, 71
Definite integral, 73–76
Degree days, 78
Demographic stochasticity, 104, 208
Derivative, 25–26
Derivative formulas, 32
Development rate, 78
Differential equations, 63
Dimensional analysis, 143–144
Dimensional consistency, 143
Dimensionless variables, 156–159
Discrete exponential model, 318–320
Discrete logistic model, 320–321
DNA, 188
Dogs and calculus, 57, 69
Dominant gene, 207
Drug absorption, 438

Eigenvalues, 432
Empirical distribution function, 258
Empirical model, 109
Enzyme kinetics, 406–411
Epidemic model, 150
Equilibrium solution, 335, 338, 416
Error propagation, 49
Euler’s method, 334
Euler-Lotka equation, 77, 88, 117
Eutrophication, 344
Event (probability), 191
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Expected value, 204, 223
Experiment (probability), 190
Exponential distribution, 222, 238–242
Exponential growth model, 333

Falcons, 372
False positive, 305
Fast variable, 421
Felsenstein model, 481
Fiddler crabs, 68
Fish growth, 138
Fisher’s iris data, 217, 225, 227, 233
Fishery model, 318, 341
Fixed point, 322, 485
Flour beetles, 470
Focal length, 68
Fundamental theorem of calculus, 83–87, 93

Gambler’s fallacy, 206
Geometric distribution, 214
Global extrema, 50
Grape harvest dates, 128

Half-life, 12
Hardy-Weinberg principle, 116
Hare-lynx data, 429
Hassell model, 325
Histogram, 181
HIV, 448–453
Holling type 2 model, 147, 154, 343, 460
Holling type 3 model, 336, 341
Holling’s human experiment, 102

Immune system, 453
Independence (probability), 295
Influenza, 15
Insects

Hemiptera, 244
Staphylinidae, 244

Jacobian, 461
Jacobian matrix, 442
Jukes-Cantor distance, 479
Jukes-Cantor model, 476
Jury conditions, 462–463

Kimura model, 481

Law of averages, 206
Lead poisoning, 396–402, 431, 438
Lead poisoning tests, 303
Least squares method, 120–126, 129–132
Left-handed presidents, 214
Likelihood function, 287–292

Limit, 25
Linear approximation, 46–47, 441–442, 461
Linear programming, 61
Linear systems of differential equations,

431–438
Lineweaver Burk method, 138
Local extrema, 41–46
Loggerhead sea turtles, 392
Logistic growth model, 334–336
Lotka-Volterra model, 107, 115

Macrophage, 453
Malaria, 52, 243
Marginal value, 47
Marginal value theorem, 55
Mark Twain, 284
Mark-and-recapture, 289–291
Markov chain, 476
Mass action, law of, 406
Mathematical model

approximation, 109
characterization, 110
definition, 107
derivation, 110
parameterization, 111
selection, 110
simulation, 111
validation, 111

Matrix
Ax = 0, 380
characteristic polynomial, 384
determinant, 379
eigenvalues, 383–385
eigenvectors, 383–386
identity, 376
main diagonal, 376
population projection, 377
product, 376
singular, 380–381

Mean, 182, 205, 223
Measure it with your hand, mark it with a

pencil, cut it with a laser fallacy, 115,
194

Mechanistic model, 109
Median, 182
Mendel’s pea experiments, 207
Michaelis-Menten reactions, 138, 147,

406–411, 416, 442
Model selection, 166
Moose diet, 61
Multiplication rule (probability), 299

Negative binomial distribution, 246
Nerve pulses, 245
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Nicholson-Bailey model, 469
Nitrogen in water, 412
No-egress region, 421
Nondimensionalization, 157–159, 401, 408,

449
Normal distribution, 226–232
Nucleotides, 188
Nullcline, 417
Nullcline analysis, 418–424

Occam’s razor, 164
Optimal fitness, 97
Optimal foraging, 18, 54, 58
Optimal harvesting, 341, 343
Optimal size, 51, 64, 80, 158
Organism growth, 68, 97
Outcomes (probability), 190
Outliers, 183, 262–263

Parameters, 8
Parasitoids, 242, 468
Partial derivatives, 37
Partition rule (probability), 299
Pea aphids, 391
Pharmacokinetics, 396, 438
Phase line, 346–349
Phase plane, 416
Phase portrait, 416
Phylogenetic distance, 472–480
Plankton, 412
Plant density, 244
Plant growth, 69, 79
Poisson approximation for the binomial

distribution, 245
Poisson distribution, 235–238
Pollution in a lake, 148–149
Pollution in lakes, 344
Population growth, 19, 29, 76, 88
Potato beetles, 325
Precision, 115
Predation, 67
Predator-prey model, 429
Probability density function, 220
Probability distribution, 193
Probability distribution function, 201
Probability distributions of sample means,

268–272
Product rule, 34

Quotient rule, 34

Random variable, 191, 198
Rate of change

continuous, 22–25

discrete, 21–22
Reaction velocity, 407
Recessive gene, 207
Recruitment, 317
Red blood cells, 372
Relative rate of change, 333
Renewable resource model, 336–340, 347
Residual sum of squares, 123
Resource consumption, 26, 144–147
Resource management, 342
Ricker model, 324
Riemann sums, 489–490
Roots of quadratic polynomials, 435, 440
Rosenzweig-MacArthur population model,

414
Routh-Hurwitz conditions, 435–438

Sample space, 190
Schaefer model, 341
Science in the early 1900s, 180
Second derivative test, 44
Self-limiting population, 443
Self-limiting population model, 413
Semilinear least squares method, 133–136
Sensitivity (of medical tests), 305
Sequences (probability), 194–195
Set theory notation, 190
Sickle cell disease, 52
Simulation

continuous, 334, 398, 409, 491–492
discrete, 321

SIR disease model, 150, 403
SIS disease model, 403, 405
Smallpox, 16
Specificity (of medical tests), 305
Spiders under boards, 243
Stability

continuous, 347, 356–357, 421
continuous linear systems, 432–438
continuous nonlinear systems, 442–445
discrete, 323, 329, 351–356
discrete nonlinear systems, 462–467

Standard deviation, 184, 205
Statistics, 232
Sterile insect model, 325
Structured population models, 364–370,

387–388
Student’s yeast data, 244
Substitution rule, 91
Sunflowers, 67
Survival probability, 202
Swimming speed of fish, 56, 160
Systems of linear algebraic equations, 375, 386
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T cells, 448
Tangent line, 40–41
Tangent slope, 26
Tay-Sachs disease, 308
Teasel, 389
Tomato plants, 213
Tribolium, 470

Uniform distribution
discrete, 193

Variance, 205, 223
Von Bertalanffy equation, 68, 97

Weevil eggs on beans, 243
Weightlifting, 17, 139
White lies, damn lies, and statistics, 284

Yahtzee, 214
Yeast, 244, 413, 443


