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Linearity defect: definition

(R, m, k)= commutative local Noetherian ring; m # 0
M=finitely generated R-module;

RE =@ m'/m™ and M® =@ m'M/m M.
Consider a minimal free resolution of M:
F= s P ®™F - 5F—0
and the filtration of F' given by the subcomplexes:
i Py = Fy— o= F s wmF_] »m?F_ - > miFy =0
The associated graded complex is a complex of R&-modules:
Fé¢= ... 5 F,18(—n—1) = F.8(—n) — -+ = F8 =0
(Herzog and lyengar): the linearity defect of M is the number:
ldr(M) =sup{i € Z | H;(F®) # 0}.
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Connections to regularity

e ldp(M) =0 <= FF® is a minimal free resolution of M&.
In this case, regpe (M) = 0.
We say that M is a Koszul module.

e ldr(k) =0 <= R® is a Koszul algebra.
We say that R is a Koszul ring.

e ldg(M) < oo iff M has a syzygy which is Koszul.
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Interpretation

If i >0, let u' (M) denote the natural map
Torf(m™ ™ M) — Torf(m", M)

induced by the inclusion m"*! C m™.

Theorem. Leti > 0. Then:

H;(F8) =0 < pu(M)=0=pu (M) foralln > 0.

e ldp(M) <d <= u(M)=0foralli>dandalln>0.
o ldp(M)=0 <= u;(M)=0foralliandn
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The Graded case

When R is a standard graded k-algebra and M is a graded
R-module, one can use the same definitions, with m = R>;.

Herzog and lyengar: ldr(M) < co = regpr(M) < oo

In particular: 1dr(k) < co = regp(k) < oo, hence R is a
Koszul algebra (Avramov and Peeva) and 1dgr(k) = 0.

An analysis of the proof reveals that a weaker hypothesis suffices:
Proposition. ul o(M) =0 = regp(M) < occ.

In particular, pX (k) =0 = R is Koszul.

(Recall that z}: Tor(m?2, M) — Torl(m, M).)
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Questions

Back to the local case.

e If ldr(k) < oo does it follow that 1dr(k) =07
(Herzog and lyengar)

e For any n: If p%,y = 0 does it follow that x"* =07

e If ldgr(M) < oo for every finitely generated R-module (R is
absolutely Koszul), does it follow that R is Koszul?
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The maps 1! and the Yoneda algebra

Think of 4} as Extiy ! (k, k) — Extiy '(R/m? k)
Set E = Extg(k, k), with Yoneda product.
Set R'=the subalgebra of E generated by its elements of degree 1.

[J. E. Ross] The following statements are equivalent:
e The Yoneda multiplication map E‘ @ E' — E**! is surjective.
o 1 =0.

We have thus:
o ply=0 <= E=R
° /U’1>s =0 <= FE is generated/ R' by its elements of degree s.

In particular: If R is a standard graded algebra and E is
finitely generated over R', then E = R' and R is Koszul.
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Set s(R) =inf{i > 1[an n*t2 C na}
where R = Q/a is a minimal regular presentation of R with (Q,n)
regular local and a C n?.

Proposition. The following hold:
(a) If ul,_1 = 0 for some positive integer n, then i = uj =0
(b) uj =0 < s(R)=1

For the proof: Use the fact that k£ has a minimal free resolution F'
with DG T algebra structure, obtained by adjoining variables.
Then think of u? as H;,1(F/m*F) — H; 1 (F/mF).

Thus ' =0 means: If dz € m2F}, then x € mFiq.



We have thus:

plo =0
pis=0

E=R

!

E is generated over R'
by elements of degree s

l

s(R)=1
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Complete intersection rings

Assume R is a complete intersection: R= Q/(regular sequence),
with Q regular local. For these rings: s(R) =1 <= FE = R".
Proposition. If1dg(k) < oo, then E = R,
Under a stronger hypothesis, we obtain a stronger conclusion:
Theorem
The following statements are equivalent:

(a) ldgrk =0 (R is Koszul)

(b) R has minimal multiplicity.

Furthermore, if R® is Cohen-Macaulay, then they are also
equivalent to

(¢) ldrpk < o0

Proof of (c) = (b): Reduce first to the Artinian case. Then, a
length count.
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Artinian rings

Theorem
Assume R is Artinian with m"™* = 0. h‘u>>O =0, then u<,

Corollary

If R is Golod and R® is Cohen-Macaulay, then the following
statements are equivalent:

(a) ldpk =0
(b) Mgk < 0o
(¢) R has minimal multiplicity (codimR = e(R) — 1)

The corollary follows from the Theorem, using the fact that an
Artinian Golod ring does not have any non-zero small ideals.

=0.
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Proof.
Let 7 > 0 and let ¢ large enough so that ,u" =0, thus the

natural map Ext’? (m"~! k) — Ext’7 (m" ,k) is zero.

1

E' © Ext?(m"1 k) — E' ® Ext/,(m”, k) — E' ® B/ ® Homp(m", k)

i L]

Ext5? (mm!, k) —%— Extt (m", k) —— E @ Homp(m", k)

Assume that ,u?_l # 0: Extﬁ(m”’l, k) 7, Extfé(m”,k).

3 thus an element in Ext%(m"fl,k) whose image 6 in
Ext%(m”,k:) is non-zero.

Commutativity of the squares yields: 3 o € E7 non-zero such that
wa =0 for all ¢ € E*. Thus the element a of F is anihhilated by
all elements of E of sufficienlty large degree. However, this is a
contradiction, according to a result of Martsinkovski. O



