Symbolic Powers of Prime Ideals

Sean Sather-Wagstaff

13 October 2001

Hilbert's Fourteenth Problem and a Question of Cowsik

Hilbert (1902): Let
$X_{1}=f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, X_{m}=f_{m}\left(x_{1}, \ldots, x_{n}\right)$
be m polynomials in n variables. Is the ring consisting of all rational functions in X_{1}, \ldots, X_{m} which are polynomials in x_{1}, \ldots, x_{n} a finitely generated algebra?

On other words, if k is a field of characteristic $0, A=k\left[x_{1}, \ldots, x_{n}\right]$ and K is a subfield of the field of fractions $Q(A)$, is the ring $A \cap K$ finitely generated over k ?

Zariski (1954): Same question if A is a normal domain, finitely generated over k.

Rees (1958): If A is the coordinate ring of the cone over an elliptic curve, P is a prime corresponding to a point of infinite order,
then the symbolic Rees algebra $\oplus_{n} P^{(n)}$ is a counterexample to Zariski's question.
(Nonregular ring)

Nagata (1960): Counterexample to Hilbert's question. (Similar construction to Rees' with a non-prime ideal P.)

Cowsik (1981): If P is a prime ideal in a regular local ring A, is the symbolic Rees algebra finitely generated over A ?

Roberts (1985, 1990): Examples of nonfinitely generated symbolic Rees algebras over noncomplete and complete regular rings.

A Question of Eisenbud-Mazur

Eisenbud-Mazur (1997): The relation between evolutions and symbolic powers of prime ideals is formulated and studied.

Definition. Let λ be a ring and and T a local Λ-algebra essentially of finite type. An evolution of T over \wedge is a local Λ-algebra R essentially of finite type and a surjection $R \rightarrow T$ of Λ-algebras inducing an isomorphism $\Omega_{R / \wedge} \otimes_{R} T \rightarrow \Omega_{T / \lambda}$. The evolution is trivial if $R \rightarrow T$ is an isomorphism.

Theorem. (Eisenbud-Mazur) Let \wedge be a Noetherian ring, (S, \mathfrak{n}) a localization of a polynomial ring in finitely many variables over Λ, and I an ideal of S. If $T=S / I$ is reduced and generically separable over \wedge, then every evolution of T is trivial iff $I^{(2)} \subseteq \mathfrak{n} I$.

Eisenbud-Mazur construct a prime ideal P in $k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}$ such that $P^{(2)} \notin \mathfrak{m} P$, when $\operatorname{char}(k)>0$. Kurano-Roberts construct an analagous example in $V \llbracket S, T, U, V, X, Y \rrbracket$ where V is a DVR of mixed characteristic 2. In equal characteristic 0, however, no such example is known.

Question. If (S, \mathfrak{n}) is a regular local ring containing a field of characteristic 0 , and P is a prime ideal, is it true that $P^{(2)} \subseteq \mathfrak{n} P$?

This question is still open for $S=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]_{\left(X_{1}, \ldots, X_{n}\right)}$ and $S=\mathbb{C} \llbracket X_{1}, \ldots, X_{n} \rrbracket$.

Serre's Positivity Conjecture and a Question of Kurano-Roberts

Serre (1965): Theorem and definition. Let (R, \mathfrak{m}) be a regular local ring of dimension d with prime ideals $\mathfrak{p}, \mathfrak{q}$ such that $\sqrt{\mathfrak{p}+q}=\mathfrak{m}$. Then $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q}) \leq \operatorname{dim}(R)=d$. Define the intersection multiplicity of R / \mathfrak{p} and R / q as
$\chi(R / \mathfrak{p}, R / \mathfrak{q})=\sum_{i=0}^{d} \operatorname{len}\left(\operatorname{Tor}_{i}^{R}(R / \mathfrak{p}, R / \mathfrak{q})\right)$. If R is unramified, then
(Nonnegativity) $\chi(R / \mathfrak{p}, R / \mathfrak{q}) \geq 0$.
(Vanishing) If $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q})<d$, then $\chi(R / \mathfrak{p}, R / \mathfrak{q})=0$.
(Positivity) If $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q})=d$, then $\chi(R / \mathfrak{p}, R / \mathfrak{q})>0$.

Conjecture. The above properties hold when R is ramified.

Roberts, Gillet-Soulé (1985): Theorem. The Vanishing Conjecture is verified.

Gabber (\approx 1995): Theorem. The Nonnegativity Conjecture is verified.

The Positivity Conjecture is still open.

Kurano-Roberts (2000): Theorem. Let (R, \mathfrak{m}) be a regular local ring that either contains a field or is ramified, and let $\mathfrak{p , q}$ be prime ideals of R such that $\sqrt{\mathfrak{p}+\mathfrak{q}}=\mathfrak{m}$ and $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q})=\operatorname{dim}(R)$. If
$\chi(R / \mathfrak{p}, R / \mathfrak{q})>0$, then $\mathfrak{p}^{(m)} \cap \mathfrak{q} \subseteq \mathfrak{m}^{m+1}$ for all $m \geq 1$.

Conjecture. If (R, \mathfrak{m}) is a regular local ring with prime ideals $\mathfrak{p}, \mathfrak{q}$ such that $\sqrt{\mathfrak{p}+\mathfrak{q}}=\mathfrak{m}$ and $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q})=\operatorname{dim}(R)$, then $\mathfrak{p}^{(m)} \cap \mathfrak{q} \subseteq \mathfrak{m}^{m+1}$ for all $m \geq 1$.

The conjecture follows from the theorem when R contains a field. It is still open in mixed characteristic.
_ (2001): Theorem. Let (R, \mathfrak{m}) be a regular local ring containing a field. Let $\mathfrak{p}, \mathfrak{q}$ be prime ideals of R such that $\sqrt{\mathfrak{p}+\mathfrak{q}}=\mathfrak{m}$ and $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q})=\operatorname{dim}(R)$, then $\mathfrak{p}^{(m)} \cap \mathfrak{q}^{(n)} \subseteq \mathfrak{m}^{m+n}$ for all $m, n \geq 1$.

Conjecture. The conclusion of the previous theorem holds when R is any regular local ring.

Theorem. In order to verify either of the previous conjectures in general, it suffices to verify each when R is unramified.

A number of questions generalizing the above conjectures have been posed.

1. Let (R, \mathfrak{m}) be a regular local ring with prime ideals $\mathfrak{p}, \mathfrak{q}$ such that $\sqrt{\mathfrak{p}+\mathfrak{q}}=\mathfrak{m}$ and $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q})=\operatorname{dim}(R)$.
(a) Does $\mathfrak{p}^{(m)} \cap \mathfrak{q} \subseteq \mathfrak{m} \mathfrak{p}^{(m)}$ for all $m \geq 1$?
(b) Does $\mathfrak{p}^{(m)} \cap \mathfrak{q} \subseteq \mathfrak{m}^{m} \mathfrak{q}$ for all $m \geq 1$?
2. Let $\operatorname{char}(k)=0$, and $A=k \llbracket X_{1}, \ldots, X_{n} \rrbracket$ or $A=k\left[X_{1}, \ldots, X_{n}\right]_{\left(X_{1}, \ldots, X_{n}\right)}$. Let I be an ideal of A and let J be the Jacobian ideal of $R=A / I$. Let $\mathfrak{p}, \mathfrak{q}$ be prime ideals of R such that $\sqrt{\mathfrak{p}+\mathfrak{q}}=\mathfrak{m}_{R}$.
(a) If $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q}) \geq \operatorname{dim}(R)$, does there exist fixed $N \geq 1$ such that $J^{N}\left(\mathfrak{p}^{(m)} \cap \mathfrak{q}\right) \subseteq \mathfrak{m}^{m+1}$ for all $m \geq 1$?
(b) If I is generated by an A-sequence of length c, and
$\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q})=\operatorname{dim}(R)+c$, does there exist fixed $N \geq 1$ such that $J^{N}\left(\mathfrak{p}^{(m)} \cap \mathfrak{q}\right) \subseteq \mathfrak{m}^{n+1}$ for all $m \geq 1 ?$

One can ask similar questions for $\mathfrak{p}^{(m)} \cap \mathfrak{q}^{(n)}$.

Example 1(a).

Example 1(b).

Example 2(a). Let $A=k \llbracket X, Y, Z \rrbracket, s \geq 2$ and $R=A /\left(X(Y+Z)-Y^{s} Z\right)=k \llbracket x, y, z \rrbracket$. Then $J=\left(y+z, x-s y^{s-1} z, x-y^{s}\right)$. Let $\mathfrak{p}=(x, y) R$ and $\mathfrak{q}=(x, z) R$. Then $\mathfrak{p}+\mathfrak{q}=\mathfrak{m}_{R}$ and $\operatorname{dim}(R / \mathfrak{p})+\operatorname{dim}(R / \mathfrak{q})=2=\operatorname{dim}(R)$. If $N \geq 1$ and $m \geq N /(s-1)$, then $\left(x-y^{s}\right)^{N} x^{m} \in J^{N}\left(\mathfrak{p}^{(m s)} \cap \mathfrak{q}\right) \backslash \mathfrak{m}^{m s+1}$.

Example 2(b). Let $B=k \llbracket W, X, Y, Z \rrbracket$ and $S=B /\left(X Y(Z+W)-W^{s} Z\right)=k \llbracket w, x, y, z \rrbracket$, so $J=\left(y(w+z), x(w+z), x y-s w^{s-1} z, x y-w^{s}\right)$. Let $\mathfrak{p}=(x, w)$ and $\mathfrak{q}=(y, z)$. Then $\mathfrak{p}+\mathfrak{q}=\mathfrak{m}_{S}$ and $\operatorname{dim}(S / \mathfrak{p})+\operatorname{dim}(S / \mathfrak{q})=4=\operatorname{dim}(S)+1$. If $N \geq 2, s \geq 3$ and $m>2 N /(s-1)$ then $\left(x y-w^{s}\right)^{N} x^{m} y \in J^{N}\left(\mathfrak{p}^{(m s)} \cap \mathfrak{q}\right) \backslash \mathfrak{m}^{m s+1}$.

Results of Ein-Lazarsfeld-Smith and Hochster-Huneke

E-L-S, H-H (2001): Theorem. Let (R, \mathfrak{m}) be a regular local ring containing a field, and P a prime ideal of height h. Then, for all $n>0$ and $k \geq 0, P^{(h n+k n)} \subseteq\left(P^{(k+1)}\right)^{n}$. In particular, $P^{(h n)} \subseteq P^{n}$ for $n>0$.

Ein-Lazarsfeld-Smith prove the second containment for affine regular rings containing a field of characteristic zero, using the theory of multiplier ideals. Hochster-Huneke prove the more general statement (in fact, more general statements) using tight closure in positive characteristic, and reduction to positive characteristic in characteristic 0.

Question. What is the smallest h^{\prime} such that $P^{\left(h^{\prime} n\right)} \subseteq P^{n}$ for $n>0$.

Question. Does the conclusion of the theorem hold in mixed characteristic?

A question of Cutkosky

Question. Let P be a homogeneous prime ideal of $k\left[X_{1}, \ldots, X_{d}\right]$. Does there exist $e \geq 1$ such that $\operatorname{reg}\left(P^{(n)}\right) \leq e n$ for all $n \geq 1$? (Here, reg (I) is the Castelnuovo-Mumford regularity of the homogeneous ideal I.)

