Bounding projective dimension and regularity

Alexandra Seceleanu
joint with J. Beder, J. McCullough, L. Nuñez, B. Snapp, B. Stone

October 15, 2011
AMS Sectional Meeting, Lincoln
Given an ideal $I \subset S = K[X_1, \ldots, X_n]$ there are two measures of the computational complexity of finding the resolution of S/I:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>1</td>
<td>$\beta_{1,1}$</td>
<td>$\beta_{2,2}$</td>
<td>$\beta_{3,3}$</td>
<td>$\beta_{4,4}$</td>
<td>$\beta_{5,5}$</td>
<td>$\beta_{6,6}$</td>
<td>$\beta_{7,7}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>1:</td>
<td>-</td>
<td>$\beta_{1,2}$</td>
<td>$\beta_{2,3}$</td>
<td>$\beta_{3,4}$</td>
<td>$\beta_{4,5}$</td>
<td>$\beta_{5,6}$</td>
<td>$\beta_{6,7}$</td>
<td>$\beta_{7,8}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>2:</td>
<td>-</td>
<td>$\beta_{1,3}$</td>
<td>$\beta_{2,4}$</td>
<td>$\beta_{3,5}$</td>
<td>$\beta_{4,6}$</td>
<td>$\beta_{5,7}$</td>
<td>$\beta_{6,8}$</td>
<td>$\beta_{7,9}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>3:</td>
<td>-</td>
<td>$\beta_{1,4}$</td>
<td>$\beta_{2,5}$</td>
<td>$\beta_{3,6}$</td>
<td>$\beta_{4,7}$</td>
<td>$\beta_{5,8}$</td>
<td>$\beta_{6,9}$</td>
<td>$\beta_{7,10}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>4:</td>
<td>-</td>
<td>$\beta_{1,5}$</td>
<td>$\beta_{2,6}$</td>
<td>$\beta_{3,7}$</td>
<td>$\beta_{4,8}$</td>
<td>$\beta_{5,9}$</td>
<td>$\beta_{6,10}$</td>
<td>$\beta_{7,11}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>5:</td>
<td>-</td>
<td>$\beta_{1,6}$</td>
<td>$\beta_{2,7}$</td>
<td>$\beta_{3,8}$</td>
<td>$\beta_{4,9}$</td>
<td>$\beta_{5,10}$</td>
<td>$\beta_{6,11}$</td>
<td>$\beta_{7,12}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>6:</td>
<td>-</td>
<td>$\beta_{1,7}$</td>
<td>$\beta_{2,8}$</td>
<td>$\beta_{3,9}$</td>
<td>$\beta_{4,10}$</td>
<td>$\beta_{5,11}$</td>
<td>$\beta_{6,12}$</td>
<td>$\beta_{7,13}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>7:</td>
<td>-</td>
<td>$\beta_{1,8}$</td>
<td>$\beta_{2,9}$</td>
<td>$\beta_{3,10}$</td>
<td>$\beta_{4,11}$</td>
<td>$\beta_{5,12}$</td>
<td>$\beta_{6,13}$</td>
<td>$\beta_{7,14}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>8:</td>
<td>-</td>
<td>$\beta_{1,9}$</td>
<td>$\beta_{2,10}$</td>
<td>$\beta_{3,11}$</td>
<td>$\beta_{4,12}$</td>
<td>$\beta_{5,13}$</td>
<td>$\beta_{6,14}$</td>
<td>$\beta_{7,15}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>\ldots</td>
<td>-</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

- projective dimension = "width" of the Betti table (last nonzero column);
- regularity = "height" of the Betti table (last non-zero row).
Stillman’s Question

Question (Stillman)

Is there a bound, independent of \(n\), on the projective dimension of ideals in \(S = K[X_1, \ldots, X_n]\) which are generated by \(N\) homogeneous polynomials of given degrees \(d_1, \ldots, d_N\)?

Remark

Hilbert’s Syzygy Theorem guarantees \(\text{pd}(S/I) \leq n\), but we seek a bound independent of \(n\).
Stillman’s Question

Known cases:

- If \(I = (m_1, \ldots, m_N) \) is a monomial ideal, then \(pd(S/I) \leq N \) by the Taylor resolution. Note that \(N \) does not work in general.

- If \(I = (f, g, h) \) with \(f, g, h \) quadrics, then \(pd(S/I) \leq 4 \) by Eisenbud-Huneke (unpublished). This bound is tight.

- If \(I = (f, g, h) \) with \(f, g, h \) cubics, then \(pd(S/I) \leq 36 \) by Engheta. The tight bound in this case is likely to be 5.
A bound for ideals of quadrics

Two ideas in pursuing this question:
1. look at ideals generated in small degrees (quadrics, cubics)
2. limit the number of generators (three-generated ideals)

Theorem (Ananyan-Hochster, 2011)
Let $S = K[x_1, \ldots, x_n]$, let F_1, \ldots, F_N be polynomials of degree at most 2 and $I = (F_1, \ldots, F_N)$. Then there is a function $C(N)$ such that I is contained in the K-subalgebra of S generated by a regular sequence of at most $C(N)$ forms of degree at most 2. Consequently the projective dimension of S/I is at most $C(N)$.

Remark
The asymptotic growth of $C(N)$ is of order $2N^{2^N}$.
Three-generated ideals

Theorem (Burch-Kohn, 1968)

For any \(n \in \mathbb{N} \), there is a three-generated ideal \(I = (f, g, h) \) in a polynomial ring \(S = K[x_1, \ldots, x_{2n}] \) with \(pd(S/I) = n \).

Remark

Engheta computed the degrees of the three generators to be \(n - 2, n - 2, 2n - 2 \)
Three-generated ideals

Theorem (Bruns, 1976)

Any resolution is the resolution of a three-generated ideal.

Remark (Nguyen, Niu, Sanyal, Torrance, Witt, Zhang)

Note that degrees of the generators of the brunsification of an ideal grow, but can be controlled. e.g. brunsification of \((X_1^d, \ldots, X_n^d)\) yields three generators of degree at most \(d(n - 2)^2\).
Y. Zhang's Question

Question (Y. Zhang)

Assume $I = (f_1, \ldots, f_N)$ is an ideal of $S = K[X_1, \ldots, X_n]$. Is it true that $pd(S/I) \leq \sum_{i=0}^{N} \deg f_i$?

The following constructions show this bound is (much) too small.
McCullough’s ideals with large projective dimension

Fix integers m, n, d such that $m \geq 1$, $n \geq 0$ and $d \geq 2$.

Let Z_1, \ldots, Z_p be the $\frac{(m+d-2)!}{(m-1)!(d-1)!}$ monomials of degree $d - 1$ in X_1, \ldots, X_m.

Example

$$S = k[X_1, \ldots, X_n, Y_{1,1}, \ldots, Y_{p,n}]$$

$$I_{m,n,d} = \left(X_1^d, \ldots, X_n^d, \sum_{i=0}^{p} Z_j Y_{i,1}, \ldots, \sum_{j=0}^{p} Z_j Y_{j,n} \right)$$

is generated by $m + n$ degree d generators
Theorem (McCullough, 2011)

\[pd(R/I_{m,n,d}) = m + np = m + n \frac{(m + d - 2)!}{(m - 1)!(d - 1)!}. \]

Proof sketch:

Show \(\text{depth}(R/I_{m,n,d}) = 0 \) and apply Auslander-Buchsbaum.
Example: \(I_{3,4,2} \)

\[
S = K[X_1, \ldots, X_m, Y_{1,1}, \ldots, Y_{3,4}]
\]

\[
I = (X_1^2, X_2^2, X_3^2, X_1 Y_{1,1} + X_2 Y_{2,1} + X_3 Y_{3,1}, X_1 Y_{1,2} + X_2 Y_{2,2} + X_3 Y_{3,2},
X_1 Y_{1,3} + X_2 Y_{2,3} + X_3 Y_{3,3}, X_1 Y_{1,4} + X_2 Y_{2,4} + X_3 Y_{3,4})
\]

\(I \) has 7 quadratic generators and \(pd(S/I) = \# \) variables = 15 > 7 \(\cdot \) 2.

The answer to Zheng's question is negative.
A new family

Example (The ideal $I = I_{2,(2,2,2)}$)

$$A_0 = \{(0,0,0)\}, A_1 = \{(1,0,0)\}, A_2 = \{(1,1,0)\},$$
$$A_3 = \{(1,1,2), (1,1,1), (1,1,0)\}.$$

$$f = x^{(0,0,0)} x_{1,1} x_{1,2}^2 + x^{(0,0,0)} x_{2,1} x_{2,2}^2 + x^{(1,0,0)} x_{1,2} x_{1,3} + x^{(1,0,0)} x_{2,2} x_{2,3}$$
$$+ x y^{(1,1,2)} + x y^{(1,1,1)} + x y^{(1,1,0)}$$

$$= x_{1,1} x_{1,2}^2 + x_{2,1} x_{2,2}^2 + x_{1,1} x_{2,1} x_{1,2} x_{1,3} + x_{1,1} x_{2,1} x_{2,2} x_{2,3}$$
$$+ x_{1,1} x_{2,1} x_{1,2} x_{2,2} x_{1,3} y^{(1,1,2)} + x_{1,1} x_{2,1} x_{1,2} x_{2,2} x_{1,3} x_{2,3} y^{(1,1,1)}$$
$$+ x_{1,1} x_{2,1} x_{1,2} x_{2,2} x_{2,3} y^{(1,1,0)}.$$

Finally, the ideal $I = \left(x_{1,1}^7, x_{2,1}^7, f\right)$.
Larger projective dimension

Fix $g \geq 2, m_n \geq 0, m_{n-1} \geq 1, m_i \geq 2$ for $1 \leq i \leq n - 2$.

$$I = I_{g,(m_1,\ldots,m_{n-1})}$$

Theorem (Beder, McCullough, Nuñez, S-, Snapp, Stone)

$$pd(R/I) = \prod_{i=1}^{n-1} \left(\frac{(m_i + g - 1)!}{(g - 1)!(m_i)!} - g \right) \left(\frac{(m_n + g - 1)!}{(g - 1)!(m_n)!} \right) + gn.$$

Proof: Count the variables: $g \times n \times X$ variables and $|\mathcal{A}_n| Y$ variables.
Corollary (Beder, McCullough, Nuñez, S-, Snapp, Stone)

Over any field \(K \) and for any positive integer \(p \), there exists an ideal \(I \) in a polynomial ring \(R \) over \(K \) with three homogeneous generators in degree \(p^2 \) such that \(pd(R/I) \geq p^{p-1} \).

Proof:

\[I = I_{2,(p+1,...,p+1,0)} \cdot (p-1 \text{ times}) \]

Corollary (Beder, McCullough, Nuñez, S-, Snapp, Stone)

Over any field \(K \) and for any positive integer \(p \), there exists an ideal \(I \) in a polynomial ring \(R \) over \(K \) with \(2p + 1 \) homogeneous generators in degree \(2p + 1 \) such that \(pd(R/I) \geq p^{2p} \).

Proof:

\[I = I_{2p,(2,2,2,...,2)} \cdot (p \text{ times}) \]
$I = I_{2,(4,1)}$

Betti Table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>total:</td>
<td>1</td>
<td>3</td>
<td>138</td>
<td>621</td>
<td>1303</td>
<td>1642</td>
<td>1352</td>
<td>740</td>
<td>261</td>
<td>54</td>
<td>5</td>
</tr>
<tr>
<td>0:</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1:</td>
<td>-</td>
</tr>
<tr>
<td>2:</td>
<td>-</td>
</tr>
<tr>
<td>3:</td>
<td>-</td>
</tr>
<tr>
<td>4:</td>
<td>-</td>
</tr>
<tr>
<td>5:</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6:</td>
<td>-</td>
</tr>
<tr>
<td>7:</td>
<td>-</td>
</tr>
<tr>
<td>8:</td>
<td>-</td>
</tr>
<tr>
<td>9:</td>
<td>-</td>
</tr>
<tr>
<td>10:</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11:</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12:</td>
<td>-</td>
<td>-</td>
<td>26</td>
<td>110</td>
<td>213</td>
<td>256</td>
<td>211</td>
<td>120</td>
<td>45</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>13:</td>
<td>-</td>
<td>-</td>
<td>96</td>
<td>480</td>
<td>1064</td>
<td>1376</td>
<td>1140</td>
<td>620</td>
<td>216</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>14:</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>26</td>
<td>26</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Alexandra Seceleanu (UNL)
Bounding projective dimension and regularity
Oct 15, 2011
\(I = I_{2, (2,1,2)} \)

Betti Table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>total:</td>
<td>1</td>
<td>3</td>
<td>75</td>
<td>247</td>
<td>320</td>
<td>188</td>
<td>42</td>
</tr>
<tr>
<td>0:</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5:</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10:</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13:</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16:</td>
<td>-</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18:</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19:</td>
<td>-</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20:</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>21:</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>22:</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>23:</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>24:</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>16</td>
<td>21</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>25:</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>20</td>
<td>18</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>26:</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>12</td>
<td>18</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>27:</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>24</td>
<td>32</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>28:</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>12</td>
<td>18</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>29:</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>16</td>
<td>24</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>30:</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>12</td>
<td>18</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>31:</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>16</td>
<td>24</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>32:</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>33:</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>16</td>
<td>24</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>34:</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>35:</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>36:</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>37:</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>38:</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>39:</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>40:</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>41:</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>
Stilman’s Question - Regularity Version

Question (Stillman)

Is there a bound, independent of n, on the regularity of ideals in $S = K[X_1, \ldots, X_n]$ which are generated by N homogeneous polynomials of given degrees d_1, \ldots, d_N?

Caviglia proved:

the regularity question \iff the projective dimension question.

Caution: this does not mean the bounds will be the same.
Caviglia’s subfamily

Let
\[C_d = (w^d, x^d, wy^{d-1} + xz^{d-1}) \subset S = K[w, x, y, z] \]

Caviglia showed \(\text{reg}(S/C_d) = d^2 - 1 \).

\(C_d \) is a subfamily of the new family: \(C_d = I_{2,(1,d-2)} \)

Question

What is the asymptotic growth of \(\text{reg}(I_{2,(2,1,d)}) \)?
Conjectures

Let

\[C_d = (w^d, x^d, wy^{d-1} + xz^{d-1}) \subset S = K[w, x, y, z] \]

Caviglia showed \(\text{reg}(S/C_d) = d^2 - 1 \).

\(C_d \) is a subfamily of the new family: \(C_d = I_{2,(1,d-2)} \)

Conjecture

We believe \(\text{reg}(I_{2,(2,1,d)}) \) exhibits cubic growth in \(d \).

We believe \(\text{reg}(I_{2,(2,2,2,\ldots,2,1,d)}) \) grows asymptotically as \(d^{p+2} \).

\(p \) times
