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THE GEOMETRY OF RATIONAL SURFACES AND HILBERT FUNCTIONS

OF POINTS IN THE PLANE

Brian Harbourne

ABSTRACT. We study the structure of the set of numerically effective

divisor classes on a rational surface and apply this to study hilbert

functions of the homogeneous coordinate rings of 0-cycles on curves

of low degree in P
2. For example, for a nonnegative 0-cycle

mipi + · · · + mnpn of points p1, . . . , pn on an irreducible conic in P
2,

we show that the hilbert function depends only on the coefficients mi,

as conjectured by Davis and Geramita [DG]. We also determine for each

such 0-cycle the degree at which the hilbert function stabilizes (first

equals its hilbert polynomial) and we characterize all such 0-cycles

having a generic hilbert function, a generic hilbert function being one

which is equal to the hilbert function of the ring of P
2 up to the

point at which it stabilizes.

INTRODUCTION. Consider a set of distinct points p1, . . . , pn in P
2
k, k being

any algebraically closed field. It is a long studied problem to determine the

dimension of the linear system of curves of degree d having an assigned base

point at each point pi of multiplicity at least mi . Put another way, the

problem is to determine the dimension of the vector space of homogeneous forms

of degree d contained in ∩iPi , where Pi is the ideal of pi in the

homogeneous coordinate ring of P
2.

From the latter point of view one could approach this problem via a study

of the hilbert function of the homogeneous coordinate ring of the 0-cycle∑
mipi of P

2 [DG]. From the former point of view one could approach this

problem via a study of complete linear systems on the blowing-up X → P
2 of

P
2 at the points p1, . . . , pn [H1]. This point of view suggests other ques-

tions, the one which we will be concerned with here being to determine the

semigroups of divisor classes of X of effective and numerically effective

divisors.

Little seems to be known about such questions in general, even if the

points p1, . . . , pn are independent generic points of P
2 [H1], [N2]. However,

in case the points are smooth points of an irreducible curve Q of degree

three or less, these questions can be studied very explicitly [DG], [H1], [H2],

[H3], [L].
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In this paper we study the geometry of the effective and numerically

effective divisors on X under the condition that the points p1, . . . , pn lie

on an irreducible curve Q of degree three or less, and as an application we

obtain some new results concerning the hilbert function of a 0-dimensional sub-

scheme of P
2.

I am indebted to A. Geramita for suggesting the applications to hilbert

functions and for several helpful conversations on the topic and also for

sending me his and E. Davis’ paper [DG]. It gives, among other things, a

complete analysis of the hilbert function of points on a line and it puts for-

ward a number of conjectures concerning the hilbert function of points on a

conic, some of which we answer here.

For standard results of algebraic geometry, we refer to [AG], without

explicit mention hereafter.

I. GEOMETRY OF CURVES ON RATIONAL SURFACES

I.1Exceptional configurations. Consider a set p1, . . . , pn of distinct

points in P
2. By blowing-up these points we obtain a morphism X → P

2 of

smooth rational surfaces. The divisor classes EO, E1, . . . , En on X of the

total transforms of, respectively, a line in P
2 and the points p1, . . . , pn

give a Z-basis of the divisor class group Pic(X). Once having obtained X,

there may be other such morphisms X → P
2 [H3] and any such morphism factors

into a sequence of blowings-up at points giving rise, as above, to a basis of

Pic(X). Such a basis, arising from a morphism X → P
2, is called an excep-

tional configuration.

I.2 Riemann-Roch. The motivation for studying the blowing-up X → P
2 is as

follows. The dimension of the linear system of degree d on P
2 having

assigned base points mipi, i = 1, . . . , n is also the dimension h0(X, F ) of
global sections of the divisor class F = dE0 − m1E1 − · · · − mnEn.

A major tool in studying h0(X, F ) is the formula of Riemann-Roch. Now

Pic(X) has an intersection product; in terms of the basis EO, E1, . . . , En, it is

given by:

Ei · Ej = 0, i 6= j;−E2
0 = E2

i = −1, i = 1, 2, . . . , n.

And Riemann-Roch for a divisor class F on a rational surface X reads:

(I.2.1) h0(X, F ) − h1(X, F ) + h2(X, F ) = (1/2)(F · F − F · K) + 1,
where K is the canonical class of X. In terms of any exceptional configu-

ration, K is −3E0 + E1 + · · · + En. And the adjunction formula gives the

arithmetic genus pa(C) of a divisor C: 2pa(C) − 2 = C · C + C · K.
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I.3 Effectivity. It is convenient to refer to a class F ∈ Pic(X) as being

effective if h0(X, F ) > 0 and as being numerically effective if F · G ≥ 0 for

every effective class G. In particular, if F is the class of an effective

divisor that moves in a linear system without fixed components, then F is

both effective and numerically effective.

The following results are standard and allow us to study divisors on X
inductively:

LEMMA (I.3.1). Let F lie in Pic(X) and let X ′ be the blowing-up

Π : X ′ → X of X at some point p, and Π∗ the induced homomorphism

Π∗ : Pic(X) → Pic(X ′).
(1) If F is effective then F · E0 ≥ 0.
(2) If F · E0 ≥ −2, then h2(X, F ) = 0.
(3) The induced map Π∗ is an injection that preserves effectivity and

numerical effectivity; indeed

hi(X, F ) = hi(X ′, Π∗F ), i = 0, 1, 2.

PROOF. (1) This follows since E0 is numerically effective.

(2) This follows from (1) by duality.

(3) See (1.3) [H1] and (1.4) [H3].

I.4 A vanishing theorem. Now and hereafter in this paper, we restrict our

attention to the case that the points p1, . . . , pn are distinct smooth points of

an irreducible reduced curve Q of degree three or less. We denote by Q
also its proper transform on X and its divisor class in Pic(X). For a

simultaneous analysis of the cases deg(Q) = 1, 2, 3, technical considerations

require if deg(Q) = 3 that we impose the further restriction that the natural

map Pic(X) → Pic(Q) have trivial kernel.

Under these conditions we will show (vid. (I.6)) that for any class F of

Pic(X), hO(X, F ) depends only on the coefficients of F written in terms of

the exceptional configuration given by blowing up the points p1, . . . , pn. In

particular, we will give an algorithm for computing h0(X, F ) that is indepen-

dent of the particular disposition of the points p1, . . . , pn. The key result

is:

THEOREM (I.4.1). A numerically effective divisor class F on the surface

X, given the restrictions of the penultimate paragraph, is effective and has

h1(X, F ) = 0.
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We give the proof following the proof of (I.5.3).

I.5 Numerical effectivity. We give here a description of the numerically

effective divisor classes. The case that deg(Q) = 3 is quite complicated and

for full details we refer to [H1]. However we have:

PROPOSITION (I.5.1). Suppose deg(Q) = 3, and that F is a numerically

effective divisor on X. Then, for some exceptional configuration E′
0, . . . , E

′
n

on X, F is a nonnegative sum of the classes: E′
0, E′

1 − E′
1, 2E′

0 − E′
1 − E′

2,

3E′
0 − E′

1 − · · · − E′
i, i = 3, 4, . . . , n. In particular, F is effective.

PROOF. This is (3.2) of [H1].

PROPOSITION (I.5.2). Suppose deg(Q) = 1. For a class F on X the

following are equivalent:

(1) F is numerically effective;

(2) F · Ei ≥ 0, i = 0, . . . , n, F · Q ≥ 0.
(3) F is a nonnegative sum of the classes E0 and E0 − Ei, i = 1, . . . , n.

In particular, a numerically effective class is effective.

PROOF. The proof that (1) implies (2) and (2) implies (3) is easy, while

(3) implies (1) follows by the remark in (I.3) since E0 and E0 − Ei are

the classes of irreducible curves moving in a linear system without fixed

components.

We now consider the case deg(Q) = 2:

PROPOSITION (I.5.3). Suppose deg(Q) = 2 and let F be a divisor class

of X. Then the following are equivalent:

(1) F is numerically effective;

(2) after reindexing so that F · E1 ≥ · · · ≥ F · En, F satisfies the

conditions:

F · E0 ≥ 0, F · En ≥ 0, F · (E0 − E1 − E2) ≥ 0, F · Q ≥ 0;

(3) F is a nonnegative sum of the classes: E0, E0 − Ei, i = 1, . . . , n,
2E0 − Ei1 − Ei2 − Ei3, 3EO − Ej1 − · · · − Ej6,

dE0 − (d − 1)El1 − El2 − · · · − Eld+2
,

d ≥ 2, where 1 ≤ i1, . . . ≤ n (resp. ji, . . .; resp. ll, . . .) are distinct

indices.
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Before we begin the proof, we need the following:

LEMMA (I.5.4). Each of the classes listed in (I.5.3)(3) is the class of

an effective irreducible and reduced divisor.

REMARK (I.5.5). Using (I.4.1), (I.2.1) and (I.3.1)(2) it follows from

(I.5.4) and (I.5.3) that any numerically effective class is effective without

fixed components, in the case that deg(Q) ≤ 2.

PROOF of (I.5.4). This is obviously true for E0 and E0 − Ei. For the

others it is enough to express each as the sun of irreducible and reduced

divisors in two different ways having no components in common. The conclusion

then follows easily from Bertini’s theorem [Z1], [Z2]. For example,

dE0 − (d − 1)E1 − E2 − · · · − Ed+2

can be written as

Q + Ed+3 + · · · + En + (d − 2)(E0 − E1)

and as

(E0 − Ed+1 − Ed+2) +

d∑

i=2

(E0 − E1 − Ei)

PROOF of (I.5.3). Now (1) clearlv implies (2) and by the remark in (I.3)

using (I.5.4), (3) implies (1). To see that (2) implies (3), by induction on

F · E0 it is enough to show for any class F 6= 0 satisfying the conditions of

(2) that there is a nonzero sum G of the classes of (3) for which F − G
satisfies the conditions of (2). In fact, since A + B satisfies (2) if both

A and B do, it is enough to find A and B satisfying (2) such that

A + B = F and B − G satisfies (2).

So suppose F satisfies (2), and denote 2E0 − E1 − · · · − Ei by Qi.

It follows from the first three conditions of (2) that after reindexing F is

a nonnegative sum of the classes E0, E0 − E1 and Qi, i ≥ 2. But

Q2 = (E0 − E1) + (E0 − E2) so indeed F is a sum of C0 = E0, C1 = E0 − E1,

C2 = E0 − E2 and Ci = Qi, i ≥ 3; i.e., F =
∑

i≥0
miCi for some nonnegative

integers mi, i ≥ 0.
If F · Q ≥ 2, then mj > 0 for some index j = 1, 2 or 3 and, taking

G = Cj, F − G satisfies (2).

Now assume F · Q = 1. If mj > 0 for some index j = 1, 2 or 3 we take

G = Cj and argue as above, so say that m1 = m2 = m3 = 0. By distributing

the term m0C0 over the other summands, we can write F as a sum of terms

satisfying (2) of the form: diC0 + riCi, i ≥ 4, i even, ri, di ≥ 0;
d + jC0 + Cj1 + Cj2, dj ≥ 0, j1 and j2 odd; and one term of the form
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dlC0 + Cl, l > 4, l odd, and Q · (dlC0 + Cl) = 1. But C4 is one of

the classes of (3) and it is easy to see that dlC0 + Cl − C4 satisfies (2), so

taking G = C4 we see that F − G satisfies (2).

So now suppose F · Q = 0. If m4 > 0 we may take G = C4, so we may

assume m4 = 0. By an argument similar to the one above, we may break up F
into sums of classes of the form: mE0 + Qi + Qj where i and j are odd,

5 ≤ i ≤ j, and 2m + 8 = i + j; and classes of the form n0E0 + n1C1 + n2C2+
n3Q3 + Qi, where i ≥ 4 and 2n0 + n1 + n2 + n3 + 4 = i. Moreover, each

such class satisfies (2). If H is a class like the former, the reader can

check that H − Q4 satisfies the conditions of (2). Likewise, if H is a

class like the latter then H − G satisfies the conditions of (2) for G = Q4

as long as n0 = n1 = n2 = 0 or no two of n0, n1, n2 are zero or

n1 = n2 = 0 and n0 > 1. If n1 = n2 = 0 and n0 = 1, then take G to be

3E0 − E1 − · · · − E6 and if n0 = n2 = 0, n1 > 0, take G = (n1 + 2)E0−
(n1 + 1)E1 − E2 − · · · − En1+4. The only remaining case is n0 = n1 = 0,
n2 > 0, and this last case is the same as the previous case after transposing

the first two indices, ending the proof.

PROOF of (I.4.1). Consider a numerically effective class F. If

deg(Q) = 3 then F is effective by (I.5.1), and h1(X, F ) = 0 by (1.1) and

(1.2) of [H1].

Suppose now deg(Q) = 1. Again F is effective, now by (I.5.2). If

F = 0 then h1(X, F ) = 0 since X is a rational surface. Otherwise, we may

assume that F is a sum of a numerically effective class F ′ and G = E0 or,

say, E0 − E1, by (I.5.2). Denote an irreducible section of G by C, and

take cohomology of the exact sequence:

0 → F ′ → F → F ⊗OC → 0

Now h1(X, F ′) = 0 by induction on F · E0 and h1(C, F ⊗OC) = 0 since

C ≃ P
1 and F · C ≥ 0. Thus h1(X, F ) vanishes.

Lastly, say deg(Q) = 2. Each of the generators (I.5.3)(3) of the cone of

numerically effective divisor classes has arithmetic genus pa = 0 by the

adjunction formula, except for 3E0 − (E1 + · · · + E6) which has pa = 1. But

by (I.5.4) each of these classes has an irreducible section. Thus, as long as

F is not a multiple of 3E0 − (E1 + · · · + E6), we can write F as a sum of

numerically effective classes F ′ + G where G has an irreducible section C
isomorphic to P

1. Arguing as above we see h1(X, F ) = 0. In case F is a

multiple of 3EO − (E1 + · · · + E6), we can write F as F ′ + G, but now C
has pa = 1. Since C · C > 0, we have F · G > 0 so h1(C, F ⊗OC) = 0 and

arguing as before we again find h1(X, F ) = 0.
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I.6 Effectivity. The results of (I.4) and (I.5) allow us to give algorithms

for computing h0(X, F ) for any class F of Pic(X) in case deg(Q) ≤ 2. The

algorithms produce a class F ′ depending on F such that h0(X, F ) = h0(X, F ′)
and such that either F ′ · G < 0 for some numerically effective class G or F ′

is itself numerically effective. In the former case numerical effectivity of

G implies that h0(X, F ′) = 0. In the latter case h1(X, F ′) = 0 and F ′ is

effective, by (I.5.2) or (I.5.3). Thus F ′ · E0 ≥ 0 and so h2(X, F ′) = 0 by

(I.3.1)(2). Now h0(X, F ′) = (1/2)(F ′ · F ′ − F ′ · K) + 1 follows from (I.2.1). In

particular, this gives h0(X, F ).
It is worth noting that in case deg(Q) = 3 an algorithm for computing

hO(X, F ) is given in [H1]. This algorithm also works by producing from F
such a class F ′, but it is much more complicated than if deg(Q) ≤ 2. We refer

the reader to [H1] for details.

We denote by E0 the class of a line and by E1, . . . , En the classes of

the blowings-up of the points p1, . . . , pn. Let F be any class of Pic(X).
Since the classes E0, . . . , En give a basis of Pic(X) we can write F = m0E0+
· · · + mnEn for some integers mi, i ≥ 0.

As a useful general remark, suppose H is the class of an irreducible and

reduced curve such that F · H < 0; then h0(X, F ) = h0(X, F − H). For if F − H is

effective then F clearly is, while if F is effective then H is the class of a

fixed component of the linear system of effective divisors in the class of F.

Here is the algorithm in case deg(Q) = 1. The proper transform of Q on X
is in the class E0 − E1 − · · · − En which we denote by L. If m0 = F · E0 < 0 then

F cannot be effective and taking F ′ = F we are done. So say m0 is nonnegative.

If, for some i > 0, mi is positive, then F · Ei < 0. Thus by our remark above

h0(X, F ) = h0(X, F − miEi). We may therefore reduce to the case that F · Ei ≥ 0,
i ≥ 0. If now F · L ≥ 0 then F is numerically effective by (I.5.2) and tak-

ing F ′ = F we are done. If, however, F · L < 0, then h0(X, F ) = h0(X, F − L)
and so we replace F by F − L and start over. Since (F − L) · E0 < F · E0 it is

clear that eventually we obtain a class F ′ as desired, ending the algorithm.

Now say deg(Q) = 2, and let C denote the class of the proper transform of

Q on X; i.e., C = 2E0 − E1 − · · · − En. As before, we are done if F · E0 < 0, and

otherwise, as before, we reduce to the case that F · Ei ≥ 0, i ≥ 0. By reindex-

ing we may assume m1 ≤ · · · ≤ mn. Let J denote E0 − E1 − E2. If F · J < 0
we replace F by F − J and start over. Otherwise we consider F · C. If

F · C < 0 we replace F by F − C and start over. If F · C ≥ 0 then F is

numerically effective by (I.5.3) and we are done. Since both (F − J) · E0 and

(F − C) · E0 are less than F · E0, it is clear, as before, that the algorithm

terminates.
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REMARK (I.6.1). It is worth noting that in both algorithms the coeffi-

cients mi, i ≥ 0, alone completely determine h0(X, F ). The actual disposition

of the points on Q is unimportant. (This is also true of the algorithm given

in [H1] for the case that deg(Q) = 3, under the condition that Pic(X) → Pic(Q) has
trivial kernel.) This is proven in case deg(Q) = 1 and conjectured in case

deg(Q) = 2 in [DG].

REMARK (I.6.2). Our algorithms for finding h0(X, F ) depend principally

on identifying the numerically effective classes of Pic(X) and on being able to

compute h0(X, G) for any numerically effective class G. This leads us to

certain conjectures in case the points p1, . . . , pn are sufficiently general

(for example, if the coordinates of the points are independent transcendentals

over the prime field of the ground field k.)

In particular, let Y be the blowing up of sufficiently general points

p1, . . . , pn of P
2. Our first conjecture is that a class F of Pic(Y ) is num-

erically effective if and only if F · F ≥ 0 and F is a standard class, i.e.,

for some exceptional configuration E′
O, . . . , E′

n of Y F is a nonnegative sum

of the classes E′
0, E′

0 − E′
1, 2E′

0 − E′
1 − E′

2 and 3E′
0 − E′

1 − · · ·E′
i, i ≥ 3. Our

second conjecture is that if F is standard then h0(Y, F )h1(Y, F ) = 0. Since

h2(Y, F ) = 0 for a standard class F by (I.3.1)(2), our second conjecture

implies that h0(Y, F ) can be determined from (I.2.1). (The techniques of [H1]

would allow one to compute h0(Y, F ) for any class F of Pic(Y ) if the second

conjecture is true and we think it likely that the second conjecture

implies the first.)

We can now prove a proposition that will be of use in applying these re-

sults to the study of hilbert functions. Suppose X is a blowing-up of P
2 sat-

isfying the conditions we imposed in the first paragraph of (I.4). For fixed

nonnegative integers m1, . . . , mn, consider the divisor class F (d) = dE0 − m1E1−
· · · − mnEn. Define δ to be the least integer d for which F (d) is numerically

effective and define τ to be the least nonnegative integer d for which

h1(X, F (d)) = 0.

PROPOSITION (I.6.3). The quantities δ and τ exist and satisfy the

inequality δ − 1 ≤ τ ≤ δ.
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PROOF. First assume that mi > 0 for some i. By (I.4.1), if δ
exists then τ ≤ δ. But if d ≥ m1 + · · · + mn then F (d) can be written as

m1(E0 − E1) + · · · + mn(E0 − En) + [d − (m1 + · · · + mn)]E0, and a check of

(I.5.1), (I.5.2) and (I.5.3) verifies that then F (d) is numerically effective.

Since in any case d must be positive for F (d) to be numerically effective

it follows that δ exists and is positive.

We now show that either h1(X, F (δ − 2)) > 0 or h1(X, F (δ − 1)) > 0, from

which it follows that τ exists and satisfies δ − 1 ≤ τ ≤ δ. First, we see

0 = h2(X, F (δ − 2)) = h2(X, F (δ − 1)) by (I.3.1). Now suppose for i = 1 (and

hence i ≥ 1), that F (δ − i) is not effective. By (I.2.1), h1(X, F (δ − i)) is
therefore equal to −[(1/2)(F (δ − i) · F (δ − i) − F (δ − i) · K) + 1], for i = 1, 2.
Now the expression in the brackets, considered as a quadratic function of i,
attains its maximum at δ + 3/2 > 2. Therefore h1(X, F (δ − 1)) < h1(X, F (δ − 2))
and thus the latter is positive.

Let us denote F (δ − i), for i = 0, 1 and 2, by F, F ′ and F ′′ resp-

ectively and now assume F ′ is effective. By definition of δ, we see that

there is an irreducible curve C such that F ′δC < 0, and obviously

CδE > 0; otherwise, F ′ · C = F · C ≥ 0. If either F ′ · C ≤ −2 or the

arithmetic genus pa of C is one, then h1(C, F ′ ⊗OC) > 0. Since

F ′ − C is effective, we see (F ′ − C) · E0 ≥ 0 so h2(X, F ′ − C) = 0 by

(I.3.1). Taking cohomology of the exact sequence

0 → F ′ − C → F ′ → F ′ ⊗OC → 0

we see h1(X, F ′) > 0 as desired.

It may be that F ′ is effective but F ′ · C = −1 and pa(C) is zero.

Then we may write F ′ = G + C where G is effective, and so as before

h2(X, G − E0) = 0. Also, F ′′ · C < F ′ · C, since C · E0 > 0 so we see

h1(C, F ′′ ⊗OC) > 0. Now keeping in mind that G − E0 = F ′′ − C, and taking

cohomology of

0 → F ′′ − C → F ′′ → F ′′ ⊗OC → 0

we see that h1(X, F ′′) > 0.
To finish the proof, now consider the case m1 = · · · = mn = 0. Then

δ = 0 and from (I.2.1), (I.3.1) and (I.4.1) we see h1(X, F (d)) = 0 for any

δ ∈ Z. Thus τ = 0 by definition.

II. HILBERT FUNCTIONS

II.1 Preliminaries. In this chapter we will apply the results of Chapter I to

study hilbert functions of certain 0-cycles of P
2. The questions we will

consider here are: for which 0-cycles is the hilbert function generic and,

for a given 0-cycle, when does the hilbert function stabilize? We first
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recall the pertinent notions.

Let p1, . . . , pn be distinct points of P
2, and m1, . . . , mn nonnegative in-

tegers. The hilbert function H(d, Z), d ≥ 0, of a 0-cycle Z = m1p1 + · · · + mnpn

is the k-dimension of the homogeneous component Rd of degree d of the

homogeneous coordinate ring R̄ of Z. As usual, R̄ is R/I where R is the

homogeneous coordinate ring of P
2 and I is the homogeneous ideal of Z.

By blowing-up X → P
2 the points p1, . . . , pn we can identify Id

with the global sections of the divisor class dE0 − m1E1 − · · · − mnEn which

we will denote by Z(d). In particular, the dimension of Id is

h0(X, Z(d)). We will denote the constant h1(X, Z(0)) − h0(X, Z(0)) + 1 by

p(Z) and refer to it as the hilbert polynomial of Z By (I.2.1) we see

p(Z) = (1/2)[m2
1 + · · · + m2

n + m1 + · · · + mn].

PROPOSITION (II.1.1). Let Z be a 0-cycle of P
2. Then

H(d, Z) + h1(X, Z(d)) = p(Z).

PROOF. The dimension of R̄d is the difference of the dimensions of Rd

and Id, using the notation above. The former is (1/2)(d2 + 3d) + 1 , which is

well known and follows from (I.2.1) since R is the homogeneous ideal of

the zero 0-cycle of P
2. Also, the dimension of Id is h0(X, Z(d))

and by (I.2.1) again we see that this is h1(X, Z(d)) + (1/2)(d2 + 3d) − p(Z) + 1.
The difference gives H(d, Z) = −h1(X, Z(d)) + p(Z).

It is well-known that H(d, Z) is an increasing function of d and that

for d ≫ 0, H(d, Z) stabilizes with a constant value of p(Z) [F]. We set

τ to be the least such nonnegative d. (This agrees with our definition of

τ in Chapter I.) One problem, then, short of determining H(d, Z),
is to determine τ.

A different sort of problem is to determine which 0-cycles Z have a

generic hilbert function, meaning that (for d ≫ 0) H(d, Z) is of the form

min(1 + (1/2)(d2 + 3d), p(Z)), or, said differently, H(d, Z), up to the point

at which it stabilizes, equals the hilbert function of P
2 itself. Thus a

generic hilbert function grows as quickly as possible, or what is the same,

h0(X, Z(d)) grows as slowly as possible. We have:

PROPOSITION (II.1.2). The hilbert function H(d, Z) of a 0-cycle Z is

generic if and only if h0(X, Z(d)) − h1(X, Z(d)) is identically zero.
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PROOF. Clearly, H(d, Z) is generic if and only if H(d, Z) is always

either p(Z) or 1 + (1/2)(d2 + 3d). But H(d, Z) equals p(Z) precisely when

h1(X, Z(d)) = 0 by (II.1.1). On the other hand, H(d, Z) = 1 + (1/2)(d2 + 3d) pre-
cisely when the degree d component R̄d of the homogeneous coordinate ring of

Z equals the degree d component Rd of the ring of P
2, and thus precise-

ly when the degree d component Id of the ideal of Z is (0), which is

equivalent to h0(X, Z(d)) = 0.

II.2 Points on a curve Q of low degree. In order to apply the results of

Chapter I, we will hereafter assume, as in (I.4), that the points p1, . . . , pn

lie on the smooth part of an irreducible curve Q of degree three or less. By

(II.1.1) and our algorithm in (I.6) (see [H1] for the case deg(Q) = 3) for

computing cohomology we see that we can compute the hilbert function of any

nonnegative 0-cycle Z = m1p1 + · · · + mnpn. As noted in (I.6.1), when the

degree of Q is no more than two, H(d, Z) depends only on the coefficients

mi. We now want to give simple formulas for the degree τ at which the

hilbert function first agrees with the hilbert polynomial, and also to give a

complete classification of the 0-cycles for which the hilbert function is

generic.

We do this only in case deg(Q) ≤ 2. When deg(Q) = 3 we do not have

good answers to these questions. The occurrence of infinitely many exceptional

classes on the blowing-up X of P
2 at p1, . . . , pn makes characterizing δ

(vid. (I.6.3)) difficult and guarantees a plethora of generic 0-cycles. For

example, if Z is a 0-cycle for which Z(d) for some d is an irreducible

exceptional class, then Z is a generic 0-cycle. And if deg(Q) = 3, there

may be infinitely many such exceptional classes.

II.3 Q is a line. Hilbert functions of points on a line are completely

analyzed by Geramita and Davis in [DG]. However it seems appropriate to deduce

the following result from our techniques. We will follow our previously

established conventions. In particular, p1, . . . , pn are distinct points of

Q, Z is a nonnegative formal sum of these points, Z(d) is the divisor class

on X of degree d which corresponds to Z (vid. (II.1)), where X is the

blowing-up of P
2 at p1 . . . , pn, and δ is the least d for which Z(d)

is numerically effective. We also denote by Q the proper transform of Q on

X. Also, since H(d, Z) depends only on the coefficients of the points

in the sum Z, we will sometimes represent Z by its coefficients (m1, . . . , mn).
Moreover, to compute cohomology of Z(d), it is enough by (I.3.1)(3) to take

X to be the blowing-up of P
2 only at the points whose coefficients are not

zero, and this is what we do.
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THEOREM (II.3.1). Suppose Q is a line.

(1) For any nonzero nonnegative 0-cycle, τ equals δ − 1, while

τ = δ = 0 for the zero 0-cycle.

(2) Up to permuting the coefficients, the 0-cycles having generic

hilbert functions are precisely (m, 0, . . . , 0), and (m, 1, 0, . . . , 0), where

m is a nonnegative integer.

PROOF. (1) If Z is the trivial 0-cycle then τ = δ = 0 as we saw in

the proof of (I.6.3). Otherwise, Z(δ) − Q is numerically effective by

(I.5.2)(3). Likewise Z(δ) − Q − E0 is also numerically effective, as long

as Q · Q < 0 on X. Thus, in case Q · Q < 0, we see hi(X, Z(δ) − Q − E0) =
0, i = 1, 2 by (I.4.1) and (I.3.1), while h1(Q, (Z(δ) − E0) ⊗OQ) = 0
since (Z(δ) − E0) · Q ≥ −1. So taking cohomology of

0 → Z(δ) − E0 − Q → Z(δ) − E0 → (Z(δ) − E0) ⊗OQ → 0

we find that h1(X, Z(δ) − E0) = 0. Since Z(δ) − E0 = Z(δ − 1), we see that

τ ≤ δ − 1, and τ = δ − 1 now follows from (I.6.3).

If, however, Q · Q = 0, then Z = (m, 0, . . . , 0), so Z(δ − 1) is
(m − 1)E0 − mE1. Since F = E0 − E1 is numerically effective and

Z(δ − 1) · F < 0, we see h0(X, Z(δ − 1)) = 0. By (I.3.1), h2(X, Z(δ − 1)) = 0,
and now, plugging into Riemann-Roch (I.2.1), we find h1(X, Z(δ − 1)) = 0. As

before, τ equals δ − 1.
(2) Since h1(X, Z(δ − 1)) = 0 for any nonnegative 0-cycle Z it follows

by (II.1.2) that Z has a generic hilbert function if h0(X, Z(δ − 2)) = 0.
For Z = (m, 0, . . . , 0) it is easy to see that δ = m and hence Z(δ − 2) · (E0 − E1) < 0.
Since (E0 − E1) is numerically effective, Z(δ − 2) cannot be

effective and so Z is generic. For Z = (m, 1, 0, . . . , 0) we find δ = m + 1,
and again Z(δ − 2) · (E0 − E1) < 0 so Z is generic. However, if Z has at

least three nonzero entries, say m1, m2, m3 > 0, then [Z(δ − 2) − (E0 − E1 − E2 − E3)]
is numerically effective, hence effective (I.5.2). But E0 − E1 − E2 − E3

is effective, so Z(δ − 2) is also. In particular, Z(δ − 2) is not generic.

If Z has two entries, say m1, m2, both at least two, then Z(δ − 2)−
2(E0 − E1 − E2) is numerically effective, and as before Z is not generic.

Therefore, Z is generic if and only if Z has at most two positive

entries and of these at most one is larger than one.

II.4 Q is a conic. We employ the same conventions as stated in the first

paragraph of (II.3):

THEOREM (II.4.1). Suppose Q is an irreducible conic.

(1) For any nonnegative 0-cycle Z = (m1, . . . , mn), τ equals δ if and
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only if Z(δ) · Q = 0; otherwise τ = δ − 1.
(2) A nonnegative 0-cycle Z has a generic hilbert function if and only

if Z(δ − 1) is not effective or has the form N + F ′ + Q′ where: N is numeri-

cally effective but N − E0 is not effective; Q′ is either 0 or Q; F ′ is,

up to reindexing, either 0, 3E0 − 2E1 − 2E2 − 2E3, or dE0 − dE1 − E2 − · · ·
Ed+1, d ≥ 1; N · F ′ = 0; and (N + Q) · Q = −1 if Q′ = Q.

The proof of (II.4.1) follows the next result, which classifies the numer-

ically effective classes N such that N − E0 is not effective. We note from

(II.4.1)(2) and (II.4.2) one can generate a list of all possible generic

0-cycles. We give this list in (II.4.3).

PROPOSITION (II.4.2). Let Z be a nonnegative 0-cycle of points on Q.

Then Z(δ − 1) is not effective if and only if Z is, up to reindexing, one of

the following cycles (m ≥ 0):
(m), (1, 1, 1), (m, m, m, m),
(m + 2, m + 2, m + 2, m + 1), (m + 2, m + 2, m + 2, m + 1, 1),
(m + 2, m + 1, m + 1, m + 1), (m + 2, m + 1, m + 1, m + 1, 1),
(4, 2, 2, 2, 2), or

(d − 1, 1, . . . , 1) where 1 occurs c times and 4 ≤ d ≤ c ≤ d + 1.

PROOF. We first check that Z(δ − 1) is not effective for each of the

given 0-cycles Z. If Z = 0 this is clear, so assume Z 6= 0. If Z = (m),
then Z(δ) = m(E0 − E1) by (I.5.3)(2). But then Z(δ − 1) · Z(δ) < 0 and since

Z(δ) is numerically effective, Z(δ − 1) is not effective. Indeed, in each

case Z(δ) · Z(δ − 1) < 0, and the same reasoning applies.

Now we show that this list is complete by showing if Z(δ) is a numeri-

cally effective divisor class such that Z(δ − 1) is not effective then the

0-cycle Z to which it corresponds is on the list. Suppose Z(δ) is one of

the generators of the numerically effective cone (vid. (I.5.3)(3)), and that

Z(δ − 1) is not effective. Then Z(δ) must be (up to reindexing) either 0,

E0 − E1, 2E0 − E1 − E2 − E3, or dE0 − (d − 1)E1 − E2 − · · · − Ed+2, d ≥ 2;
otherwise Z(δ − 1) is effective. We note that the corresponding 0-cycle Z
for each of these classes is on the list.

Now if F is a numerically effective divisor such that F − E0 is not

effective and if F is the sum G + H of numerically effective divisors, then

also G − E0 and H − E0 are not effective. Thus it is enough now to show for

each class Z(δ) corresponding to a 0-cycle Z on the list, and for each gen-

erator F of the numerically effective cone, either Z(δ) + F is on the list

or Z(δ − 1) + F is effective. This is straightforward, albeit tedious, and

the details are left to the reader.
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We now prove (II.4.1):

PROOF of (II.4.1). (1) If Z(δ) · Q = 0 then by (I.5.3) we see that

δ ≥ 2, unless Z = 0. In the latter case δ = 0 while τ = 0 by definition.

If Z is not zero, then h2(X, Z(δ − 1) − Q) = 0 by (I.3.1) and

h1(Q, Z(δ − 1) ⊗OQ) > 0 since Z(δ − 1) · Q = −2. Now by taking cohomology of:

0 → Z(δ − 1) − Q → Z(δ − 1) → Z(δ − 1) ⊗OQ → 0

we see h1(X, Z(δ − 1)) > 0 and now δ = τ follows from (I.6.3).

If Z(δ) · Q > 0, then it follows from (I.5.3)(3) that Z(δ) = G + H,

where H is numerically effective and G is, up to indexing, either E0,

2E0 − E1 − E2 − E3 or E0 − E1. By (I.2.1) and (I.3.1) we see that

h1(X, G − E0) = 0. Now we show by induction that h1(X, N + G − E0) = 0 for

any numerically effective divisor N. Indeed, we only need to show that if

h1(X, N + G − E0) = 0 then h1(X, F + N + G − E0) = 0, where F is a

generator of the numerically effective cone (vid. (I.5.3)(3)). By (I.5.4), F
has an irreducible section C. Consider the exact sequence:

0 → N + G − E0 → F + N + G − E0 → (F + N + G − E0) ⊗OC → 0

It follows from (I.5.3)(3) by examining (F + N + G − E0) · C that

h1(C, (F + N + G − E0) ⊗OC) = 0, so taking cohomology of the sequence we see

h1(X, F + N + G − E0) = 0 if h1(X, N + G − E0) = 0. By induction we now

see h1(X, Z(δ − 1)) = 0 and therefore τ = δ − 1.
(2) By (II.1.2) and (1) above, Z is a generic 0-cycle if and only if

either Z(δ) · Q = 0 and Z(δ − 1) is not effective or Z(δ) · Q > 0 and

Z(δ − 2) is not effective. In particular, the 0-cycles of (II.4.2) are generic,

since Z(δ − 2) is not effective if Z(δ − 1) is not. Therefore, we now de-

termine when Z is generic, assuming that Z(δ − 1) is effective and

Z(δ) · Q > 0.
Since Z(δ − 1) is effective, we can write Z(δ − 1) = N + F where F is

the sum of fixed components of the linear system |Z(δ − 1)| and N is there-

fore numerically effective. Since Z generic implies Z(δ − 2) is not effec-

tive we also have N − E0 is not effective. Such numerically effective

divisors N are classified in (II.4.2).

Now consider F. It is a nonnegative sum of irreducible exceptional

classes E0 − Ei − Ej = Eij, 0 6= i 6= i 6= 0, Ei, i ≥ 1, and Q. But if

E and E′ are distinct exceptional classes that actually occur as summands

of F, then E · E′ = 0. For if E · E′ > 0 then E + E′ is numerically

effective and hence not fixed. Likewise, if E · N > 0 then E + N is numer-

ically effective and so E is not a fixed component. Therefore, we also have

N · E = 0, but since Z(δ) = N + F + E0 is numerically effective, we see,
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moreover, for any fixed component Ei of Z(δ − 1) that 0 ≥ Ei · Z(δ) =
Ei · F = Ei · Z(δ − 1), while for any fixed component Eij of Z(δ − 1) we have

Eij · Z(δ) = Eij · Z(δ − 1) + 1 ≥ 0. Thus any fixed component Eij of Z(δ − 1)
occurs with multiplicity one and, moreover, Z(δ − 1) · Eij = −1.

Therefore we may write Z(δ − 1) as N + F ′ + Q′ where F ′ is a sum of

distinct and mutually orthogonal classes Eij, where Q′ is the sum of fixed

components Q and Ei, i ≥ 1, and F ′ · N = F ′ · Q = 0.
A sum F ′ of mutually orthogonal and distinct classes Eij must be, up

to reindexing, either Eij alone, or 3E0 − 2E1 − 2E2 − 2E3 or

dE0 − dE1 − E2 − · · · − Ed+1. For if Eij · Ers = 0 then Eij and Ers have

precisely one index in common. If all the summands of F ′ have the same index

in common the result is dE0 − dE1 − E2 − · · · − Ed+1 while if no index is

simultaneously common to all of the summands there can be at most three distinct

summands and F ′ = 3E0 − 2(E1 + E2 + E3).
We now examine Q′. If Ei is a fixed component of Z(δ − 1) = N + F ′ + Q′

then we already noted that Ei · N = Ei · F
′ = 0 and Ei · Z(δ − 1) ≥ 0. There-

fore, Ei · Q
′ ≥ 0 and so after reindexing we may write Q′ as a nonnegative

sum of classes Qj where j ≥ 5 and for each Qj actually occurring in this

sum we have j ≥ l whenever El · (N + F ′) > 0, where Qj = 2E0 − Ei − · · · − Ej.

Since we only blow-up points of Z having positive coefficients, if

Z(δ − 1) has any fixed component Qj, one of these must be Q itself, and if

this is the case then Q · Z(δ − 1) = −1. For Q · Z(δ) > 0 by assumption so

Q · Z(δ − 1) ≥ −1. But Q · F ′ = 0, so Q · Z(δ − 1) = Q · (N + Q′). But as we

saw above, E · (N + Q′) ≥ 0 for any exceptional class Eij or Ei. If

Q · (N + Q′) ≥ 0 then N + Q′ is numerically effective and hence has no fixed

components. In particular, this would mean Q′ = 0, and so Q would not be

a fixed component. Thus Q · (N + Q′) = −1 so (N + Q′ − Q) · Q ≥ 0 and there-

fore, N + Q′ − Q is numerically effective and in particular has no fixed com-

ponents. Thus we see that either Q′ = Q or Q′ = 0.
Therefore, we conclude that if Z is generic then Z(δ − 1) = N + F ′ + Q′

where N is a numerically effective class such that N − E0 is not effective

(these are classified in (II.4.2)); F ′ is up to reindexing one of the classes

0, 3E0 − 2E1 − 2E2 − 2E3, or dE0 − dE1 − E2 − · · · − Ed+1, d ≥ 1; and Q′

is either 0 or Q. Moreover, we also have N · F ′ = 0 and, in case Q′ = Q,

(N + Q) · Q = −1. Finally, since for any such class, N + F ′ + Q′ − E0 is not

effective, while a direct calculation shows h1(X, N + F ′ + Q′) = 0, we see

that N + F ′ + Q′ does arise from a generic 0-cycle Z.



110 BRIAN HARBOURNE

II.4.3. For the reader’s convenience we list here each 0-cycle having a generic

hilbert function. Our notation is explained by example: (32, 2, 1) means the

0-cycle having coefficient vector (3, 3, 2, 1). The list follows:

0, (15), (23), (33, 12);
(m, 1n), (m + 1, 2n, 1i), 0 ≤ n ≤ m, 0 ≤ i = 4 + m − 2n;
(13), (22, 1), (3, 22), (33),
(23, 13), (32, 2, 13), (4, 32, 13), (43, 13);
(m4), ((m + 1)2, m2), ((m + 2), (m + 1)2, m),
((m + 3), (m + 1)3), ((m + 2)3, m),
((m + 1)4, 1), ((m + 2)2, (m + 1)2, 1), ((m + 3), (m + 2)2, m + 1, 1),
((m + 4), (m + 2)3, 1), ((m + 3)3, m + 1, 1), m ≥ 1;
((m + 2)3, m + 1), ((m + 3)2, m + 2, m + 1),
(m + 4, (m + 3)2, m + 1), ((m + 4)3, m + 1),
((m + 3)3, m + 2, 12), ((m + 4)2, m + 3, m + 2, 12),
(m + 5, (m + 4)2, m + 2, 12), ((m + 5)3, m + 2, 12), m ≥ 0;
((m + 2)3, m + 1, 1), ((m + 3)2, m + 2, m + 1, 1),
(m + 4, (m + 3)2, m + 1, 1), ((m + 4)3, m + 1, 1),
((m + 3)3, m + 2, 2), ((m + 4)2, m + 3, m + 2, 2),
(m + 5, (m + 4)2, m + 2, 2), ((m + 5)3, m + 2, 2), m ≥ 0;
(m + 2, (m + 1)3), (m + 3, m + 2, (m + 1)2), (m + 4, (m + 2)2, m + 1),
(m + 5, (m + 2)3), (m + 3, (m + 2)3, 12), (m + 4, m + 3, (m + 2)2, 12),
(m + 5, (m + 3)2, m + 2, 12), (m + 6, (m + 3)3, 12), m ≥ 0;
(m + 2, (m + 1)3, 1), (m + 3, m + 2, (m + 1)2, 1), (m + 4, (m + 2)2, m + 1, 1),
(m + 5, (m + 2)3, 1), (m + 3, (m + 2)3, 2), (m + 4, m + 3, (m + 2)2, 2),
(m + 5, (m + 3)2, m + 2, 2), (m + 6, (m + 3)3, 2), m ≥ 0;
(6, 24), (7, 34);
(4, 24), (5, 3, 23), (6, 32, 22), (7, 33, 2), (8, 34),
(5, 34), (6, 4, 33), (7, 42, 32), (8, 43, 3), (9, 44);
(4, 24, 1), (5, 3, 23, 1), (6, 32, 22, 1), (7, 33, 2, 1),
(8, 34, 1), (5, 25), (6, 3, 24), (7, 32, 23),
(8, 33, 22), (9, 34, 2), (10, 35);
(d + m − 1, 2m, 1d−m), d ≥ 4, d ≥ m ≥ 0;
(d + m − 1, 2m, 1d+1−m), d ≥ 4, d + 1 ≥ m ≥ 0.
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