On the linearity defect of the residue field

Liana Şega

University of Missouri, Kansas City

October 16, 2011

Linearity defect: definition

 $(R,\mathfrak{m},k)=$ commutative local Noetherian ring; $\mathfrak{m}\neq 0$ M=finitely generated R-module;

$$R^{\mathsf{g}} = \oplus \ \mathfrak{m}^i/\mathfrak{m}^{i+1} \quad \text{and} \quad M^{\mathsf{g}} = \oplus \ \mathfrak{m}^i M/\mathfrak{m}^{i+1} M.$$

Linearity defect: definition

 (R, \mathfrak{m}, k) = commutative local Noetherian ring; $\mathfrak{m} \neq 0$ M=finitely generated R-module;

$$R^{\mathsf{g}} = \oplus \ \mathfrak{m}^i/\mathfrak{m}^{i+1} \quad \text{and} \quad M^{\mathsf{g}} = \oplus \ \mathfrak{m}^i M/\mathfrak{m}^{i+1} M.$$

Consider a minimal free resolution of M:

$$F = \cdots \rightarrow F_{n+1} \xrightarrow{d_n} F_n \rightarrow \cdots \rightarrow F_0 \rightarrow 0$$

and the filtration of F given by the subcomplexes:

$$\cdots \to F_{n+1} \to F_n \to \cdots \to F_i \to \mathfrak{m}F_{i-1} \to \mathfrak{m}^2F_{i-2} \to \mathfrak{m}^iF_0 \to 0$$

Linearity defect: definition

 (R, \mathfrak{m}, k) = commutative local Noetherian ring; $\mathfrak{m} \neq 0$ M=finitely generated R-module;

$$R^{\mathsf{g}} = \oplus \ \mathfrak{m}^i/\mathfrak{m}^{i+1} \quad \text{and} \quad M^{\mathsf{g}} = \oplus \ \mathfrak{m}^i M/\mathfrak{m}^{i+1} M.$$

Consider a minimal free resolution of M:

$$F = \cdots \rightarrow F_{n+1} \xrightarrow{d_n} F_n \rightarrow \cdots \rightarrow F_0 \rightarrow 0$$

and the filtration of F given by the subcomplexes:

$$\cdots \to F_{n+1} \to F_n \to \cdots \to F_i \to \mathfrak{m}F_{i-1} \to \mathfrak{m}^2F_{i-2} \cdots \to \mathfrak{m}^iF_0 \to 0$$

The associated graded complex is a complex of R^g -modules:

$$F^{\mathsf{g}} = \cdots \to F_{n+1}{}^{\mathsf{g}}(-n-1) \to F_n{}^{\mathsf{g}}(-n) \to \cdots \to F_0{}^{\mathsf{g}} \to 0$$

(Herzog and Iyengar): the *linearity defect* of M is the number:

$$\mathrm{ld}_R(M) = \sup\{i \in \mathbb{Z} \mid \mathrm{H}_i(F^{\mathsf{g}}) \neq 0\}.$$

Connections to regularity

• $\mathrm{ld}_R(M)=0 \iff F^{\mathsf{g}}$ is a minimal free resolution of M^{g} . In this case, $\mathrm{reg}_{R^{\mathsf{g}}}(M^{\mathsf{g}})=0$. We say that M is a Koszul module.

Connections to regularity

- $\mathrm{ld}_R(M)=0 \iff F^{\mathsf{g}}$ is a minimal free resolution of M^{g} . In this case, $\mathrm{reg}_{R^{\mathsf{g}}}(M^{\mathsf{g}})=0$. We say that M is a Koszul module.
- $\mathrm{ld}_R(k) = 0 \iff R^{\mathrm{g}}$ is a Koszul algebra. We say that R is a Koszul ring.

Connections to regularity

- $\mathrm{ld}_R(M)=0 \iff F^{\mathsf{g}}$ is a minimal free resolution of M^{g} . In this case, $\mathrm{reg}_{R^{\mathsf{g}}}(M^{\mathsf{g}})=0$. We say that M is a Koszul module.
- $\mathrm{ld}_R(k) = 0 \iff R^{\mathrm{g}}$ is a Koszul algebra. We say that R is a Koszul ring.
- $\mathrm{ld}_R(M) < \infty$ iff M has a syzygy which is Koszul.

Interpretation

If i > 0, let $\mu_i^n(M)$ denote the natural map

$$\operatorname{Tor}_i^R(\mathfrak{m}^{n+1},M) \to \operatorname{Tor}_i^R(\mathfrak{m}^n,M)$$

induced by the inclusion $\mathfrak{m}^{n+1} \subseteq \mathfrak{m}^n$.

Interpretation

If i > 0, let $\mu_i^n(M)$ denote the natural map

$$\operatorname{Tor}_i^R(\mathfrak{m}^{n+1}, M) \to \operatorname{Tor}_i^R(\mathfrak{m}^n, M)$$

induced by the inclusion $\mathfrak{m}^{n+1} \subseteq \mathfrak{m}^n$.

Theorem. Let i > 0. Then:

$$\mathrm{H}_{i}\left(F^{\mathbf{g}}\right)=0\iff \mu_{i}^{n}(M)=0=\mu_{i-1}^{n}(M) \text{ for all } n>0.$$

Interpretation

If i>0, let $\mu_i^n(M)$ denote the natural map

$$\operatorname{Tor}_i^R(\mathfrak{m}^{n+1}, M) \to \operatorname{Tor}_i^R(\mathfrak{m}^n, M)$$

induced by the inclusion $\mathfrak{m}^{n+1} \subseteq \mathfrak{m}^n$.

Theorem. Let i > 0. Then:

$$H_i(F^g) = 0 \iff \mu_i^n(M) = 0 = \mu_{i-1}^n(M) \text{ for all } n > 0.$$

- $\mathrm{ld}_R(M) \leq d \iff \mu_i^n(M) = 0$ for all $i \geq d$ and all n > 0.
- $\mathrm{ld}_R(M) = 0 \iff \mu_i^n(M) = 0$ for all i and n

The Graded case

When R is a standard graded k-algebra and M is a graded R-module, one can use the same definitions, with $\mathfrak{m}=R_{\geqslant 1}$.

Herzog and Iyengar:
$$\mathrm{ld}_R(M) < \infty \implies \mathrm{reg}_R(M) < \infty$$

In particular: $\mathrm{ld}_R(k)<\infty \implies \mathrm{reg}_R(k)<\infty$, hence R is a Koszul algebra (Avramov and Peeva) and $\mathrm{ld}_R(k)=0$.

The Graded case

When R is a standard graded k-algebra and M is a graded R-module, one can use the same definitions, with $\mathfrak{m}=R_{\geqslant 1}$.

Herzog and Iyengar:
$$\mathrm{ld}_R(M) < \infty \implies \mathrm{reg}_R(M) < \infty$$

In particular: $\mathrm{ld}_R(k) < \infty \implies \mathrm{reg}_R(k) < \infty$, hence R is a Koszul algebra (Avramov and Peeva) and $\mathrm{ld}_R(k) = 0$.

An analysis of the proof reveals that a weaker hypothesis suffices:

$$\begin{array}{ll} \textbf{Proposition.} & \mu^1_{\gg 0}(M) = 0 \implies \operatorname{reg}_R(M) < \infty. \\ \textit{In particular, } \mu^1_{\gg 0}(k) = 0 \implies R \textit{ is Koszul.} \\ \end{array}$$

(Recall that
$$\mu_i^1 \colon \operatorname{Tor}_i^R(\mathfrak{m}^2, M) \to \operatorname{Tor}_i^R(\mathfrak{m}, M)$$
.)

Questions

Back to the local case.

• If $\mathrm{ld}_R(k) < \infty$ does it follow that $\mathrm{ld}_R(k) = 0$? (Herzog and Iyengar)

Questions

Back to the local case.

- If $\mathrm{ld}_R(k) < \infty$ does it follow that $\mathrm{ld}_R(k) = 0$? (Herzog and Iyengar)
- For any n: If $\mu_{\gg 0}^n=0$ does it follow that $\mu^n=0$?

Questions

Back to the local case.

- If $\mathrm{ld}_R(k) < \infty$ does it follow that $\mathrm{ld}_R(k) = 0$? (Herzog and Iyengar)
- For any n: If $\mu_{\gg 0}^n=0$ does it follow that $\mu^n=0$?
- If $\mathrm{ld}_R(M) < \infty$ for every finitely generated R-module (R is absolutely Koszul), does it follow that R is Koszul?

The maps μ^1 and the Yoneda algebra

Think of μ_i^1 as $\operatorname{Ext}_R^{i+1}(k,k) \to \operatorname{Ext}_R^{i+1}(R/\mathfrak{m}^2,k)$ Set $E = \operatorname{Ext}_R(k,k)$, with Yoneda product. Set $R^!$ =the subalgebra of E generated by its elements of degree 1.

The maps μ^1 and the Yoneda algebra

Think of μ_i^1 as $\operatorname{Ext}_R^{i+1}(k,k) \to \operatorname{Ext}_R^{i+1}(R/\mathfrak{m}^2,k)$ Set $E = \operatorname{Ext}_R(k,k)$, with Yoneda product. Set $R^!$ =the subalgebra of E generated by its elements of degree 1.

[J. E. Ross] The following statements are equivalent:

- The Yoneda multiplication map $E^i \otimes E^1 \to E^{i+1}$ is surjective.
- $\mu_i^1 = 0$.

The maps μ^1 and the Yoneda algebra

Think of μ_i^1 as $\operatorname{Ext}_R^{i+1}(k,k) \to \operatorname{Ext}_R^{i+1}(R/\mathfrak{m}^2,k)$ Set $E = \operatorname{Ext}_R(k,k)$, with Yoneda product. Set $R^!$ =the subalgebra of E generated by its elements of degree 1.

[J. E. Ross] The following statements are equivalent:

- The Yoneda multiplication map $E^i \otimes E^1 \to E^{i+1}$ is surjective.
- $\mu_i^1 = 0$.

We have thus:

- $\mu^1_{>0} = 0 \iff E = R!$
- $\mu^1_{\geqslant s} = 0 \iff E$ is generated/ $R^!$ by its elements of degree s.

In particular: If R is a standard graded algebra and E is finitely generated over $R^!$, then $E=R^!$ and R is Koszul.

Set $s(R) = \inf\{i \geq 1 \mid \mathfrak{a} \cap \mathfrak{n}^{i+2} \subseteq \mathfrak{n}\mathfrak{a}\}$ where $\widehat{R} = Q/\mathfrak{a}$ is a minimal regular presentation of R with (Q,\mathfrak{n}) regular local and $\mathfrak{a} \subseteq \mathfrak{n}^2$.

Set $s(R) = \inf\{i \geq 1 \mid \mathfrak{a} \cap \mathfrak{n}^{i+2} \subseteq \mathfrak{n}\mathfrak{a}\}$ where $\widehat{R} = Q/\mathfrak{a}$ is a minimal regular presentation of R with (Q,\mathfrak{n}) regular local and $\mathfrak{a} \subseteq \mathfrak{n}^2$.

Proposition. The following hold:

- (a) If $\mu^1_{4n-1}=0$ for some positive integer n, then $\mu^1_3=\mu^1_1=0$
- (b) $\mu_1^1 = 0 \iff s(R) = 1$

Set $s(R) = \inf\{i \geq 1 \mid \mathfrak{a} \cap \mathfrak{n}^{i+2} \subseteq \mathfrak{n}\mathfrak{a}\}$ where $\widehat{R} = Q/\mathfrak{a}$ is a minimal regular presentation of R with (Q,\mathfrak{n}) regular local and $\mathfrak{a} \subseteq \mathfrak{n}^2$.

Proposition. The following hold:

- (a) If $\mu^1_{4n-1}=0$ for some positive integer n, then $\mu^1_3=\mu^1_1=0$
- (b) $\mu_1^1 = 0 \iff s(R) = 1$

For the proof: Use the fact that k has a minimal free resolution F with DG Γ algebra structure, obtained by adjoining variables.

Then think of μ_i^n as $H_{i+1}(F/\mathfrak{m}^2 F) \to H_{i+1}(F/\mathfrak{m} F)$. Thus $\mu_i^n = 0$ means: If $dx \in \mathfrak{m}^2 F_i$, then $x \in \mathfrak{m} F_{i+1}$. We have thus:

$$\mu^1_{>0} = 0 \Longleftrightarrow E = R^!$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mu^1_{\geqslant s} = 0 \Longleftrightarrow \qquad E \text{ is generated over } R^!$$
 by elements of degree s
$$\downarrow \qquad \qquad \downarrow$$

$$\mu^1_1 = 0 \Longleftrightarrow s(R) = 1$$

Assume R is a complete intersection: $\widehat{R}=Q/(\text{regular sequence})$, with Q regular local. For these rings: $s(R)=1\iff E=R^!$.

Assume R is a complete intersection: $\widehat{R} = Q/(\text{regular sequence})$, with Q regular local. For these rings: $s(R) = 1 \iff E = R^!$.

Proposition. If $\mathrm{ld}_R(k) < \infty$, then E = R!.

Assume R is a complete intersection: $\widehat{R} = Q/(\text{regular sequence})$, with Q regular local. For these rings: $s(R) = 1 \iff E = R^!$.

Proposition. If $\mathrm{ld}_R(k) < \infty$, then $E = R^!$.

Under a stronger hypothesis, we obtain a stronger conclusion:

Theorem

The following statements are equivalent:

- (a) $\operatorname{ld}_R k = 0$ (R is Koszul)
- (b) R has minimal multiplicity.

Furthermore, if $R^{\rm g}$ is Cohen-Macaulay, then they are also equivalent to

(c)
$$\operatorname{ld}_R k < \infty$$

Assume R is a complete intersection: $\widehat{R} = Q/(\text{regular sequence})$, with Q regular local. For these rings: $s(R) = 1 \iff E = R^!$.

Proposition. If $\mathrm{ld}_R(k) < \infty$, then $E = R^!$.

Under a stronger hypothesis, we obtain a stronger conclusion:

Theorem

The following statements are equivalent:

- (a) $\operatorname{ld}_R k = 0$ (R is Koszul)
- (b) R has minimal multiplicity.

Furthermore, if $R^{\rm g}$ is Cohen-Macaulay, then they are also equivalent to

(c) $\operatorname{ld}_R k < \infty$

Proof of (c) \Longrightarrow (b): Reduce first to the Artinian case. Then, a length count.

Artinian rings

Theorem

Assume R is Artinian with $\mathfrak{m}^{n+1}=0$. If $\mu_{\gg 0}^{n-1}=0$, then $\mu_{>0}^{n-1}=0$.

Artinian rings

Theorem

Assume R is Artinian with $\mathfrak{m}^{n+1}=0$. If $\mu_{\gg 0}^{n-1}=0$, then $\mu_{>0}^{n-1}=0$.

Corollary

If R is Golod and $R^{\rm g}$ is Cohen-Macaulay, then the following statements are equivalent:

- (a) $ld_R k = 0$
- (b) $\operatorname{ld}_R k < \infty$
- (c) R has minimal multiplicity (codimR = e(R) 1)

Artinian rings

Theorem

Assume R is Artinian with $\mathfrak{m}^{n+1}=0$. If $\mu_{\gg 0}^{n-1}=0$, then $\mu_{>0}^{n-1}=0$.

Corollary

If R is Golod and $R^{\rm g}$ is Cohen-Macaulay, then the following statements are equivalent:

- (a) $\operatorname{ld}_R k = 0$
- (b) $\operatorname{ld}_R k < \infty$
- (c) R has minimal multiplicity (codimR = e(R) 1)

The corollary follows from the Theorem, using the fact that an Artinian Golod ring does not have any non-zero small ideals.

Let j>0 and let i large enough so that $\mu_{i+j}^{n-1}=0$, thus the natural map $\operatorname{Ext}_R^{i+j}(\mathfrak{m}^{n-1},k) \to \operatorname{Ext}_R^{i+j}(\mathfrak{m}^n,k)$ is zero.

$$E^{i} \otimes \operatorname{Ext}_{R}^{j}(\mathfrak{m}^{n-1}, k) \longrightarrow E^{i} \otimes \operatorname{Ext}_{R}^{j}(\mathfrak{m}^{n}, k) \stackrel{\cong}{\longrightarrow} E^{i} \otimes E^{j} \otimes \operatorname{Hom}_{R}(\mathfrak{m}^{n}, k)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}_{R}^{i+j}(\mathfrak{m}^{n-1}, k) \stackrel{0}{\longrightarrow} \operatorname{Ext}_{R}^{i+j}(\mathfrak{m}^{n}, k) \stackrel{\cong}{\longrightarrow} E^{i+j} \otimes \operatorname{Hom}_{R}(\mathfrak{m}^{n}, k)$$

Let j>0 and let i large enough so that $\mu_{i+j}^{n-1}=0$, thus the natural map $\operatorname{Ext}_R^{i+j}(\mathfrak{m}^{n-1},k) \to \operatorname{Ext}_R^{i+j}(\mathfrak{m}^n,k)$ is zero.

$$E^{i} \otimes \operatorname{Ext}_{R}^{j}(\mathfrak{m}^{n-1}, k) \longrightarrow E^{i} \otimes \operatorname{Ext}_{R}^{j}(\mathfrak{m}^{n}, k) \stackrel{\cong}{\longrightarrow} E^{i} \otimes E^{j} \otimes \operatorname{Hom}_{R}(\mathfrak{m}^{n}, k)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}_{R}^{i+j}(\mathfrak{m}^{n-1}, k) \stackrel{0}{\longrightarrow} \operatorname{Ext}_{R}^{i+j}(\mathfrak{m}^{n}, k) \stackrel{\cong}{\longrightarrow} E^{i+j} \otimes \operatorname{Hom}_{R}(\mathfrak{m}^{n}, k)$$

Assume that $\mu_i^{n-1} \neq 0$: $\operatorname{Ext}_R^j(\mathfrak{m}^{n-1}, k) \xrightarrow{\neq 0} \operatorname{Ext}_R^j(\mathfrak{m}^n, k)$.

Let j>0 and let i large enough so that $\mu_{i+j}^{n-1}=0$, thus the natural map $\operatorname{Ext}_R^{i+j}(\mathfrak{m}^{n-1},k) \to \operatorname{Ext}_R^{i+j}(\mathfrak{m}^n,k)$ is zero.

$$E^{i} \otimes \operatorname{Ext}_{R}^{j}(\mathfrak{m}^{n-1}, k) \longrightarrow E^{i} \otimes \operatorname{Ext}_{R}^{j}(\mathfrak{m}^{n}, k) \stackrel{\cong}{\longrightarrow} E^{i} \otimes E^{j} \otimes \operatorname{Hom}_{R}(\mathfrak{m}^{n}, k)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}_{R}^{i+j}(\mathfrak{m}^{n-1}, k) \stackrel{0}{\longrightarrow} \operatorname{Ext}_{R}^{i+j}(\mathfrak{m}^{n}, k) \stackrel{\cong}{\longrightarrow} E^{i+j} \otimes \operatorname{Hom}_{R}(\mathfrak{m}^{n}, k)$$

Assume that $\mu_j^{n-1} \neq 0$: $\operatorname{Ext}_R^j(\mathfrak{m}^{n-1},k) \xrightarrow{\neq 0} \operatorname{Ext}_R^j(\mathfrak{m}^n,k)$. \exists thus an element in $\operatorname{Ext}_R^j(\mathfrak{m}^{n-1},k)$ whose image θ in $\operatorname{Ext}_R^j(\mathfrak{m}^n,k)$ is non-zero.

Let j>0 and let i large enough so that $\mu_{i+j}^{n-1}=0$, thus the natural map $\operatorname{Ext}_R^{i+j}(\mathfrak{m}^{n-1},k) \to \operatorname{Ext}_R^{i+j}(\mathfrak{m}^n,k)$ is zero.

$$E^{i} \otimes \operatorname{Ext}_{R}^{j}(\mathfrak{m}^{n-1}, k) \longrightarrow E^{i} \otimes \operatorname{Ext}_{R}^{j}(\mathfrak{m}^{n}, k) \stackrel{\cong}{\longrightarrow} E^{i} \otimes E^{j} \otimes \operatorname{Hom}_{R}(\mathfrak{m}^{n}, k)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Ext}_{R}^{i+j}(\mathfrak{m}^{n-1}, k) \stackrel{0}{\longrightarrow} \operatorname{Ext}_{R}^{i+j}(\mathfrak{m}^{n}, k) \stackrel{\cong}{\longrightarrow} E^{i+j} \otimes \operatorname{Hom}_{R}(\mathfrak{m}^{n}, k)$$

Assume that $\mu_j^{n-1} \neq 0$: $\operatorname{Ext}_R^j(\mathfrak{m}^{n-1},k) \xrightarrow{\neq 0} \operatorname{Ext}_R^j(\mathfrak{m}^n,k)$. \exists thus an element in $\operatorname{Ext}_R^j(\mathfrak{m}^{n-1},k)$ whose image θ in $\operatorname{Ext}_R^j(\mathfrak{m}^n,k)$ is non-zero.

Commutativity of the squares yields: $\exists \ \alpha \in E^j$ non-zero such that $\varphi \alpha = 0$ for all $\varphi \in E^i$. Thus the element α of E is anihhilated by all elements of E of sufficiently large degree. However, this is a contradiction, according to a result of Martsinkovski.