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In § 1  of the present paper, we introduce the notion of a virtual
linear system on a non-singular projective surface and we clarify
the theories o f infinitely near points, of divisors and  o f linear
system with preassigned base conditions.

We introduce in § 2 the notions of a numerical types and of
non-special points with respect to Cremona transformations. They
play important roles in § 3 in order to prove characterizations and
existence theorems o f exceptional curves of the first kind and of
Cremona transformations. In 4 , we introduce the notion of an
abnormal curve, and in § 5 we give some remarks on superabun-
dance of a complete virtual linear system on a projective plane S.
We add some remarks in  §  6  on the case where the number of
base points is at most 9.

The recent paper "On rational surfaces, I" in the last volume
o f our memoirs is quoted as Part I  in the present paper. The
notations and terminology in Part I  are preserved in  this paper,
except for that the symbol { } for the total transform of a  divisor
is changed to ( ) ; see § 1. We recall here that an S denotes always
a projective plane. A curve will mean a positive divisor on a
surface. A divisor c  on a surface F  is identified with a  divisor
c ' on a surface F ' i f  c = /  mi ci and c'=/rn 1c a n d  if ci and c; are
irreducible and are identical with each other as point sets (iden-
tification of points is made by natural birational transformations).

1. Virtual linear system.

Let F  be a non-singular projective surface and let B  be the
fam ily o f  non-singular projective surfaces which are birational
with F  by natural transformations.
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(0 )  A  linear combination of curves on F  and points over F
with integral coefficients (a point over F  means a point which is
an infinitely near point of a point of F )  is called a cycle over F.
A cycle is divided into two parts ; one is the divisorial p art and
the other is the zero-dimensional p a r t .  We say that two cycles c
and c *  over F  are linearly  equivalent to each other if (i) the
divisorial parts of c  and c *  are linearly equivalent to each other
and (ii) the zero-dimensional parts of c  and c* are identical with
each other.

( ) Cycles over F  are classified by the linear equivalence
relation. Each linear equivalence class is called a complete virtual
linear system  on F .  I f  c  is a cycle over F, then the linear equi-
valence class containing c  is called the complete virtual linear
system containing c  and is denoted by ...E(c).

A set L  of cycles over F is called a v irtual linear sy stem  on
F  if, for any two members c and c ' o f L , there are a cycle c* over
F  and a linear system L * on F  such that (i) c— c* and c'—c* are
in L * and (ii) if c" E L * then c" + c* E L.

An important example of a virtual linear system is a complete
virtual linear system. Another example of a virtual linear system
is  a f ractional linear sy stem  which is defined to be a set L  of
cycles over F  fo r which there are a cycle c  over F  and a linear
system L * on F  such that L  is the set of cycles c+/*  with 1* EL*.
W e note that a  virtual linear system L  is characterized by the
property that for any two members of L  (or equivalently, for any
finite number of members o f L ) there is a fractional linear system
contained in L  and containing the given members.

L e t L  b e  a  virtual linear system o n  F .  T h e se t L ' of
divisorial parts of members of L  is again a virtual linear system
and is called the divisorial part o f L .  The zero-dimensional part
of a  member o f L  is called the zero-dimensional part o f L.

( 1 )  Let F ' be a member of B which dominates F .  Then the
antiregular transform T from F onto F ' defines by obvious manner
the total transforms T(c) (T  { c}  in Zariski's notation) of cycles c
over F  and T(c) become cycles over F'. T h u s  T  becomes a map
from the set of cycles over F  onto the set of cycles over F'. T h e
inverse map o f  T  is called the projection from F ' onto F  and is
denoted by proj,.

The definition o f linear equivalence implies that :
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LEMMA 1. 1. Two cycles c and c* over F are linearly equivalent
to each other if  an d  only i f  T(c) and  T(c*) are  linearly equivalent
to each other.

( L )  Let F ' be an arbitrary member of B .  There is a surface
F "  in  B  which dominates both F  and F '.  L e t  T  be the trans-
formation from F  onto F " .  Then the m ap T* = projp • T  is w ell
defined and is independent of the particular choice o f F " .  This
T*, which is obviously a map from the set of cycles over F onto
the one over F ', is called the transformation from F  onto F ' and
is denoted by

By virtue o f Lemma 1. 1, w e have easily the following result :
LEMMA 1. 2. I f  L  i s  a  com plete v irtual linear sy stem , o r a

virtual linear system , or a fractional linear system  on F, then so is
F.,F/ (L) respectively on F'.

(a )  Let c and c' be divisors on F .  Then the intersection num-
ber (c, c') of c and c ' is w ell defined . Let P„ ••• , P. be points over
F .  For cycles c +  n i P i and c' n T i , we define the intersection
number (c +1 n i f )  , c' i )  to  b e  (c, c') — n i W . I f  L  and L'
are virtual linear system s on F and if d E L, and d' E L', then (d, d')
is independent of the particular choice of d ,  d '.  The intersection
number (d, d') is called the intersection number of L  and L ' or of
d  and L ' and is denoted by (L , L ') or (d, L').

I f  d  is either a cycle over F  or a virtual linear system  on F,
then (d, d) is called the grade of d  and is denoted by I(d).

LEMMA 1. 3. I f  F ' G B, then (d , d ')= (TF ÷ F /(d), T F - ) . F 0 ' ) )  for any
two cy cles d and d' over F.

The proof is easy be virtue of the following well known, easy
lemma :

LEMMA 1. 4. I f  c is  a  div isor on F  an d  if  P  is  a poin t on  F,
then (dilp (P ), dilp (P))= — 1 and (dilp (c), dilp (P ))=  O.

In the notations in Lemma 1. 4, we should remark
COROLLARY. dilp (c) = dilp [c] +m(P; c) dilp (P )  (where dilp [ C ]

denotes the proper transform  o f  c) and therefore (dilp Ed, dil p (P ) )
=m(P ; c).

(-•,) For a given  cycle over F , we consider an F' E B  such
th a t  T„p/(c) h a s  no zero-dimensional part. W e  sa y  th a t  c  is
virtually  positive (c > 0  in symbol) i f  T p ÷ p , (C )  is positive ;  th is is
defined independently o f th e particular choice o f F ' as is easily
seen.
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When L  is a virtual linear system, then L  denotes that set
o f  c  in  L  such that c1 0. L  is obviously a  fractional linear
system, and the divisorial part of L + is  a  linear system on F.
This last linear system is denoted by L ,  and is called the effective
linear system associated with L .  The dimension of L °  is called the
effective dimension of L  and is denoted by effdim L.

LEMMA 1. 5. I f  F" E B , then ( T F , F " ( L ) ) + — T F , F , , ( 1 - + ) ,  and on
the other hand, (T , F

, /(L)) 11) and T F , F ,/(L 09)  coincides with each other
up to fixed components and the zero-dimensional parts. In particular,
we have effdim L = effdim T F , F ,,(L).

( ) When P 1 , « ,  are mutually distinct points over F ,  a
curve c  on  F  is  sa id  to  go through the points P i  w ith  v irtual
m ultiplicities at least m i  i f  c— Im i P i > 0 .  I t  must be observed
that the above condition does not mean that m(Pi ; c) >m i . For
instance, when Po is  a point on F and when P„ •••, P r  are mutually
distinct infinitely near points of P , of the first order, then it holds
that

LEMMA 1.6. I f  m <r — 1, then a curve c  goes through P , with
virtual m ultiplicity  at least m  and the points P„ •••, P r  w ith v irtual
m ultiplicities at least 1  i f  and only i f  m(Pi ; c) >m +1 .

The proof is straightforward by virtue o f th e  corollary to
Lemma 1.4.

Let L  be a  virtual linear system whose divisorial part and
the zero-dimensional part are L "  and m iPi respectively. Then
the above definition justifies to call Lo the linear system of curves
in  L "  w hich goes through the points P i  w ith v irtual m ultiplicities
at least m i . As is well known and as is easily seen, the following
inequality holds good :

LEMMA 1. 7. eff dim L > effdim L "— m i >omi (m i + 1)/ 2.
I f  L  and L ' are virtual linear systems on F ,  then the

set M = { c+c' ; c E L , c 'E L '}  is contained in  a  complete virtual
linear system. This complete virtual linear system is called the
complete sum of L  and L ' and is denoted by [L + L I .  The smallest
virtual linear system containing M is called the minimal sum  of
L  and L ' and is denoted by L + L '.  It is obvious that if  F' EB ,
th en  T „ F 4 L + L '] ) = [T  T  1 1- F-■ F 1 (L) -  a n d  7 ( L  +  L ') =
7 ',F , (L )+ T F , F ,(L').

( )  We say that a curve on F  is  virtually  connected if, for
any curves c ' and c " such that c =c '± c " , the intersection number
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(c', c") is positive. A virtually connected curve is obviously con-
nected (but, not conversely).

PROPOSITION 1. L et c be a  curve on F and let F ' be a  member
o f  B which dominates F .  Then c is virtually  connected if  an d  only
i f  so  is  TF ,,,(c).

Proof. The if part is obvious by the definition. Assume that
there are curves c ' and c "  on F ' such that TF ,p,(c)—c'-i-c" and
such that (c', c") < 0 .  Let the divisorial part and the zero dimen-
sional part o f TF ,,p(c') be c* and 1 m.P1 respectively. Then we
have Tp,„(c")= (c— c*)-- m i P i . Since c "  is  a  curve, c** =c—c*
m ust b e  e ith e r  a  curve or zero. 0> (c ', c") = (c* +1 m i P ,
c** —1 m i P i ) = (c* , c**) +1 ,  from which the only if part follows.
Thus Proposition 1  is proved.

A  virtual linear system L on F is said to be virtually connected
if for an F 'E B  such that Tp„,(L) has no zero dimensional part,
TF,FAL)) ±  is  n o t  e m p ty  and at least one member o f  it is

virtually connected. Proposition 1  above shows that the above
definition does not depend on the particular choice o f F'.

An easy example o f a  connected curve which is not virtually
connected is given as follows :  Let c be a connected curve on F
and let P  be a point on c. On the surface F'—dilp F, the curve
c' =dilp (c+P) is the required example.

(ea) For a given virtually positive cycle c on F, we consider
the set C  o f  TF „ ,(c ) (F ' E B ) such that the cycles Tp,p/(c) are
curves. A minimal member in C  (in the sence of domination) is
called a minimal curve o f c.

THEOREM 1. A ssume that a  curve c  on  F  is connected. T hen
c  has at least tw o  m inim al curve if  an d  only if  a m inim al curve
of  c is  a m ultiple of  a non-singular rational curve of  grade zero.

Proof. The if part is obvious. In  order to prove the only
if part, we may assume that there is a minimal curve c ' o f c
which is not dominated by c but there is a point P on c such that
dilp (c) dominates c'. Let F ' be a member o f B which carries c',
and let Pf, •••, P's  b e  the fundamental points over F ' with respect
to F ; we may renumber them so that ,P's) is well defined
o n  F  and that c '— P [> 0  i f  a n d  on ly  i f  i< r .  Then, with
D = ,  r ) , D(c')=dilp (c ) .  Since c' is a minimal curve, we have
r > 1 .  Set p = dilp (P )  and let d' mi P ;  be D -  p )  (d ' being a
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cu rve  o n  F'). S in ce  p  is irreducib le , In1 =m(1)  ; d'). Since
(p, dilp (c))=0, we have 0= (d '—  c')= (d' , c'). Set m=m(P ; c).
Then p  is contained in  dilp (c) exactly m-times and c' — md'>0
and furthermore d ' and c' — md' have no common component.
Therefore 0< (d', c' —  md') = —  m(d', d'), and  I(d ')< 0. Since
d' D - 1(p),  — 1= I(d')—  rn, and since r > 1, we must have
I(d')=0, r=1, m 1 = 1 .  Since I(d')= 0, and since c ' is connected, we
have c' — md' =0, i.e ., c '= m d '. Since D(d' —  PO= p, w h ich  is  an
irreducible exceptional curve of the first kind, and since m1 =1,
w e see that d ' i s  an irreducible non-singular rational curve of
grade 0, and the assertion is proved completely.

(Z) L e t  m1P1 b e  a cycle over F , where c  i s  a  divisor
and the P .  are mutually distinct points over F .  The arithmetic
genus p a (c )  is well defined.  P a (C)—/ m i (m i — 1)/2 is  ca lled  the
virtual genus of c— ' m 1.13 ,  and is denoted by v g (c —1 m i l 3  i). The
v irtual genus o f a  virtual linear system L  is defined to be the
virtual genus of a  member of L  and is denoted by v g(L).

LEMMA 1. 8. I f  F' G B , then vg(L)— vg(T„F ,(L)).
As for the proof, we may assume that F' dominates F .  Then

the proof is easyl )  by virtue of the following well known formula :
LEMMA 1.9. p a (c+d)=p a (c)+p a (d )+(c , d )-1  for any two divi-

sors c and d on F. Consequently, pa (mc)=[m(m — 1)/2] • (c, c)+ m• p a (c)
— m +1 for any  rational integer m.

As for Lemma 1. 9, see Zariski [6].
By virtue o f Lemma 1. 8, Lemma 1. 9 can be generalized to

cycles c  and d over F  with vg instead of p a . Hence
LEMMA 1. 10. I f  L  and L ' are v irtual linear system  on F, then

v g(L + L')=v g([L + L'])=. v g(L)+ v g(L')+ (L, L') —1.
A  virtual linear system L  on F  is called irreducible if

there is an F' EB  such that Tp,F ,(L ) contains an irreducible curve
or equivalently, i f  there exists a  virtually positive member c  of

1 )  The first step is to prove that if  c  is a  divisor on F  and if F ' E B  dominates
F , then P a (c)= P .(T F -w (c)) , which is proved a s  follows : L et d  be a  hypersurface
section of order high enough such that d and c+ d are linearly equivalent to non-singular
curves d ' and c' respectively which do not go  through any fundamental points. For
e and d ', t h e  above is true because th e  arithmetic genus o f  a  non-singular curve
coincides with the geometric genus o f th e  curve. Since the arithmetic genus is an
in v a r ian t o f  a  linear equivalence c lass, w e have p„(c)----p,(c9— p„(d)— (c,
P a (T F + P (C ) )  (by Lemma 1.9).
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L  such that a minimal curve of c  is irreducible. L  is said to be
irreducible over F i f  we can choose such an F ' so that F <F '.

(4--)) Let P„ •••, P r  be points over F  such that D=dil(p 1,.... pr )
is well defined on F  and let c  be an irreducible curve on F .  Set
m i = m (P ; c). Then c' = D(c —I m i P i ) is  an  irreducible curve.
When L  is a virtual linear system on F, then ( D ( L ) ) e) cut out on
c ' a  linear system o f  divisors o f c'. This last linear system is
called the trace of L  on c with respect to the points P i . It should
be noted that if  c ' is on another F' E B , then ( TF , F ,(L))® cut out
the same trace on c'.

( )  W e say that virtual linear system L  on F  is exceptional
i f  there is an F' E B  such that a single point is  a  member of

or equivalently, if fo r  a  F" E
 B , (TF,F"(L)) + consists of

an exceptional curve of the first kind. It is well known that

PROPOSITION 2. A  virtual linear system  L  is exceptional if  and
only  if  L  is irreducible, v g(L )=0 and I(L)= —1.

2. Numerical types.

We consider complete virtual linear systems on projective planes
S .  B  denotes from now on the B  in § 1 in the case where F  is
an S.

(o )  Let L  be a complete virtual linear system on a projective
plane S and let c —  m P 1 be  a member o f L , where c  is a divisor
on S  and the P i  are mutually distinct points over S .  Let the de-
gree o f c  be d .  T h e  L  is characterized by d and / m i P i ,  and L
is denoted by _E(d; m i P i ). The effective linear system associated
with L  is denoted by ±e) (d ; 1 m i P i ).

[d (d +3 )-1 m i (m i +1)]12 is called the v irtual dimension o f L
o r o f LED, and is denoted by vdim L  or by vdim  L .  effd im  L —
vdim L  is called the superabundance of L  or of L® and is denoted
by supab L  or by supab L ® . Lemma 1. 7 implies that if d > 0 ,
then supab £ ( d ;  m 1P 1 )>0 .

( 6 )  It is  o b v io u s  th a t  vg(..C(d;2,' m 1 P i )) =(d 2 — 3d + 2 —
/ m i (m1 - 1 ) ) / 2 ,  and therefore we have the following formulas,
where L  and L ' are complete virtual linear systems on an S.

LEMMA 2.1. (i) vdim L =I(L )— v g(L )+1, (ii) vdim [L +L I =
vdim L-1- vdim L '+(L ,L ') , (iii) i f  L = ± (d  ; Im i P i ), then 3d— m1

= I (L) — 2- v g (L)+ 2 = 2 - vdim L — I (L).
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( 1 )  Let P„ •••, P r  b e  points over an S  such that i s
well defined on the S . Set F=d il ( p,,••.,p r ) (S ) •  Though every natural
Cremona transformation i s  th e  product o f  quadratic Cremona
transformations, it is not true in general that every F-admissible
Cremona transformation is  the product of F-admissible quadratic
Cremona transformations. A Cremona transformation T  defined
on the S  is called a  Cremona transformation with centers within
P i i f  it is the product of F-admissible quadratic Cremona transfor-
mations.

LEMMA 2. 2. I f  T  is  an F-adm issib le  Cremona transformation,
then there are ex actly  r  fundam ental points, say  P i, •••, -13 ;  over
T (S ) w ith respect to F  and , p / r ) ( T ( S ) ) .

Proof. I f  T  is quadratic, then the assertion is obvious, hence
the assertion is proved easily i f  T  is  a  Cremona transformation
with centers within P i . There are points P ,„ • • • ,  Ps  such that

(S ) is well defined and such that T  is  a Cremona
transformation with centers within P„ •••, P .  On the other hand,
since F  dominates T(S), . . p l  r , ) ( T (S ))  w ith  the funda-
m ental points P ;  o v e r T ( S )  w ith  respect t o  F. Then F '=

( T (S )) , and therefore P i ,  •••, 13 , , P r + 1 ,  - . 9 Ps
is  the set o f fundamental points over T (S ) w ith respect to F'.
It follows from the first remark that r '= r .

These fundamental points P;., •••, P; in Lemma 2. 2 are called
the corresponding base points to the P i under T.

( c _ )  W e call a vector (d, m „ •••,m r ) , with r+ 1 integers d, m i ,
a  numerical type with r  base points ; d  is called the degree and
th e  m i a r e  called m ultiplicities o f th e  numerical typ e . Two
numerical types (d, m 1 , •••, m r )  and (d', m 'i , •••, in") are said to be
sim ilar to each other if there are mutually distinct points P1, •••, P r
on an S  and a Cremona transformation T  with centers within P i

such that T (± (d  m i P i ) )  is expressed as ..E(cl' m ; 1 3 ;)  on T(S),
where P; are the corresponding base points. It should be remark-
ed here the following easy fact

LEMMA 2. 3. I f  T  is a quadratic Cremona transformation defined
on an S  w ith centers P „ P „ P , ,  then T ( ± ( d ;  Ç  m i P i )) =-...C(d+a;
I ( m i+ o ) 1 1 + 1 ,7.4m iPi), where a =d  (m i+ m 2 + m ,) , the P i are mutu-
ally  distinct points ov er the S ,  and the P .P (j=1, 2, 3) are the
fundam ental points over T (S ) with respect to S  which are numbered
so that i f  (i, j ,  k ) is  a permutation of (1, 2, 3), then .11  corresponds
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to the line l, which goes through P i  and P k  i.e., 1 1 = T ( l i — P f
— Pk).

By virtue of the above lemma, we define an operator q acting
to num erical types w ith  a t least th ree  base points, as follows :
q (d , m „ •••,m r ) =( d +a ,  m 1 + a ,m 2 + a ,m 3 + a ,m 4 ,  • • , m )  w h e r e  a=
d— m 1 —m 2 —m 3 . Then lemma 2. 3 implies that

LEMMA 2. 4. Two numerical types (d, m „ •••, m r )  and (d',
•••, m 1

r )  are similar to each other if and only i f  there are permuta-
tions 7r1 , • • • , 7-r s of multiplicities such that (d', m ;„ •••, m r')= 7rsq 7rs --la

n 1 (d , m i, ••• m r).
(a) G iven  o rd inary points P„ •••, P r  on an S  are said  to  be

non-spec ial with respect to Cremona transformations i f  fo r  any
Cremona transformation T  with centers within P i , the correspond-
in g  base points P;, • - • , P r'  to the P i  u n d er T  are ordinary points
on T (S )  such that no three points among the a r e  colinear. In
the contrary case, w e  say  th a t the P i are special with respect to
Cremona transformations.

LEMMA 2. 5. I f  P„ •••, P r  are independent generic points of an
S  over the prime field, then they are non-spec ial with respect to
Cremona transformations.

P roof. I f  r < 2 ,  then the assertion is obvious, and we assume
that r >3. L e t  T  be the quadratic Cremona transformation with
centers P „ P 2  P 3  and let 1 1 , P t  1 1 ,  b e  the corresponding base
points to the P „ P 2 , P , under T .  P„ •• • , P r  are independent generic
points over the smallest field of definition K  of T .  Since PP, P t
1 1  are ordinary points which are not colinear and since they are
rational over K , we can choose coordinates o f T (S )  so that PP, 1 1 ,
1 1 ,1 3 4,•••, P r are independent generic points over the prime field.
Therefore the same is applied to any Cremona transformation with
centers within P i , and we prove the assertion.

PROPOSITION 3. Given mutually distinct ordinary points P„ ••-,
P r  on an S  are special with respect to Cremona transformations if
and only i f  there is a numerical type (d, m „ •••, m r ) which is similar
to ( 1 ,1 ,1 ,1 ,  0, •••, 0) (w ith r- 3 zeros) and such that SIN  m i P i )
is not empty.

The proof is immediate from Lemma 2. 6 below and from the
definition.

The following two lemmas are obvious :
LEMMA 2. 6. Assume th at  P „  • • •  ,  P r are non-special points with
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respect to Crem ona transform ations o n  a n  S . A  numerical type
(d, m „ •••, m r )  is sim ilar to (d', mi, •••, m ;) if and  only  i f  there is
a  Cremona transformations T  w ith centers w ithin P i such  that
T (X (d ; ; I m ; P ; )  w ith a  suitable num ering of the
corresponding base points P .

LEMMA 2. 7. W hen these numerical types as above are similar
to each other, the following two assertions hold good: (1) If  w e can
choose Pi  (non-spec ial) s o  th a t  £ ( d ;  r n i P i )  is not em pty , then
either d '> 0  o r  d ' = 0 ,  m < 0 ;  (2 )  if  o n e  can choose P i  s o  th at

rn i P i )  is irreducible, then either d '> 0 ,  m ;> 0  or d' =0,
are zero except fo r  at m ost one of the Ty4 w hich is equal to —1.

( ) For a given numerical type (d, m „ •••, m r), the set of all
numerical types which are sim ilar to  (d, m 1 , •••, m )  is denoted
by E(d, m „ ••, m r ). Elements of E(1, 1, 1, 0, 0 )  (with r - 2 zeros)
and elements o f E(1, 0, •••, 0) (with r  zeros) are called pre-excep-
tional types and Cremona types (with r  base points) respectively.

I (J(d  ;1  m  i P i ) )  and v  g(.1(d ;1 m i P i ) )  do not depend on the
particular choice of the points P i but depend only on the numerical
type (d, m1, • •• , mr) and are invariant under Cremona transforma-
tions. These numbers are defined to be the grade and the virtual
genus of the numerical type (d, m „ .••, m r )  and are denoted by
I(d, m „ ••-, m r )  and vg(d, m„ ••• , m r ) :  Since they are invariants of
the sim ilarity class E(d, m „ •••, mr), and since 3d—/ m i  d ,  m l ,
•••, 2 .  v g(d,m „ •••, m r)+ 2, we have

LEMMA 2. 8. The grade, v irtual genus and 3 d -1  m i  a r e  in-
variants o f E(d, m1, ••-, me).

3. Exceptional curves of the first kind.

THEOREM 2 a . Assume that P„ •••, P r  are points on an S  which
are non-special w ith  respect to Crem ona transformations. Then
there is a one-one correspondence between all of pre-exceptional types
(d, m „ •••,m r )  w ith r  base points and all of irreducible exceptional
curves c  o f th e  f irs t  k in d  on  dil ( pi ,..., pr ) ( S )  in  such a  w ay  that
c E dil (p r . ., p r )  (_f(d ;1 m  i P i )).

Proof. Assume that (d, m 1 , •••, m r )  is  a  pre-exceptional type.
By Lemma 2. 6, there is a Cremona transformation C  with centers
within P i such that C(..E(d ; m i P i ) )  is  of the form .1(0; — P )  on
C (S ), whence c=dil ( p, i , ..,p, r )  ( P ) ,  where the P ; are corresponding
base points to the P i . Since the P ; are ordinary points on C(S),
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we see that c is an irreducible exceptional curve of the first kind.
Conversely, assume that c  i s  an irreducible exceptional curve of
the first kind on dil cpi ,...,pr , ( S ) .  Set c*= (d il ( pi ,•.•,pr ) ) - ' (c), L=..f(c*)
and let (d, m 1 , •••, m r )  be such that L =_ E (d ;lm i P i ). W e are to
prove that (d, m„ ••• , m r )  i s  a  pre-exceptional type by induction
on d. If d = 0, then c* must be a point and the assertion is ob-
v ious. W e assume that d > 0 .  Since c  is irreducible, c  i s  the
proper transform of the divisorial part c' of c*, hence m i =m (P i ;c')
>0 . W e  m ay assume that mi > m 2 > • • • >m r . Since I(L)=I(c)—
—1 and since v g (L )=p(c)=0 , w e  have mi + m2 + m3 > d  by virtue
of Proposition 4  in Part P .  L e t  T  be the quadratic Cremona
transformation with centers P„ P„ P3 . Then T (L ) on T (S ) is  of
smaller degree than d, whence, by our induction assumption, we
see that q(d, m „ ,  m r )  is  a  pre-exceptional type, which implies
that (d, m„ • ••, m r )  is  a lso  a  pre-exceptional type, and the proof
is completed.

PROPOSITION 4. Assume th at, f o r  a  giv en num erical ty pe
t=(d,m „ •••,m r ) w ith  r>3 , ev ery  m em b er of the  class E (t ) has
positive degree and non-negative multiplicities except f o r  those of
degree zero. If  f urtherm ore v g(t)<1 and if m1>0, then  it
holds one of the follow ing six cases: (1) there is a member o f C t)
of degree zero, say  (0, n„ •••,n,.) such that the sum  o f any  three of
the n i  is non-positive; (2 ) v g(t)<0  and (n, n, 0, •••, 0) E  E (t) w ith a
natural num ber n; (3 ) v g(t)=0 and (n , n -1 , 0, •••, 0) G E (t) w ith a
n atu ral n u m b e r n ; ( 4 )  v g(t)=0, (2, 0, • ••, 0) E ( t ) ;  ( 5 )  vg(t)= 1,
(3, 1, •••, 1, 0, •••, 0) E E (t) w ith  at m ost 9  ones (may have no one);
(6 ) (3n, n, 0, ••-, 0) E E (t ) w ith a  natural num ber n and with
exactly 9  n's.

Proof. By virtue o f our assumption, we can adapt the last
h a lf o f th e  proof o f Theorem 2a, and w e yie ld  the result by
Proposition 4  in Part I.

PROPOSITION 5. I f  L =..f (d ; m i P i )  is v irtually  connected (P i

being mutually  distinct points over an S ) and if either vdim L >0
or the P i  a re non-special w ith respect to Cremona transformations
then (d, m„ •••,m r )  satisf ies the f irst assum ption in Proposition 4
above.

2 )  ( 2 i< t < r)  in the second line of Proposition 4 in  Part I should be (2<t<r).
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Proof. I f  vdim L > 0 ,  then we m ay change the P i  to inde-
pendent generic points and we may assume that the P i a re  non-
special points w ith  respect to Cremona transformations, whence
the assertion is obvious by virtue o f Lemma 2. 7 and by the fact
that if some m i , say m „ is negative, then a curve c  in (L)
contains ( — m i )p with p=di1 (,,,...p o  (13

1) , and (c—(— m i )p, — m i p)— O.
By virtue of Proposition 5 , w e have the following result as

a particular case of Proposition 4.
THEOREM 3 a .  Assume that L = £ (d ;  m i P i )  is virtually con-

nected (Pi  being mutually distinct points over an S) and that I(L)= — 1.
I f  v g(L )=0, then (d, m„ ••• , m r )  is a pre-exceptional type.

REM ARK. Two of the three conditions I(L )= — 1, vg(L )=0 and
vdim L =O  imply the remaining by virtue of Lemma 2. 1.

Since the irreducibility o f a  curve implies the virtual con-
nectedness o f  th e  curve , w e have the following corollary to
Theorem 3a.

COROLLARY. I f  £ (d ;  1  m i P i ) is exceptional, then (d, m i , • •• m r)
is a pre-exceptional type.

The above corollary and Theorem 2 a  imply the following
PROPOSITION 6 a .  I f  13 ,, •••, P r  a re  non-special points of an S

with respect to Cremona transformations, then every exceptional curve
of the first kind on d il P 1 , ( )  is irreducible.

3 )  It seem s to  th e  w riter that Franchetta [4] is  assertin g  th at i f  a  virtually
connected curve c  is such that /(c)— —1 and p (c )= -0 , then either c is  an exceptional
curve o f th e  first k ind  o r th e  transform o f  a  curve o n  a  ru led surface. But this
statement is not tru e . A  counter example is given as follows : Let I be a  line on an S
and let P and Q be mutually distinct ordinary points on 1. Let P ' and Q' be infinitely
near points of P  and Q such that they lie  on  I. (The assumption that P ' and Q ' lie
on  1 is  no t important. But the treatment becomes different in the other cases.) Set
D=dil(p,(2,p , m), l' =D(1—  — Q ') ,  P = D ( P — P ' ) ,  q = D ( Q — Q ') ,  p '  D ( P  ) ,  q'
D (Q ')  and c=D(1—P' — Q '). Then l', p, p', q , q ' are irreducible and c is  the sum of
them . Let c ' be a minimal curve of c  which is dominated by c. I f  c + c ',  then there
is  an irreducible exceptional curve e of the first kind on D (S )  such that e  is  a  com-
ponent of c and such that cont,(c) is  a  curve. Exceptional curves o f th e  first kind
among l', p, q, it  and q' are only p ' and q'. If e=1.', then the contracted point conty(p')
is  a double point of conty(c), whence 2/3' must be contained in  c, which is a  contra-
diction, and e + p '.  Sim ilarly, e + q ' and e does not exist, which shows that c  itself is
a minimal curve. T here is no ruled rational surface which carries c  because a rational
ruled surface has at most one irreducible curve o f  negative grade (Proposition 2  in
Part I). On the other hand, c is obviously virtually connected. That  p (c )= O  and that
/(c)= —1 are obvious. c  is not a transform of any curve on a ruled surface by virtue of
Theorem 1.
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A bove treatm ent can  be adapted  to  the case of Cremona
transformations, and we have :

THEOREM 2 b .  I f  P„ P r  are non-special points of an S  with
respect to Crem ona transformations, then there is a one-one corre-
spondence between all o f  Crem ona transform ations C  with centers
within Pi and all of Cremona types (d, m „ •••, m r )  w ith r  base points
in such a w ay  that C  is def ined by  the linear system ... ( d ; I m P i ).

THEOREM 3 b .  Assume th at L = S ( d ; I m i P i )  is v irtually  con-
nected and that I(L )=1 , v g (L )=0 , then (d, m „ •••, m r )  is a Cremona
type.

COROLLARY. L e t P„ •••, P r  b e  points ov er a n  S  such that
D =dil ( pi ,..., pr ,  is well defined on the S. Then every D(S )-adm issible
Cremona transformation defined on the S  is def ined by  the linear
system ..E 69( d ; I m i P i )  w ith a suitable Cremona type (d, m 1, ••, m,.).

PROPOSITION 6 b .  I f  P„ •••, P r  a re  non-special points on an  S
w ith respect to Crem ona transformations, then every dil ( p i , ( S ) -
admissible Cremona transformation defined on the S  is  a Cremona
transformation w ith centers w ithin P.

THEOREM 4 a .  L e t P„ •••, P r  b e  points ov er an  S  such that
D =dil ( p i ,..., pr )  is w ell de f ined  on  th e  S . If D (S ) carries infinitely
many exceptional curves of the f irst k ind, then r > 9 .  Conversely,
i f  r > 9  and  if the  P i  a r e  non-special w ith respect to Cremona
transformations, then D (S ) carries infinitely many exceptional curves
of the f irst k ind".

Proof. Theorem 2 a  and Proposition 6 a  show th a t w e  have
only to prove that there are infinitely many pre-exceptional types
with r  base points if and only if r > 9 .  Assume f irst th a t r> 9 ,
and let (d, m 1 , •-•, m,.) be a pre-exceptional type such that m ,<m ,
< •-• <m y . Since 3 d - -  m , is  an invariant of the similarity class
by Lemma 2. 8, we have 3 d --I  m i =1 , whence m 1 +m 2 +m 3 < d ,  and
therefore the operator q  yie ld s a  new member o f higher degree
of the class o f pre-exceptional types. Hence there are infinitely
many pre-exceptional types with r  base points. Assume next that

4 )  The existence of a surface carrying infinitely m any exceptional curves of the
first kind was claimed by F ran ch etta  [3 ]. But his proof was not complete ;  he proved
the existence of infinitely many Cremona types with 9  base points, which was already
know n (see C oble [ 2 ] ) .  T he w rite r  w a s  to ld  the existence of such  a surface by
K. Kodaira.
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r = 8 .  Then the following table gives all pre-exceptional types up
to permutations of the multiplicities :

d m, m, m, m, m, m, m, m,
(1) 0 - 1 0 0 0 0 Q 0 0
(2) 1 1 1 0 0 0 0 0 0
(3) 2 1 1 1 1 1 0 0 0
(4) 3 2 1 1 1 1 1 1 0
(5) 4 2 2 2 1 1 1 1 1
(6) 5 2 2 2 2 2 2 1 1
(7) 6 3 2 2 2 2 2 2 2

For, as is easily seen, the following shows all possible change of
types by the operator q  up to permutations :

(4)
o

(1) ‹-> (2) 4-) (3)< > ( 5 )  4.-+ (6) (-) (7)

Therefore, by a stronger reason, we see that i f  r < 8 ,  then there
are only a finite number of pre-exceptional types with r base points.
Thus we complete the proof.

THEOREM 4 b .  L et P i  and  D  be as abov e. I f  there are infinitely
many D(S)-admissible Cremona transform ations defined on the S ,
then r>9. Conv ersely , i f  r>9  an d  if  th e  P i  are non-special with
respect to Crem ona transform ations, then there are infinitely many
Cremona transformations w ith centers w ithin P i .

Proof. I f  r < 9 ,  then D(S ) carries only a  finite number of
exceptional curves of the first kind by Theorem 4 a , hence D(S)
dominates only a  finite number o f  members o f  B  and the first
assertion is proved. The last assertion is proved by a similar way
as in Theorem 4a.

We add here a modification of Proposition 2  in the case of a
projective plane S.

PROPOSITION 7. Let P„ •••, P r  be m utually  distinct points over
a n  S .  T hen L =_C (d;Im i P i ) is exceptional if  (an d  only  i f )  L  is
irreducible, I(L )<0 and vdim  L>0.

Proof. Since L  is irreducible, v g(L )>O , whence 0< vdim  L
+ v g(L )=I(L )+1< O. It fo llow s that vdim L = vg(L )= I(L )+1= 0,
hence L  is exceptional by Proposition 2.



On rational surfaces, II 285

4. Abnormal curves.

Let P „ - - , P ,  be given m utually distinct points over an S.
A  curve c is called an abnormal curve with respect to the points

P 1 i f  deg c m ( P  ;  c ) < 1 1  r
that

From this definition, it follows

LEMMA 4. 1. I f  c  is  an abnormal curve with respect to  the P i ,
then there exists an irreducible component c ' o f c  which is abnormal
w ith respect to the P .

Let G be the set of permutations C T  of the P i  such that some
linear translation of (P 1 , •••, P r )  can be specialized to 0- (P 1,•••, P ,)
over the prime field. This G is  ca lled  the geometric permutation
group o f th e  P i . I f  G  i s  transitive, w e  s a y  th a t  the P i  are
transitiv e; if G is sym m etric, w e say that the P i a re  symmetric.
I f  c  is  a curve and if o-  E G , then 0-(c) denotes a specialization of
a translation of c  compatible w ith  (P „  • ,  c r (P 1 ,  • • • ,  P r ) as
above. (0-(c) m ay not be unique.)

W e say that a curve c  i s  uniform  w ith  respect to  the P i  i f
a ll m(P i  ; c) are equal.

THEOREM 5. I f  c  is  a uniform abnormal curve and if c ' is  an
irreducible abnormal curve with respect to the points P i  then  c ' is  a
component of c.

P roof. Let mi = m (P i  ; c'), m=m(P i ; c), d= deg c and d' =deg c'.
T hen d lm r< 1 1 V —r ,  d 'I lm i <11 \ /—r  and therefore d d i< Im m i

and the assertion is proved.
COROLLARY. I f  c  is  an irreducible uniform abnormal curve with

respect to the P i , then  c  i s  the unique irreducible abnormal curve,
hence every abnormal curve must contain c  as a component.

Assume that the P 1 are transitive. For a curve c, 1 0-(c) is
ca lled  a  unzformization o f  c  i f  o-  ru n s  o v e r a  complete set of
representatives of the geometric permutation group G  of the P i

modulo its subgroup H  which consists o f a-' such that m(P i ; c)=
m(0-/(P 1) ;  c )  for a ll i  (G = 1  all).

THEOREM 6 a . Assume that c  is  an irreducible abnormal curve
w ith respect to  the P i  and that, setting d= deg c, m i = m (P i ; c), for
any  permutation 0- of the  i ,  there ex ists an irreducible abnormal
curve c o. o f  degree d such that m(P i ; c0.) —m0.( 1 ) . Then, (1) fo r  any
0-, ca . is  unique, (2 ) any  irreducible abnorm al curve w ith respect to
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the P , coincides with one of the c ,  and (3) setting H = lc ;
fo r  all i l ,  let a„ •••, a., be a complete set of representatives of the
symmetric group r  of the {i }  modulo H (e r =10-11); then any
uniform abnormal curve with respect to the P. con tains 1 c 0 i  as a
component.

P roof. Let c ' be any irreducible abnormal curve with respect
to  the P i . Then c ' must be a component of cc r i ,  which proves
(1) and (2). If h is  a uniform abnormal curve, then every c, must
be a component o f h, which proves (3).

THEOREM 6 b .  Assume that c  i s  an irreducible abnormal curve
w ith respect to the P, and that the P , are transitive. Then fo r  any
element 0- of the geometric permutation group G  of the  P,, 0-(c) is
unique (and irreducible) and any irreducible abnormal curve coincide
w ith one of the Œ(C). Furthermore, uniform ization o f c  is  unique.

THEOREM 7. I f  L = ± (d  ;1 m ,P,)  is irreducible, i f  supab L =0
and if d l lm ,< 1 1 . \ /  r  (hence .U3' consists of an irreducible abnormal
curve), then, assuming that m i >m ,›  • • • >m ,, ,

( 1 )  r=2 , m 1 =m 2 =1 , d =1 ,
O r  ( 2 )  r=3 ,  m ,=m 2 = 1 , m 3 =0 , d= 1 ,
O r  ( 3 )  r= 5 , m 1 —m 2 —m3 —m4 —m 5 - 1 ,  d = 2,
O r  (4) r = 6, m 1 =m 2 =m 3 = m 4 = m5 = 1, m 6 = 0 , d=2,
O r  (5) r = 7 ,  m 1 =2, m 2 —m3 —m4 —m5 —m6 —m7 - 1 ,  d =3 ,
O r  ( 6 )  r=8 , m 1 =3, m 2 —m3 —m4 —m5 m 6 —m7 —m8 — 2 , d= 6.

Conversely, if the P .  a re  non-special w ith respect to Cremona
transformations, then each of the above conditions gives an irreduci-
ble abnormal curve.

Observe that these curves are of pre-exceptional type.

P roof. The converse part is obvious by virtue of Theorem 2a.
Assume th a t L  satisfies the conditions. Since supab L =0 , even
if the P , are independent generic points, L4'  consists of an  irre-
ducible abnorm al curve. H ence we m ay assume that the 13

1 are
independent generic points. Let c  b e  the unique member o f DE'
and let cr„ •••, 0- 1 be elements of the geometric permutation group
G  of the P .  (w h ich  is  sym m etr ic ) su ch  th a t 0-1 (c )  i s  the uni-
formization of c, le t L = (d —  rn(P , 0- ,(c)). 1 3

 f )  and let L ' be the
complete sum of L „• • • ,L 1 . First of all, L . is exceptional by virtue
of Proposition 7. On the other hand, Theorem 6b  (or Theorem 6a)
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shows that eff dim L' = 0. effdim  L '= 0 shows th a t effdim [L i +L . f ]
=0 for any id=j, hence vdim [L i + L i ]<  O. Therefore, Lem m a 2. 1
implies that (L i ,  L )=0  i f  i + j ,  and the above inequality is really
an equality. Then, by successive application of the same, we see
that vdim L '= 0 and supab L' = O. T herefore, denoting by m ' the
multiplicity of the P i  on the uniformization of c, w e have (td) 2 +
3dt —  r(m'' + m')=0. By our assum ption that c  is abnorm al, we
have td Irm '<11V —r , hence td <m ' \ / r . Therefore rm'2 +3r•rn i-
r(m'2 -1-m /)>O, which shows th a t 3>  -\ / —r . It fo llow s that r<8 .
Non-existence of abnormal curves in the case where r= 1 or 4  is
obvious. Therefore r==2 o r  3  o r 5  o r  6  o r 7  o r 8 . In  each of
these cases, the condition described in the theorem gives an irre-
ducible curve by Theorem 2a . Therefore, by virtue o f Theorem 6a,
we prove the theorem.

W e note here that Proposition in Nagata [5], § 3 implies by
virtue of the above results and Theorem 9 below that if  P„•••, P-
are independent generic points of  S  over the  prim e f ie ld  and  if  r
is  the square of  a natural num ber, then there is no abnormal curve
w ith respect to the P .

5. Some remarks o n  superabundance.

Let P1, P r be m utually distinct points over an S such that
D= is well defined on the S.

THEOREM 8. L e t d *  be a  given num ber o r in f in ity . Assume
that if  L =_ C (d ;Im i P,)  is irreducible an d  i f  d  is less than  d*,
then supab L = 0 .  T h e n , f o r an  arbitrary  L =.1(d  r n i P,) w ith
d <d *  and such that _Ce(d; m i P i ) is not empty, the superabundance
o f  L  is given as follow s: L et L „ •••, L , be m utually  distinct irre-
ducible com plete v irtual linear system s o n  S  such that (D(L )) (1 ) is
the m inim al su m  le i (D(L i ) ) .  T h e n  supab L = f f (f—  1)/2, where
f  ru n s  o v e r all e i  su ch  th at L i  is ex ceptional. W e have, in the
above case, that (L i , L .)=0  if  i+ j  an d  that if  e •>2 then  I(L i ) is
either — 1 or 0 accordingly to whether L i  is exceptional or not.

P roof. S ince supab (L 1 )=0 , w e have effdim L i = vdim L. > 0.
Hence if (L i , L 1 )>0  ( i+ j  or i= j and e1 >2 ) ,  then effdim [L i  + L i ]
>effdim (L i +L i )  by Lemma 2. 1, which is a contradiction, whence
the last assertion is true by virtue of Proposition 7. Since (L i , L ; )=0,
it follows from Lemma 2. 1 that supab (L) = supab (e ,L,), and we
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may assume that L =e ,L ,.  I f  e, = 1, then the assertion is obvious,
and w e assume th a t e, > 2 .  I f  I(L 1)= 0 ,  then  the assertion is
proved by Lemma 2. 1 and we assume that /(L1)< 0 .  Then L , is
exceptional by Proposition 7, hence supab (e,L,)= supab(e,_E(0 ; — P1))
= — e,(— e,± 1)/2 = ei (e,— 1)/2, and the assertion is proved completely.

THEOREM 9. A ssume that the points P i  are  ordinary points.
(1) I f  r< 8 ,  then the condition in Theorem 8  is satisf ied for

d* =inf inity  i f  an d  only  i f  th e  P i are non-special w ith respect to
Cremona transformations.

(2) If  r =9, then the condition in Theorem 8  is satisf ied f or
d* =inf inity  if  an d  only if  the following two conditions are satisfied:
(i) The P i  are non-special with respect to Cremona transformations.
(ii) Fo r any  natural num ber n , th e  s y s te m  £ (3 n ; n P i )  i s  o f
dimension zero.

Proof. Assume that the condition in Theorem 8  is satisfied
fo r d*= infinity. Then Proposition 3  shows that the P i  are non-
special. Therefore the "only if" part (in each o f (1 ) and (2)) is
proved.

In order to prove the " if "  part, w e shall use the following
fact, which will be proved later in a more general form :

LEMMA 5. 1. If  supab .1"(d ;1m i P  0, P i  being ordinary points,
if  no  13  ( j > 3 )  is  on the line  P,P„ and  if  either (0 a i =a 2 =0 , or
(ii) a1 =1, a 2 =0  o r (iii) a, =a 2 = 1, m 1 +m 2 <d , th e n  supab ...C(d+1;
(m1+ ai)Pi+ (n22+ a2)13 2+1; m i P i ) =0.

By virtue o f Lemma 2. 1, we have the following
COROLLARY. If, besides the conditions in Lemma 5.1, _E(d ;1m i P

is irreducible, then ..C(d +1; (m ,+a,)P,+ (m 2 + a2 )P2 + 7
3* m i P i )  is

irreducible except f o r th e  c as e s  w here  d=m ,= a,=1  an d  where
m ,+m 2 =d.

Now we consider the if part o f Theorem 9. Assume that
..E(d ; 1 m i P i )  is irreducible. I f  there are three multiplicities

of L  whose sum is greater than d , then we can reduce the degree
o f L  by a  quadratic Cremona transformation with centers within
P i ,  or to a system o f degree zero ;  th is last case has to  be the
case of pre-exceptional type and such case is known. Observing
that the condition (ii) in Theorem 9, (2) is invariant under Cremona
transformations with centers within P i , we see that it is sufficient
to prove the following
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PROPOSITION 8. ( 1 )  I f  r=8  an d  if  th e  P i  are non-special with
respect to Cremona transformations, then any system L= 
w ith  d >m 1 +m 2 +m 3 , m i>m ,› •••>m s >0, has superabundance
O; L  is irreducible except f or the case where ...C=L(d; dP,), d > 1 .

( 2 )  A ssume th at  r=9  and that (i) the P i  are non-special with
respect to Cremona transform ations and that ( ii)  L „=_C (3n;InP i )
is  of  dim ension zero for any  natural num ber n. If  d>m ,+m ,+m ,,
m i >m 2 > ••• >m s >0, then  L =....C (d ;Im i P i ) has superabundance
O; L  is irreducible except for the cases where L=L„ for some n4=1
and w here L =Z (n; nP,) f or som e n+1.

Proof o f (1). Set L 1 = ± ( 3 t ; t P i )  for t= 0, 1, ••.. I f  we see
the irreducibility of L , for t > 0  and that supab L ,=0 , then, using
L„,, we see the assertion easily by virtue o f  Lemma 5. 1  and its
corollary. Therefore we shall prove them by induction on t  (for
t > 0 ) .  Assume that L , is reducible, or rather that £e(3 ; P i )
has a  reducible number, then either there exists a  conic which
goes through 6  of the P i  o r  there is a  line going through 3  of
the P i ,  which contradicts to the non-speciality o f th e  P i . If
supab L ,> 0, then there are 7  of the P i ,  sa y  Pi, •-•, P ,  such that
Ps  i s  a base point of L'=..C 3(3; V, P i ), whence L '=L T . Since
L '=  £ 0 (1; P 1 +17

2)+- P ['(2 ; Pi) i, L T  has a  reducible member,
w h ich  is  a contradiction as was proved above. Thus the case
where t=1  is  p ro v e d . W e  assume now  that t > 1 . v d im  Lt
t(t +1)/2> t+1 and therefore £ 0 (3t ; (t+1)P1 +  t P  i ) is not empty.
Since L , does not change its  type under Cremona transformations
with centers within P i  and since (0, —1, 0, 0, 0, 0, 0, 0, 0) is similar
to ( -6, —3, —2, —2, —2, —2, —2, —2, —2) by virtue of the table
in the proof of Theorem 4 a , there is a Cremona transformation T
with centers within P 1 such  that T  (3 t ; ( t  +1 )P t P  i ) )  is  of
the form [L 2 +- 7 ( 0 ; — PA (of course, the points must be changed
to the corresponding base points under T ) .  Since the non-speciality
is preserved by the corresponding base points, w e can  use the
induction assumption and we see the irreducibility and the vanish-
in g  o f superabundance o f th e system T  (3 t ; ( t  +1 )P  t P  i )).
Therefore the same assertions are true for £ (3 t ; (t +1)P, +12 tP i )),
whence, by a  stronger reason, then hold also for L t ,  which com-
pletes our proof.

Proof o f (2). That supab L=0 is proved by the same way as
in the first part of the proof o f (1 ), because we assumed that
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supab L n = 0. For the irreducibility of L , it is sufficient to prove
th e  irreducibility o f  /Z= [Ln —  Z (0  ; P 9)]. Since [L1+L4-1],
we prove the irreducibility by induction on n  by virtue of Lemma
2.1.

The generalization of Lemma 5. 1  which we want to prove is
THEOREM 1 0 .  A ssume that 13 1 , •••, P r  are  ordinary points. L et

c  be a  curve an d  le t  L* = ..['(d* ; ) 4 1 3
 i)  be such that d* = deg c,

=m (P i  ; c). A ssum e that m ?  = 0  i f  a n d  o n ly  i f  i > s. I f
supab ; 1 m i P i ) = 0 an d  i f  supab ..E(d + d* ; 11(m i + nzt)P i )— 0 ,
then supab _C(d + d* ; Ir,(m + mI9P i ) = O.

In order to prove Theorem 1 0 , we introduce some notations.
Let k  be a  ground field over which the P i  a re  rational and let

k[x, y , z ] be the homogeneous coordinate ring of the projective
plane S .  Let pi  b e  the homogeneous prime ideal of the point P i

for each i  and let P(m i , • •-, mr) be the intersection of p7 , . When
a  is  a  homogeneous ideal of k), %(a; d )  denotes the Hilbert char-
acteristic function o f  a .  Then it is obvious that i f  d > 0 , m i > 0 ,
th e n  sup ab  E (d ; m  i P i ) m  ( m  +  1)/2) — X (P (mi • • • m r ) ; d).
N ote th a t  th is  la s t  e q u a l it y  im p lie s  th a t  if d '>  d ,  then
supab ; 1  m  i )<supab ..E(d ;1 m i P i ) , hence that if  di > d > 0 ,
0 <m ;<m 1 ,  then supab ; )11 .13

i )<su p ab  £ ( d ; i ) .

LEMMA 5. 2. S e t  a = p ( m „  • • • , ms , 0, • • • , 0) a n d  b =1.1(0, •••, 0,

ms+1, •••, m i .). T h e n  supab L = supab ..E(d ; subab (..E(d ;
i )+X (a+b ;  d ) ,  w here  L= ..E(d ; i) w ith arbitrary

d >0 , m i >0 .
Proof. T h is follows from the known formula X (a f- \ b ; d)=

X (a; d) +X (b ; d) —X(a +b ; d).
LEMMA 5. 3. L e t  a  b e  a  homogeneous ideal an d  le t f  be a

homogeneous form o f  degree d* (in a homogeneous polynomial ring).
A ssum e th at a  

f =
 a. Then, f o r any  n > d *  an d  for any  hom o-

geneous ideal c, %(a; n)— X(a ; n— d*)=X (a+cf  ; n)— X (a+ c; n— d*).

Proof. X (a  n)—X(a ; n— d*) = X (a +  (f) ;  n) =X (a + cf  +(f );n)--
X (a+cf ; n)— X ((a + c f )  : f ;  )z — d*), which proves the assertion.

Now we shall prove Theorem 1 0 .  We apply Lemma 5 . 3  to
the case where c= P(mi , • ••, m , 0, •-•, 0), a =P(0, • • •, 0, m59, - •*, mr),
f  is  a  homogeneous form o f degree d *  which defines c  (a : f =  a
is obvious), and n =d  + d *  . That supab (..E(d n z i P i )— 0  implies
that (i) supab (C (d  ; /;';4-1 mzPz))=0 and (ii) X(a + c ; d) = 0 (by Lemma



On rational surfaces, II 291

5.2). (i) implies that X(a ; d + d*)-X(ct ; d) =  0 . Therefore the equa-
lity in Lemma 5.3 implies that X(a+ cf ; d+ d* )=  O. Set b= p(m i +nzP,
•••, m 8 +m*, 0, 0 ) .  Then b contains c f  and w e have X(a + b ;
d + d*)= O. Therefore Theorem 10 follows from Lemma 5.2 (apply-
ing it to  d + d *  instead o f d).

It should be remarked here that the following nice results were
given by Castelnuovo [1].

Let c  be an irreducible curve o f  degree d  on an S  and let
•••, P r  be mutually distinct points over S.
(1) I f  0 < m 1 < m (P 1 ;  c )  fo r  every i, th en  supab (X (d -  3 ;

(m 1 -1 )/ 3
1) ) -  0.

(2) If furthermore L=...C(d;2.,' m i P i ) is irreducible, if effdim L > 1
and if every point P  over S  such that m (P ; c )> 2  is some of the
P i ,  then the superabundance o f . . .C (d ;Im i P i )  coincides with the
index of speciality of the trace of .. 7(d; '4171 1P 1 )  on c  with respect
to the points P .

6 . S u p lem en ta ry  remarks.

PROPOSITION 9. S et a1 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0), a2 = (2, 1, 1, 1,
1, 1, 0, 0, 0, 0), as = (3, 2, 1, 1, 1, 1, 1, 1, 1, 0) and b (n )= (3 n , n , n , n ,
n , n , n , n , n , n ). S et c(n, i) = b (n)+ cti  ( f o r  n > 0 , i=  1, 2, 3). Then
9  ordinary  points P l , •••, P, are  special w ith respect to Cremona
transform ations i f  an d  only  i f  there exists a  non-empty system
..L'a'(d; 1', m i P i )  such that 0-(d, m„ •••,m 9 ) = c (n , i )  w ith a permutation
cr of  the m i  an d  with some n  and i.

Proof. W e shall show first that i f  we allow n  to be negative,
then the set of a ll c(n , i) is  the class E(a 1)  up to permutations of
multiplicities. It is obvious that ai  (=c(0, i)) e E(a 1). Furthermore,
it is easy to see that c(1, 1) E E(a 1). Since b(n) is the unique member
of E(b(n)), we see that all c(n, i )  are in (ct 1) for n >0, inductively
on n .  Sim ilarly, w e see that c(n, i) E E(a 1)  even i f  n  is negative.
Now, considering cp- c(n, i) (77 i s  a permutation of multiplicity and
q  i s  the operator which corresponds to quadratic Cremona trans-
formation), we see easily that c(n, i )  exhaust all elements o f , (ai)
u p  to  permutations of multiplicities. T h e re fo re  Proposition 3
implies our assertion.

COROLLARY. I f  P „  • -• ,P , are  ordinary  points, then  they  are
special w ith respect to Cremona transf orm ations if  and only if  one
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of  the following conditions holds:
(1) There are  three points among them which are colinear.
(2) There are six  points among them which lie on a conic.
(3) T here is a  cubic curve which goes through all of  them and

has a double point at  one of  them.
PROPOSITION 1 0 .  I f  P„ •••, P,. are ordinary points on an S and

i f  r < 9 ,  then the P i  are  non-special w ith respect to Cremona trans-
form ations if  an d  only  i f  th e  surface F=dil ( pi ,...,pr ) (S ) carries no
non-singular rational curve of  grade at m ost —2.

Proof. If the P i  are special, then the existence of such a curve
is obvious. Assume, conversely, that the P i are non-special and
that c ' is  a non-singular rational curve on F  such that I(c') <  —2.
Since the P i a re  ordinary points, c ' is  the proper transform of a
curve, say c. Set d= deg c, m ,=m (P i ; c), and L = X (d ;  Im i P i ).
Then, by v irtue o f Cremona transformations with centers within
P i ,  w e m ay assume th a t d>m i +m,+m,, m,> m 2 > •• • > m r >  0.
Then / m1 < 3 d , and Proposition 4  in Part I yields a contradiction.

LEMMA 6. 1. L et P i  be  points over an S such that D=dil ( pi ,...,p9 )

is w ell def ined o n  th e  S .  Then D (S ) carries only  a finite number
of  non-singular rational curve c of  grade —2.

Proof. I f  c  is such a  curve as above, then c  i s  the unique
member of (..E(c))+ . Now, with the notations as in Proposition 9,
let a i i  b e  the set of z•a i w ith  permutations 7 t  o f multiplicities.
Each c  corresponds to  a unique b (n )+ (n  may be negative)
so  th a t D - ' (1 '( c ) )  £ ( d ;  I m i P i ) w ith  (d, m„ •••, mr )---b(n)+ct i i .
Assume that another c , say c', corresponds to b(n/)+ a t ;  and that
n' >  n .  Then £(c') m ust contain c+ (n' — n) • D(c* P.) w i th  a
cubic curve c*  going through all the P 1 , and (± (c ') )±  contains at
least two members, which is a contradiction. This means that the
number o f a ll the c  does not exceed the number o f a ll  the
and the assertion is proved.

PROPOSITION 1 1 .  A ssume that _C®(3n; n P i )  is not em pty  f or
a  natural num ber n. I f  c  i s  a n  irreducible curv e such that
(L , L )+ 2 < 2 -v g (L ) w ith L=...C(c— m(P i ; c)P i ), then c  i s  a  fixed
component o f  £ 4)(3n; 1 nP i ).

Proof. By the equality 3d—' m i = (L , L)— 2. v g (L) + 2, we see
that (L, ...C(3n,InP 1 )) < 0 ,  which proves our assertion.

COROLLARY. I f  r < 9 an d  if  c is an irreducible curve such that
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(L ,L )+2<2 -v g (L ) w ith  L =1'(c-1 ,m (P 1 ; c)Pi ), then either c is a
line going through at least 4 of  the P i  o r c  is conic going through
at least 7  o f  the P i  o r c  is  a  cubic curve going through all the P i

and having one double point at  one of  the P i  an d  th e  num ber r is
equal to 9.

The above corollary and Lemma 6. 1 yield the following result.
PROPOSITION 1 2 . I f  r < 9 ,  then  dil ( pi ,...,pr , (S ) carries on ly  a

f inite num ber o f  irreducible curves c' such that (i) c' is not an ex-
ceptional curve o f  th e  f irst k ind  and  th at  ( i i ) th e  g rad e  o j c ' is
negative. T he ex istence of  such c' is equiv alent to that the P i  are
special w ith respect to Cremona transformations.
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Kyoto University
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