## Preprint

### An Algorithm for Fat Points on P2

Given general points p1, ..., pr, of P2, and arbitrary
multiplicities m1, ..., mr, the question is to determine
the number of homogeneous generators in each degree for the ideal
I(Z) defining the fat point subscheme Z=m1p1+...+mrpr. Given
these numbers, one can write down (up to graded isomorphism)
the modules in a minimal free resolution of I(Z).
It is easy to translate this problem into one
concerning line bundles on the blow up of P2 at the points
p1, ..., pr. Under reasonable assumptions, this preprint shows
that the problem reduces to the case of ample line bundles.
As a consequence, we give a complete solution to the problem
of resolving the ideal of fat point subschemes
Z=m1p1+...+m7p7 involving 7 general points
p1, ..., p7 of P2.

Click here
to obtain a plainTeX file of this paper.

#### 7 Fat Points on P2

The algorithm for any fat point subscheme involving 7 fat general
points of P2 has been implemented below; to compute the resolution
for the ideal of any such fat point subscheme,
pick multiplicities of your choice below and click the submit button.
(To compute resolutions of ideals of uniform fat point subschemes---i.e.,
of symbolic powers of ideals of a finite set of general points of P2---click
here.)
For the C source code for the program implemented here,
computing resolutions for ideals of 7 point fat point subschemes,
click here.

#### 8 Fat Points on P2

Recent joint work of Fitchett, Harbourne and Holay has led to
an algorithm for 8 points. Click
here for a web based implementation of the algorithm.