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Linearity defect: definition
(R,m, k)= commutative local Noetherian ring; m 6= 0
M=finitely generated R-module;

Rg = ⊕ mi/mi+1 and Mg = ⊕ miM/mi+1M.

Consider a minimal free resolution of M :

F = · · · → Fn+1
dn−→ Fn → · · · → F0 → 0

and the filtration of F given by the subcomplexes:

· · · → Fn+1 → Fn → · · · → Fi → mFi−1 → m2Fi−2 · · · → miF0 → 0

The associated graded complex is a complex of Rg-modules:

F g = · · · → Fn+1
g(−n− 1)→ Fn

g(−n)→ · · · → F0
g → 0

(Herzog and Iyengar): the linearity defect of M is the number:

ldR(M) = sup{i ∈ Z | Hi(F
g) 6= 0} .
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Connections to regularity

• ldR(M) = 0 ⇐⇒ F g is a minimal free resolution of Mg.
In this case, regRg(Mg) = 0.
We say that M is a Koszul module.

• ldR(k) = 0 ⇐⇒ Rg is a Koszul algebra.
We say that R is a Koszul ring.

• ldR(M) <∞ iff M has a syzygy which is Koszul.
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Interpretation

If i > 0, let µni (M) denote the natural map

TorRi (mn+1,M)→ TorRi (mn,M)

induced by the inclusion mn+1 ⊆ mn.

Theorem. Let i > 0. Then:

Hi (F g) = 0 ⇐⇒ µni (M) = 0 = µni−1(M) for all n > 0.

• ldR(M) ≤ d ⇐⇒ µni (M) = 0 for all i ≥ d and all n > 0.

• ldR(M) = 0 ⇐⇒ µni (M) = 0 for all i and n
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The Graded case

When R is a standard graded k-algebra and M is a graded
R-module, one can use the same definitions, with m = R>1.

Herzog and Iyengar: ldR(M) <∞ =⇒ regR(M) <∞

In particular: ldR(k) <∞ =⇒ regR(k) <∞, hence R is a
Koszul algebra (Avramov and Peeva) and ldR(k) = 0.

An analysis of the proof reveals that a weaker hypothesis suffices:

Proposition. µ1�0(M) = 0 =⇒ regR(M) <∞.
In particular, µ1�0(k) = 0 =⇒ R is Koszul.

(Recall that µ1
i : TorRi (m2,M)→ TorRi (m,M).)
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Questions

Back to the local case.

• If ldR(k) <∞ does it follow that ldR(k) = 0 ?
(Herzog and Iyengar)

• For any n: If µn�0 = 0 does it follow that µn = 0 ?

• If ldR(M) <∞ for every finitely generated R-module (R is
absolutely Koszul), does it follow that R is Koszul?
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The maps µ1 and the Yoneda algebra

Think of µ1i as Exti+1
R (k, k)→ Exti+1

R (R/m2, k)
Set E = ExtR(k, k), with Yoneda product.
Set R!=the subalgebra of E generated by its elements of degree 1.

[J. E. Ross] The following statements are equivalent:

• The Yoneda multiplication map Ei ⊗ E1 → Ei+1 is surjective.

• µ1i = 0.

We have thus:

• µ1>0 = 0 ⇐⇒ E = R!

• µ1>s = 0 ⇐⇒ E is generated/ R! by its elements of degree s.

In particular: If R is a standard graded algebra and E is
finitely generated over R!, then E = R! and R is Koszul.
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Set s(R) = inf{i ≥ 1 | a ∩ ni+2 ⊆ na}
where R̂ = Q/a is a minimal regular presentation of R with (Q, n)
regular local and a ⊆ n2.

Proposition. The following hold:

(a) If µ14n−1 = 0 for some positive integer n, then µ13 = µ11 = 0

(b) µ11 = 0 ⇐⇒ s(R) = 1

For the proof: Use the fact that k has a minimal free resolution F
with DG Γ algebra structure, obtained by adjoining variables.

Then think of µni as Hi+1(F/m
2F )→ Hi+1(F/mF ).

Thus µni = 0 means: If dx ∈ m2Fi, then x ∈ mFi+1.
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We have thus:

µ1>0 = 0

��

ks +3 E = R!

��

µ1>s = 0

��

ks +3 E is generated over R!

by elements of degree s

��
µ11 = 0 ks +3 s(R) = 1



Complete intersection rings

Assume R is a complete intersection: R̂ = Q/(regular sequence),
with Q regular local. For these rings: s(R) = 1 ⇐⇒ E = R!.

Proposition. If ldR(k) <∞, then E = R!.

Under a stronger hypothesis, we obtain a stronger conclusion:

Theorem
The following statements are equivalent:

(a) ldR k = 0 (R is Koszul)

(b) R has minimal multiplicity.

Furthermore, if Rg is Cohen-Macaulay, then they are also
equivalent to

(c) ldR k <∞

Proof of (c) =⇒ (b): Reduce first to the Artinian case. Then, a
length count.
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Artinian rings

Theorem
Assume R is Artinian with mn+1 = 0. If µn−1�0 = 0, then µn−1>0 = 0.

Corollary

If R is Golod and Rg is Cohen-Macaulay, then the following
statements are equivalent:

(a) ldR k = 0

(b) ldR k <∞
(c) R has minimal multiplicity (codimR = e(R)− 1)

The corollary follows from the Theorem, using the fact that an
Artinian Golod ring does not have any non-zero small ideals.
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Proof.
Let j > 0 and let i large enough so that µn−1i+j = 0, thus the

natural map Exti+j
R (mn−1, k)→ Exti+j

R (mn, k) is zero.

Ei ⊗ ExtjR(mn−1, k) //

��

Ei ⊗ ExtjR(mn, k)

��

∼= // Ei ⊗ Ej ⊗HomR(mn, k)

��
Exti+j

R (mn−1, k)
0 // Exti+j

R (mn, k)
∼= // Ei+j ⊗HomR(mn, k)

Assume that µn−1j 6= 0: ExtjR(mn−1, k)
6=0−−→ ExtjR(mn, k).

∃ thus an element in ExtjR(mn−1, k) whose image θ in

ExtjR(mn, k) is non-zero.
Commutativity of the squares yields: ∃ α ∈ Ej non-zero such that
ϕα = 0 for all ϕ ∈ Ei. Thus the element α of E is anihhilated by
all elements of E of sufficienlty large degree. However, this is a
contradiction, according to a result of Martsinkovski.
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