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1. Introduction.

1A.Thin algebras, We let ® = k[X1,...,Xr] denote the polynomial
ring, and ) denote the divided power ring in r-variables X over
a field k. Given a subspace V of W4, if u 2 0, we denote by

RV = <{XKv, {Ki = u, v € V}>

the span of all products fv of elements v of V by elements £ of
Ru. Thus, RyV is the image of the multiplication homomorphism,

Ruov % 13.1 i .

L]

The Hilbert function H{M,Z) of a graded ® module M = ®M; is
the sum H{M) = ZdimyMjZi. If V 1s a vector subspace of Ry, we
denote by (V) the ideal it generates, and by T(V,Z) = Zipoti(V)ZI
the Hilbert function of the quotient algebra R/ (V). Here,

£ (V) = dime(Ri/Ri-5Vv),

and we set Wy Vv = 0 if u <« 0. We will denote the sequence of
coefficients of the Hilbert function T(V,Z} by T(V), and call
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T(V) also the “Hilbert function” of V. Any inequality between
Hilbert functions is termwise: T £ T’ if tj € t’'; for each 1.

The subspaces V of ®,4 having dimension s are parametrized by
the points zy of the Grassmann variety Grass(ﬁij,s).

Definition. THIN ALGEBRA, CASE VC® 5. We will say that the s-
dimensional vector space V € Wy is generically chosen or general
for property ® if there exists a dense open set Up of
Grass (R5,s) such that zy € Up implies property P. we say R/ (V)
is a thin algebra if the Hilbert function H{R®R/(V} is the minimum
possible: H{(®/(V); = T(s,3j,r)i, the sequence defined by

T(s,3,r)i =gef Min{H(R/(W));. W € R, dimW = s}.

We now show that the termwise minimum T{s,3j,r) actually occurs
as H(R/(V)) for generically chosen subspaces V of R,

Lemma 1.1. A GENERICALLY CHOSEN V DETERMINES A THIN ALGEBRA. There is
a unique Hilbert function T(s,j,r.Z) and an open dense subset
U(s,j,r) € Grass(®Rj,s) such that a point zy € U(s,j,r) iff
H(R/(V)) = T(s,j.r,2). If V is any s-dimensional subspace of
Ry, then H(R/(V)) =2 T(s,],xr,2).

Proof. It is well known that there are only a finite number of
Hilbert functions possible for vector spaces parametrized by
Grass(s,3,r) (see [Be]). We let

T(s,3,r)i = min(tj (V)] V € R4 and dimV = s. (1.1)
We let ti(V) = dime(®i/Ri-4V). The condition
ti(V) < T(s,j,r}i+l {(1.2)

defines an open dense subset of the irreducible variety
Grass(ﬂij,s). The intersection of the conditions (1.2) for a
finite set of integers i also determines an open dense subset of
Grass (R 4,s). Since there a finite number of possible Hilbert
functions H(R/(V)), given s,j,r, the intersection of a finite
number of the conditions {1.2) completely determines a unigue
Hilbert function T(s,j,r), which is termwise minimal, and which

occurs for V in a dense open subset of Grass(®j,s).

Question Ag. NUMBER OF RELATIONS FOR A GENERIC VECTOR SPACE V OF FORMS.
Given integers s,j, and r, what is the minimum possible Hilbert
function T(s,j,r) of ®/(V), where (V) is the ideal generated by
an s-dimensional subspace V of ﬂij? In particular, given
(s,,u,r) what is the maximum possible size of Ryv?
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Definition. THIN ALGEBRA. More generally, we suppose that J =

(31, ...,3s), J1 € ... € js 1s a sequence of positive integers, the
degrees; and that fi1,...,fs are homogenecus elements of degrees J
in R. We let V = <f1,...,fs>, set Vi = VIR i, set s; = dimgVi,

and term J the degrees of V. We say that V is generically chosen
for property ® if there is an open dense set Up of
MGrass (W i,s;) such that Vv ¢ Up implies property ®. As before
(V)i denotes the degree-i piece of the ideal (V). We call ®/ (V)
a thin algebra if H(®/(V)) = T(J,r) where

T(J,r) = ming|deg(w)=gH{(R/ (W)).
Question A for (J,i,r). HILBERT FUNCTION OF THIN ALGEBRAS. What is

the minimum possible Hilbert function T(J,r) of H(R/(V)})? In
particular, when the f, are generically chosen, what is

(I, r)y = dimg R/ (V)42

See the Remark after Conjecture 2.0, for the status of Question
A

We next assume that each fi; is a power of an element in a set
of general enough linear forms.

Definition. THIN POWER ALGEBRA. Suppose that 3 = (J1.,....Js}., 31 S

£ jg 1is a sequence of positive integers, and that L =
[Li,...,.Ls] is a sequence of s elements of W1, no two linearly
dependent. We let L7 denote the vector space LJ = <LjJt, ..., Lgis>,

spanned by the j,-th powers of the elements L,. We term J the
degrees or powers of LJ, and we let (LY) denote the ideal
generated by LY. We say that the sequence L 1is general for
property ®, or is generically chosen, if there exists a dense
open set Up in P{r) = Pr-1x,, xPr-1 such that (Li,....Lg} € Up
implies property ®. Using a similar technique to that in the
proof of Lemma 1.1, it 1s easy to see that there is a dense open
subset U (J,r) of P(r) such that H(R®R/(LY)) is minimum if L is
parametrized by a point of W(J,r). Given {(r,J) and a set B of
linear forms we say that ®R/(BJ) is a thin power algebra if its
Hilbert function H{(R/BY) is the termwise minimum T’ {(J;r) =
ming, (H(R/LJ}) .

Question B for (J,i,r). HILBERT FUNCTION OF THIN PCWER ALGEBRAS.
What is the minimum possible Hilbert function T'{(J;r) of R/ (LI)?
In particular, when L is a general set of linear forms, what is
T (J,r); = dime{R;/ (L) ;)2
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By semicontinuity, the Hilbert functions T'(J,r,Z4) =

3T’ (J,r)iZ! occurring for these more special spaces IY must be at

least as large as those occurring for a general set of degree-J
forms:

T {J,r); 2 T{(J,x)i. {1.3)
Examples 1.6A,B below show that there may be strict inequality in
{(1.3). This was previously known in a different guise (see
Example 2.16).

Definition 1.2. We denote by def(J,r}; the defect

def(J,r); = T'(J;r); - T(J:r)i. {(1.4)

When J = j5 we dencte def(J,r) by def(s.j.r).

v

We now rephrase Question B. Let U = (uj,...,ug), U1 2 ... 2 ug
0 be a sequence of integers, and let (L3 "U) be the ideal

{L‘i'—U) = (Lli_ulr ... fLsiFuS) .
Question B’ £for (U,i,r). NUMBER OF RELATIONS FCR POWERS OF GENERIC
LINEAR FORMS. What is the dimension d(U,i;r) of the vector space
(LA-U)NAR{ in Wi, when L is chosen sufficiently general?
The dimension of the space &F;(L,i) of degree-i relations

Fi(L, i) = <{f1,....fs)|2jijji‘ui =0, f5 € 31uj}>
among the powers Ljiﬂﬁ satisfies

dimeF; (L, 1) = Zjdimkﬁnﬁ - d(Uu,i;r). {1.5)

We say that two questions are equivalent when the answers to each
determine the answers to the other. Evidently, Questions B and B'

are egquivalent when J and U are related by J = (i~U) =
{i-uq,...,1-ug), since
AU, i;r) = dim®; - T (1-U;r)i. (1.6)

1B, Vanishing ideals at a get of pointg. We suppese now that P
= (p1,...,Ps) is a set of s points of Pr-l, that N = (n1,...,ng),
ng 2 ... 2 ng is a sequence of nonnegative integers, called the
orders of vanishing or multiplicities at P.
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Definition. ORDER N VANISHING IDEAL AT s POINTS P. We denote by
K(P,N) the graded ideal of functions in the polynomial ring R =

k[X1,...,Xr] vanishing to order at least nj at each Pj. Thus

K(P,N) = mp(l)nlﬂ...nmp(s)ns, {1.7)
where m, denotes the graded ideal in R of functions zero at p. If
N = (a,...,a) s times we denote K(P,N} by K(p,a), K(pP,a), or
K{P,as}.

A. Geramita, A. Hirschowitz and J. Alexander, M.V. Catalisano,
A. Gimigliano, N.V. Trung and G. Valla, and others have studied
the regularity and Hilbert functions of the ideals K(P,N). See
[Al], [AH1], [cTV], [G]), [GGH], [GH], [G6il], [ei2]), ([eol], [GO2],
[GM], [H1],[H2], and {TV].

Definition. CENERAL SET OF POINTS. We say that an ordered set P of
s points in PPr-1 is general or is generically chosen for property
P, if there is a dense open subset Up of (P¥-1)s such that P €
Up implies ®. When the multiplicities N are the same, we consider
unordered sets P, and use the symmetric product syms (Pr-1) in
place of the product.

Question C. HILBERT FUNCTION OF AN ORDER N VANISHING IDEAL AT GENERAL
poINTS oF Pr-1, what is the maximum possible Hilbert function

Hy(r,Z) = maxpH(R/K(P,N)) for the quotient ring?

Question C’ for (N,i,r). In particular, when the points P are
generically chosen in Pr-1, what is Hy(r)i = dimg(Ri/K(P,N})i)?
when N = (a) = (a,...,a) = (a%) of length s, and the points P are
generically chosen, what is H(s,a,r)i = Hy(r)i?

Definition. INVERSE SYSTEM OF AN IDEAL. Recall that if char k = 0,
or char k > j, there is an exact pairing from ijflj — k given
by the partial differential operator action of R on ® (see
[BT]). If I is an ideal of R, its inverse system 11 in ® is the
R-gubmodule of ® satisfying

|

[I'], = Ann(I)N&,

= <[>,

The above pairing induces an exact pairing Ri/(I"11;%x13 — k; and
R;i/[I71]; is the dual vector space to Ij.

Definition. SPECIAL INVERSE sysTeMs. If P = (P1,...,Ps), with Py =
(Dit1,...,Dir) we let Lj = ZpiuXu up to k*-multiple in ®. We

denote by 9(P,N,1i) the ideal
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d(p,N,i) = ((Lpi+l-ni, ., (Lg)i+l-ns) (1.8)

and we denote by U (P,N,i) the vector space of degree-i forms in
4(p,N, 1),

V(p,N,i) = 4(P, N, I)NR;
= Rop-1(Lp)i+l-nie 4Ry, 1(Lg)i+l-ns | (1.9)
If i+l-nj is negative for any i, then we take Vi (P,N}) = Ri;.

We let (ga) or (a®) denote the sequence (a,....,a) of length s.
We showed in Theorem I of [EI] that

Lemma. The inverse system K-1(P,N) of K(P,N) satisfies

(K- (P, N)]; = V(P,N,1). (1.10)
If N = {a) then
[K-1(P,a)]i = Ry 1L(p)i+l-a, (1.11)

As corollary of the Lemma we have
Proposition 1.3A. Fix integers s,a,i and any set of points P in
Pr-1, Let j = i+l-a, and a denote a® = (a,...,a). The sequence of
vector spaces

K(P,a),,K(P,a+1).,,,....K(P,a+u),,.. {1.12)
are the dual vector spaces to the seguence

@R, L(PY )R, IRLPY),.. B, IR, LP),... (1.12a)

The sequence of integers

dim,(K(P,a),),dim,(K(P,a+1},, ),...dim,(K(P,a+ ), )... (1.12b)

are the portion in degrees at least i1 of the Hilbert function of
the quotient algebra (R;i/Ra-1L(P)3) of R.

Proposgition 1.3B. With the same notation, the sequence of
vector spaces

R, \L(PY.R, L(PY*, .. B, L(PY*... (1.12¢)

are the dual vector spaces to the seguence
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R/K(P,a),R, /K(P,a), ,..R,, | K(P.@), ... (1.12d)
The sequence of integers
dim @, L(P) ).dim @, L(P)*),...dim @R, L(P)Y*™),... (1.12e)

is the portion in degrees at least i of the Hilbert function
H{(R/K{(P,a}).

Theorem 1l.4. The Hilbert function H{s,a,r} of K{(P,a,r) for a
general set of s points P of Pr-l satisfies

H{(s,a,r); = dimg((L(P)1+1-a)NAR,;) = d(a-1,1i,1)

dim®Ry - T (l+l-a,r)i.

i1

dim®Ry - T(itl-a,r)i - def(i+l-a,r);. (1.13)

Furthermore, we have for P general,
Hy(r)i = dime®i -~ T’ (1+1-N;r)i, and {(1.13a)

dimg (K(P,N,r)i} = T'{itl1-N;r);. (1.13b)

We have thus shown,

EQUIVALENCE PRINCIPLE: GIVEN (r,s), THE PROBLEM OF DETERMINING
THE SET OF HILBERT FUNCTICNS T'(r,J) OF THIN POWER ALGEERA

QUOTIENTS OF ® FOR ALL g-TUPLES J, AND THE PROBLEM OF DETERMINING
THE HILBERT FUNCTIONS OF VANISHING IDEALS OF ALL ORDERS N AT s
GENERAL POINTS OF PPr-1 ARE EQUIVALENT!

Given (r,s), there is a similar equivalence between 1 and ii:

i. Determining the set of all Hilbert functions T’ (j%,r) of thin
power algebras R/LJ where LJ is the j-th powers of s general
linear forms {whose choice may depend on j).

ii. Determining the set of all Hilbert functiong H{s,a.r) =
H(R/K(P,a®)) of egqual order vanishing ideals K(P,a®) at a set of
general enough points P of Pr-1 (whose choice may depend on a).

In particular, eguation (1.13a) shows that Question B’ for
(U,i,r) with U = g-1 = (a-1}% is equivalent to Question C’ for
(N,i,r) with N = (a) = (a%).

Of course, the two sets of Hilbert functions are not the same!
The Koszul relations for the ideal 19 give lower bounds for
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T(J,r), which translate into more complex upper bounds for the
Hilbert function Hy{r) = H(R/K(P,N)} of vanishing ideals.

Firgt Goal of Paper: Using the inequalities on T(J,r) arising
from the Kosgszul relations for the ideal LY, the non-negativity of
T(J,r), formula (1.3) and Theorem 1.4, we will obtain upper
bounds for Hy(r) {(Theorem 2.2). We also recover in this manner a
lower bound for the reqularity of the ideals K(P,N) (Proposition
2.15).

We conjecture that when [N| = Znj is bounded by ng, then there
are only a finite number of exceptional triples (r,s,N), IN| <
ng, where the upper bounds of Theorem 2.2 are not attained for a

general set of s points in Pr-1 (Conjecture 2.2.0, and §3E).

Our upper bounds give nothing unexpected for the plane P2: 1f r
= 3 and ¢ £ 9 then Hy(3} is known (see [H2]). If s 2 5 in the
plane, and N = (a$), our upper bounds are that of points in n-
generic position, where n is the degree of K(P,N} (see Definition
2.4 and Lemma 2.5). An explanation is found in Lemma 1.7: for
large a only if s < 2r¥-1l do our upper bounds for H{a,s,r) differ
from the obviocus bound

H{a,s,r)i; £ min(dimgRj,degree(K(P,a®}). (1.14)

A. Hirschowitz has given a sharper set of inequalities for Hy(3)
in the plane case, predicting the defect for general P ([H2]).

For P3, when s € 5, then Hy(4) is known by Proposition 2.3. We
now give the first example - the vanishing ideal of order 10 at
six points of P3, where our upper bounds imply that their Hilbert
function H(10,6,4) cannot be the Hilbert functicn of points in n-
generic position on IP3,

Example 1.5. A VANISHING IDEAL AT SIX GENERAL POINTS OF P3 IN NON n-
GENERIC POSITION. If (r,s) = (4,6) and N = (10%}, a = 10, then n =
mult (K{P,N)) = 6dimxRg = 1320. In degree i = 18, dimy®W1s = 1330.
The upper bound (2.11) for H(R/K(P,10));i is

T(18+41-10,4)18 = T{(2,4)18 = 1305

which is less than min{n,dime®Ri1g) = 1320, so K{(P,N} is neither
18-regular, nor in n-generic position. In fact T(2,4)1g = 1270,
smaller than our bound {see the entry j = 9, v = 2 of Table 7).

Remark. There are more examples of non n-generic behavior in P3
when s is 6 or 7, and the order of wvanishing is large. As r
increases, our upper bounds for H(R/K(P,N)) become more salient,
and sharply restrict when n-genericity occurs (See Lemma 1.7,
Examples 2.8A,B, Examples 2.12-2.14, and Proposition 2.15),

If T{(J;r);y = T’'{(J,r)i and we assume the standard Conjecture 2.0
below concerning the Hilbert function of thin algebras, then the
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upper bound we give in (2.11) for Hy(r)i would be an equality for
the corresponding triple (N,i,r) = (i+1-J,1i,r). However, the
following examples show that the defect def(J,r); = T'(Jiv)i -
T{(J;r)j can be nonzero, and even affect the regularity. For
further examples of nonzero defect see §3B-§3D.

Example 1.6A. NONZERO DEFECT. When (r,s) = (3,5), ® = k[X,Y,z],
and V = <X8,Y8,78, (X+Y+Z)8, (X+13Y+72) 8>,

the Hilbert function of ®/(V), as calculated by the algebra
program “Macaulay” [{BSE] satisfies

H = (1,3,6,10,15,21,28,36,40,40,36,28,16,6,1).

Varying the coefficients of the last form in examples leads to
the same Hilbert function; we conclude experimentally that

T(5,8,3) = H, so RV satisfies

dimRsv = dim®R 13 - His
= 105-6 = 99,
By D. Anick’'s result [A] for r = 3, thin algebras defined by

vector spaces V of dimension 5 and degree 8 have Hilbert function
T(5,8,3) ending in (40,40,36,28,16,0), hence dimgWR,sv = 105. There
is a nonzerc defect

def(5,8,3)13 = T'(5,8,3)13 - T(5,8,3)13 = 105-99 = 6

in degree 13, and a defect of one in degree 14. The translation
of this example to vanishing ideals was known (Example 2.16).

Example 1.6B. NONZERC DEFECT AFFECTING REGULARITY. When (r,s) =
(4,6), W = k(w,X,Y,Z] and L% = <wd, x4,v4, 24, (X+Y+Z+W) 4,
(X+2Y+32Z+4W) 4> “Macaulay” gives

H(®R/(L4)) = (1,4,10,20,29,32,24,4).
After varying the last form, and obtaining the gsame Hilbert
function, we conclude experimentally that H(R./(L%)) = T'(6,4,4).
another calculation in “Macaulay” verifies that for thin
algebras, T(6,4.,4) = (1,4,10,20,29,32,24,0), the conjectured
value. Thus, there 1is a nonzerc defect, def(6,4,4)7 = 4,
affecting the regularity of K(P,4%) in P3: the Hilbert function
H(R/K(P,46)) = (1,4,10,20,35,56,84,116,120,120,...} is regular in

degree 8, not 7.

Second Goal of Paper: In §3 we experimentally study the defects
def(s,j,r) and the mysterious patterns that occur as j varies. We
give examples, tables, and conjectures in the special caseg (r,s)
= (5,7),(4,6) and as well as other cases. Our hope is that this
data and our viewpoint will be useful to others.
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We now estimate the range of wvalues (s,r) for which there exist
integers “a” such that the “Koszul bounds” of Section 2 prevent
the ideal X(P,a%) in r-variables from being in n-generic

position. The socle degree of an Artin algebra A is the largest i
such that a; # 0.

Lemma 1.7. We asgsume that the wusual Conjecture 2.0 below
concerning T{(jS,r) is true, and we suppose that {(r,s}) with r =2 2
and a constant b satisfying 1 < b < 2 is given. Then if j is
large and

r-1
s 2 (;ET) {1.15)

the socle degree SOCDEG(j,r,s) of a thin algebra A generated by s
degree-j forms in r variables satisfies

SOCDEG(j,r,s) £ bij. (1.16)

Equality in (1.15) for a value b < 2 implies asymptotic equality
in (1.16) up to an error O{(j). When s = 2r-1, the *“Koszul bounds”
of Theorem 2.2 for H{(s,a,r);i for arbitrary a and large i are the
gsame as the n-generic position bounds (1.14).

Proof, We want SOCDEG(LJ) £ bj-1. Since bj-1 < 2j-1 it suffices
to show that s(dimgR{(bj]-1-j) 2 dimkRipi].

S((UU'J“J“—I] 5 (Lbe“‘-l} (1.17)

r—1 r—1

Let £(x) = (x+r-1),,-j°. By expanding f in powers of x, it is
easy to see that if s satisfies (1.15) then s-f(b-1) =2 f(b), which
implies (1.17) when j is large. For b < 2 and j large, eguality
in (1.17) is approximated by equaltiy in the top degree terms of
s-f(b—1) = f(b), namely s(b-1)"'> b, or equality in (1.15).

It is easy to verify directly that if 3 is larger than r,
SOCDEG(j.,r,2¥ 1) < 2j; consequently, if s > 2¥-1, SOCDEG(j,r,s) <
2j. It follows that if s > 2¥"l1, and j » r the “Koszul upper
bound” for H(R/K(P,a®));i is the same as the n-generic position
bound (1.14). When s 2 2¥-1, and j is small, and if i is larger
than r{(j-1} then T(j%,r}; = 0 so (1.3) and (1.13b) vield only the
empty condition dimgK(P,a%)i 2 0. This proves the Lemma.

Remark. By Stanley’s result, Proposition 2.3a, the size of
K(P,a®); for general P 1ig known when g £ r+l, Thus, the
interesting values of s for which the “Koszul bound” of Section 2

may be nontrivial and not previously known for given a and large
i, satigfy
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r+2 £ s € 2r1, (1.18)
Thus, Theorem 2.2 gives no new information when r = 3 and 1 is
large. When r = 4, the interesting values of s for the “Koszul
bounds” are s = 7,8; for r = 5, they are 7 £ g £ 1l6. As r

increases, we expect a greater number of *“Koszul regions” to
intervene: taking b = 3 in we find that for s € (3/2)T 1 we use
two terms of the Koszul resoclution for large i (see §2B).

Plan of Paper. In Theorem 2.2 of Section 2A we give the “Koszul”
upper bounds for Hy(r) = H(R/K(P,N)). In Section 2B we give more
explicit bounds for Hy(r) in the case of equal weights N = (a).
The degrees i fall into regions Si,...,S5s:,5= whose size depends on
the steps of the Koszul resolution of Li+l-a  1In each region Sy, u
< a, the bounding Hilbkert function G(a%,r) is a polynomial of
degree u in s {(Theorem 2.10). In Section 2C we give a lower bound
for the regularity of K(P,N).

In Section 3 we compare our bounds with experiment and with
previous work. Let VER(j,r) denote the Veronese embedding of Pr-1
into P(®Rj), via j-th powers. When J = (j*), and u = 1, Question
B relates to the tangent varlety TAN(l,s,j,r}) of the s-secant
variety SEC(s,j,r) of VER(j,r): this is the Terracini-Bronowski
approach to the Waring problem for forms. We have shown that both
Question B’ for u = 1, and the Waring problem for degree-d forms
when k is an algebraically closed field of char k = 0, or char k
> d are solved by the results of A. Alexander and A. Hirschowitz
on the Hilbert functions of order-2 vanishing ideals at general
points of Pr-1 (see [I3)). It is natural to ask, what is known
for u > 1?

When u > 1, Question B’ relates to the higher osculating u-
varieties TAN{u,s,3j.,r) to the s-secant variety. In Section 3A we
survey the consequences for Question B’ when u > 1 of previous
work on vanishing ideals. We translate results from work of A.
Geramita, A. Gimigliano, P. Maroscia, N.V. Trung, G. Valla, and
others on the postulation of a general set of fat points. We then
compare these results with experiment.

In two short Sections 3B and 3C we show how to obtain the

postulation of K{(P,N} from knowlege of the Hilbert function of
thin power algebras (see Table 5 and Examples 3.7A,B). Our

approach here is algorithmic and our calculations use the
“Macaulay” algebra program [BSE].

In Section 3D, we summarize extensive calculations, to make
some conjectures about the patterns in the defect def(s,a,r).
This section is intended to illustrate our suggestion, that the
patterns are more visible in the context of thin power algebras,
than in the context of wvanishing ideals. Section 3E gives
evidence for our main conjectures.

Overview: We use Macaulay’'s inverse systems, which are R-
submodules of B®,. The map taking ideals I of R to their inverse
gsystems I-! in ® takes intersections to sums. Macaulay used them
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to give a theory of primary decomposition, dimension, and other
properties of ideals. The inverse system I-1 is not itself an
ideal of ®. The a-th order vanishing ideal K(P,a} is the a-th
gymbolic power of the order-one vanishing ideal K(P,1). Suitably
chosen pieces of the inverse systems [K(P,a)]" ! will themselves
form an ideal of W, here the ideal L(P)Y determined by the J-th
powers of a set L of s linear forms in ®, . Our main results come
from translating the Koszul and other relations for the ideal
L(P)Y to information on vanishing ideals.

I warmly thank J. Emsalem and V. Kanev, whose collaborations
with the author in [EI] and [IK] led directly to this work. I
thank also I. Dolgachev, D. Eisenbud, A. Galligo, A. Hirschowitz,
M. Johnson, and B. Reznick, for helpful comments, and
A. Geramita, M. Coppo, and G. Valla who answered questions.

The geries began from discussions between J. Emsalem and the
author, and a wvisit to V. Kanev at the Bulgaria Academy of
Sciences. I thank the Algebra Section of the Bulgaria Academy of
Sciences, and the Mathematics Department of the University of
Nice, in particular the Nice geometry group of J. Briancgon, A.
Galligo, A. Hirschowitz, P. Maisonobe, M. Merle, and J. Yameogo,
for their hospitality and discussions during the preparation of
most this work.
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2 i rt functi £ ishi ' 1

2A. Upper bounds for the Hilbert function of R/K(P,N).

We first recall the lower bound Fgq{Z) for the Hilbert function
Ha(f) (Z) of algebras A(f) = ® /(f) where the ideal (f) is
generated by a set f of s forms f; of degree jj, as described by
D. Anick [A]. Suppose that f1,...,fg are homogeneous forms of [N
and let J = (j1,...,Js}, where jj = degree(fj). We call the
sequence d = (r,s;ji1,...,js) the degree vector for the graded
algebra A(f) = R/{f1,...,fs). Let F'q(Z) = (1-Z) *TT1cuge (1-23u),
and set

Fal(Z) = 1(1-Z) "t T 1qugs (1-Z3u) |, (2.1)

where the notation [ZajZi| denotes ZbjZ% where

bi = a; if ax 2 0 for all k £ 1
< 1.

=0 if some ax < 0, k (2.2)

That the Hilbert function of a thin algebra is bounded below by
F'g(Z) comes from the Koszul complex for A({f); the emendation to
a bound by Fq(Z) in (2.3) of the Lemma below comes from noting

that Iy = Ry implies I D mk. Although the Koszul complex for a

thin algebra cannot be exact except in the CI case s = T, we
nevertheless call the lower bound (2.3) and the related upper
bound (2.8) for H(R/K(P,N)) “Koszul” bounds.

Lemma (See {A].) If f = (f1,...,fs) are any forms in W having
degree vector d, then the Hilbert function Ha(f)(Z) of A(f)
satisfies

Ha(g) (Z) 2 Fal(d). (2.3)
When the f are chosen generically, then Ha(f)(Z) = T(J,r,Z), and
T(J,r,Z) 2 Fal(Z). When J = (j), we obtain

T(s,q,r,Z) 2 | (1-Z)-r(1-Z3)s]|. (2.4)

We let Fq(Z); denote the coefficient of Zi in Fg(Z), and we let
the “error” err(J,r); denote the difference

err(J,r)i = T(J,r)i - Fald)i. (2.5)

Conjecture 2.0. When the f are chosen generically of degrees J,
there is equality in (2.3), so err{J,r) is always zero.
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Remark. The Conjecture has been shown for r £ 3 (see [Il]
Proposition 4.2A for r = 2, and D. Anick’s [A] for r = 3), and
for s £ r+l by R. Stanley (p.367 [Il]). Also, M., Hochster and D.

Laksov have shown equality in (2.4) for i = j+1 (see [HL] and
also [I3]). The Conjecture states that a set f of general enough
forms of given degrees tries to have the Koszul resolution, and
succeeds up until the smallest degree i = ©6+1, where, for
dimension reasons, {Af) i must be zero. One might further
conjecture that Af has the simplest resolution (Betti numbers and
degrees) consistent with err(J,r) = 0:

In view of Conjecture 2.0, we will henceforth denote by A(J,r);
{or when J = j®, A(s,j,r);) the difference

Ab.r); = T'(J,r)i - FalZ)y
= def (J,r); + err(J,r);

and will also call it the defect -~ from the Koszul bounds.
We apply the Lemma to the ideal 9(P,N,i) generating the vector

space UV (P,N,i). The degree vector d&(N,i) of 9(P,N,1i) satisfies
d(N,i) = (r,s;i+l-ny,...,i+1-ng). (2.6)
befinition 2.1. We let G(N,r,Z) = Eci(N,r)Zi, denote the series
defined by
ci(N,r) = dimkRj - Fam,i)(Z)i
= the coefficient of Zi in [(1-Z)°FY - Fqu,1)(Z)]. (2.7)

A subtlety of this definition is that we choose a different
series Fa(n,i) to define ci(N,r) for each degree i. When N = a® we
denote the sequence G(N,r) by G(s,a,r}) or G(as,r).

Theorem 2.2. KOSZUL UPPER BOUND ON THE HILBERT FUNCTION OF VANISHING

IDEALS. If P is any set of points of P¥-1l, the algebra R/K(P,N)
has Hilbert function satisfying

H(R/K(P,N)) £ G(N,r,Z). (2.8)
For P generic, we have Hy(r,Z) = maXpepr-l1(H(R/K(P,N),Z) and
Hy{r,Z) < G(N,r,Z), (2.9)

For P generic, we have in degree i
HN(r)l = d(N“.l.r irr)

= Ci(N,r)~ def(i+l-N,r)j - err(i+l1-N,r);
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= ¢c;(N,r) - A{i+1-N,r); {2.10)

€ ci{N,r}). {2.11)
Proof. The formula (2.8) 1is a conseqgquence of the definition
preceding (1.8), (1.10) and (2.3). Let fy = Lyi*l-®u, where L =
Li,...,Lg are defined from P as in (1.8). Then we have

dimgVi (P, N)
dimg®i - Ha(e),i by (1.10),
dimg®R i~ Fam,i)(Z)i = ci(N,r) by (2.3).

dimg<Ri/K(P,N}i>

1AW}

Here the degree vector d(N,i) = (r,s;i+l-N), and Hpa(f),i and
Fa(n,i),i are the coefficients of Z% in Ha(f)(Z) and Fa(n,i).
respectively.

The equality Hy(r,Z) = maxpepr-1{H(R/K(P,N),Z), and (2.9)
follows from (1.10). The formula (2.10) follows from the
definitions of the functions d4(U,i,r), def, and err (see Question
B’, Definition 1.2, and (2.5), respectively).

It is natural to ask when there is equality in (2.92).

Question E. When s points P are generically chosen in Pr-1, for
which sequences N of s nonnegative integers 1is the Hilbert

function of R/K{P,N) equal to G(N,r,Z)}?

Conjecture 2.2.0.. There are only a finite number < (a) of
exceptional triples (N,i,r) satisfying, ny £ a for each u, and
for which Hy(r)j # ci(N,r).

Remark. J. Alexander and A. Hirschowitz have shown this
Conjecture with four exceptional triples when a = 2 (See
[Al]l, [AH1), [AH2], and [I3]}. See §3E for a discussion of
experimental evidence for the Conjecture when a > 2. Equality in
Question E for some pair (N,r) is equivalent to err(i+l-N,i,r) =
def (i+l-N,i,r) = 0 for ail 1i.

Proposition 2.3A. (R. Stanley}. Questions A and B have the same
answer, and Conjecture 2.0 1s satisfied whenever s £ r+l.

Proposition 2.3B. There is equality in (2.9) whenever s £ r+l
and the s points P are generically chosen in Ppr-i,

Proof. The known Hilbert function of complete intersections
(L1J1,...,LgJs) handles the case s £ r. When s = r+1 R. Stanley’s

proof concerning thin algebras, gquoted p.367 of [I2], applies
also to thin power algebras. Recall that he used the strong

Lefschetz theorem on the cohomology ring B = H*{(P) =
R/ (X131,...,XIr), of a product P of projective spaces, to show
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that the Hilbert function of the Artin algebra A = B/ {Lys13T+l)
verifies Conjecture 2.0. This proves Proposition 2.3A, and with
(2.10) shows Proposgition 2.3B.

Note, Because of Proposition 2.3B, we will rarely consider the
case s £ r+l further, even though it readily yields examples
where the upper bounds of Theorem 2.2 prevent n-genericity (see
Example 2.8A). The case s £ r was known to specialists, but the
knowledge of H(s,a,r) when s = r+l appears to be new.

Definition 2.4. (After A. Geramita, P. Maroscia [GM]). The
length-n subscheme Z in Pr-1 with defining ideal I(Z) in R, is in
“n generic position” if its Hilbert function satisfies
H(R/I(Z),Z) = HGP(n,r,Z), where

HGP(n,r.2) = Z{(min(dimykR;,n)Zi. (2.12)
That is, in each degree i for which n £ dimgRj the scheme Z cuts
out n linearly independent conditions on degree-i functions; and

if n 2 dimgRj there are no functions of degree i vanishing on Z.

Lemma 2.5. When Z is Spech(R/K(P,N)) then the Iength of Z, or
degree cf K(P,N} satigfies

n = deg K(N,P) = Z,dimgRp,-1. {2.13)

Proof. This follows from the case s = 1, P = p, where deg K(N,p)
= dimk (Rp/mpnu) = dimkRnu—l . ’

When r = 2, the points P belong to P! and R & k[x,y]l. We use
inverse systems to show that any power algebra is thin when r =
2, and thus reprove the classical Jordan Lemma for binary forms.

Proposition 2.6. POWER ALGEBRAS ARE THIN WHEN r = 2. For any set of

distinct points P = (pi,...,ps) in Pl and for any sequence of
multiplicities N = (ni,...,ng), the principle ideal K(P,N) is in
n-generic position. If L = (Li,...,Ls) with Lx = axX+bx¥ € B are

arbitrary linear forms, and J is an arbitrary sequence of
positive integers then W /L7 is a thin algebra. We have def (J,2)j
= err(J,2); = A(J,2); = 0 for all i.

Proof. We have K(P,N) = (gp,n), Of degree n = Zng, of Hilbert
function
H(R/K{P,N)) = (1,2,....,n-1,n,n,....),

satisfying H(P,N)j = min (i+l,n). Thus, the scheme Z = Znkxpkx 1is
in n-generic position. '
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If J is a sequence of s positive integers, i 2 Jjpax, and N =
i+1-J, so nx = i+l1-jx, then by (1.10), (@IINR,; = K1(p,N);, whose
dimension is

min(i+1l,n) = min{(i+l,Zy{i+1-Jy})

by the n-genericity of K{(P,N). This shows that when r = 2, any
power algebra W /(LY) is a thin algebra, and that def(J,2} =
err(J,2) = A{J,2) = 0. We have shown

Claim, If n = Zn; satisfies n € i+1 = dimg® i, and if jx = i+l-ng,
then the subspace Wp;-1L171®.... 8%, ._1LIs of Wi is a direct
sum.

The Claim is an avatar of the classical Jordan lemma:

Lemma (Appendix III of ([@GY¥]). If L = {(Li,...,Lsg} are linear
forms in ® = TI[X,Y], no two of which are dependent, and U =
ui,...,Ug are s positive integers satisfying Zuj = j-s+l, then it
is impossible to find binary forms Fj;,...,Fs of degrees uji,...,ug
such that L’™F+..+L’™F = 0.

Proposition 2.7. CONDITION FOR G(N,r,Z) TO BE IN n~GENERIC POSITIOCN.

Assume that N = aS, a 2 2, and 2 € s £ dimg®Ra-1, and let deg K
denote deg(X(P,N)}. Then TFAE:

i. G(N,r,Z) = HGP(deg K, 1),
ii. c;j(N,r} 2 dimy®R,; for each 1 £ 2a-2. (2.14)

This can occur only if
)
(deg K - (2)) 2 dimgRoa-2. (2.15)

Proof, If N = a%, a 2 2, 2 £ s £ dimgR4-7, then by Lemma 2.5
deg K = (dimgRa-1)s. By (1.9) and (1.11) K-1(p,a®); =
Ra1(L(P)i*l-a By (2.3) when i = 2a-2, the dimension of
Ra-1(L121, ..., Lg2" 1) satisfies the inequality

hY Ry
dimg®R a-1L(P)a 1 € (dimxRia-1)s - (2) = {(deg K - (ZJ). {(2.16)

Thus cz5-2(as,r) < deg K unless (2.15) is satisfied. Similarly, if
i < 2a-2, c¢y(N,r) is strictly less than deg K, while for i > 2a-
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2, ci(N,r} = min(degkK, dimx®ji). The Corollary now follows from
Definition 2.4.

Example 2.8A, TWO FAT POINTS NOT IN n-GENERIC POSITION, BUT DEFECT
ZERO. Two fat points are rarely in n-generic position. When (r,s)

= (3,2}, and N = (3,3), then deg(K) = 2(dim®2) = 12, and

2
deg(K)—[zJ = 11 < dim®R3.

Thus, when P = (p1,p2) are arbitrary in P2, we have
H(R/K(P,N)) = G(N,3,4) = (1,3,6,9,11,12,12,....).

Here the choice P = ((1,0,0),(0,1,0)) is general enough, so K =
(v,z)?N(x,z)2, Then I3(P,N) = (X,Y) and V3(P,N) = (X,Y)NR3 has
codimension 1 and dimension 9 in MW3. Likewise, I4(P,N) = (X2,v2),
g0 V4(P,N) = (X2,Y2)NR 4 has codimension 4 and dimension 11 in
N4, and is the annihilator K"1(P,N)4 of K(P,N)g = (xz3,yz3, xyz2,
z4) in R4.

Example 2.8B. TWENTY-FOUR FAT POINTS NOT IN n-GENERIC POSITION, DEFECT
ZERO. We consider {(r,s) = (10,24), N = (4), 1 = 6, and J = (6+1-4)
= {3). A calculation in *“Macaulay”? shows that T’'(J,10)g =
T(J,10)g = 1, so def(J,10}g = err(J,10)g = 0. It follows from
{1.10) that

Hn(10}g = ¢c5(N,10) = dimx®s - T/ (J,10)g = 5004,

so K(P,N)g has dimension one, and codimension 5004 in ®gs. By
(2.13}) the degree of K(P,N) 1s n = (24) (dimkR3} = 24(220) = 5280.
Thus, 5004 < min{n,dimx® ) and K(P,N) cannot be in n-generic
position. What is striking about the example is that the upper
bound is the exact value. See also §3E.

2B. Koszul reagions for the Hilbert function of K(P,a®).

We elaborate the Koszul upper bound for the Hilbert function
of wvanishing ideals K(P,a®) at s points of Pr-l! when all the
multiplicities are equal. The following material is complex and,
at times technical. The complexity illustrates one of our themes:
problems invelving the Hilbert functions of vanishing ideals at s
general points P of PT¥-l can be simpler when viewed in the
context of thin algebras - 5o are more complicated when stated in

2 This calculation, done in characteristic 17, used 4.5MB and took over 12
hours on an accelerated Macintosh SE-320. A try for J = (4) ran out of space
after 26MB. See §3C below for the “Macaulay” program used.
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terms of K(P,a®)! We will show that the integers i fall into
"Koszul regions” Sy which depend only on the order of wvanishing
a, and not on r or s. For values 1 in each region Sy the upper
bound G(as,r); is governed by min(s,u) terms of the Koszul
resolution for the corresponding thin algebra R/Li*l-2 (Theorem

2.10).

We illustrate the Koszul region concept by the cases a = 3, a =
4, and a = 7 (Examples 2.12-2.14). The reader may find it
helpful to look at Example 2.12A, before reading Theorem 2.10.
There is a summarizing Remark after Corollary 2.11.

Definition 2.9. KOSZUL REGIONS. Given the positive integer a, we
decompose the positive integers into no more than a+l disjoint
intervals § > S, > .. > §, > S., some of which may be empty:

S, : Aa-1) < i
S, : (u—H)(a—l) <ics (—-u—l)(a—lj. (2.17)
U

u_
S i £ a-1.

These regions correspond to the steps in the Koszul resolution of
,ivl-a

If i is in Sy, u £ a, then (u-1)i € u(a-1), and 12 uf{i-(a-1)).,
SO we may write

with ¢, 2 0. We define ¢, for all (i,u) by (2.18).
If J = (j1,...,3s) we let F’'q,; denote the coefficient of Fra(Z)
on Zi, where 4 = (r,s,J) and F’q{(Z) is the series inside the

brackets of (2.1). We set

J 3 min({i] F'y; < 0}), or
wr) = oo if F'y, 2 0 for all i

In stating the following result, we wish to evade regions where
Fq(Z) # F'q(Z).3 Thus, given a, we omit certain very small 1
from the decomposition below, paradoxically, by requiring 1 <

t{(i+l-a,r). We suppose that the s points P are chosen generically
in Pr-1, and consider the ideal K(P,a) = mp(1)3N...Nmp(s)2.
Recall that a = {a,...,a) denotes the pair [s;al where s ig the

length of the sequence.

3 an example of the inequality Fgq # F'a is (r,s) = (3,5), 7 = 2: the F'g
series begins (1,3,1,-5,1,...), to be replaced by Fg = (1,3,1,0,0...).
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Theorem 2.10. KOSZUL UPPER BOUND ON THE HILBERT FUNCTION OF a-TH ORDER
VANISHING IDEALS. Suppose a 2 2, i € 8y, 2 £ s £ dimkRj-(a-1), and i

< T({i+l-a,r). Then the codimension of K{(P,a)i in Rj satisfies
H(Plﬂ)l < Ci(ﬂtr): {2.19)

where

afar) = Y.clatr), with

1stsminfu,s)
_1yt . § . >
clatr) = (—1) (dtmkRe“)(t), if 1Su<s,and e, 2 0 (2.20)
0, if e, < O.

If s 2 dimgR;, or if 1 € §., then we have K{P,a); = 0 and cj{a,r)
= dimkR;. If 1 2 T{(i+l-a) then we also have cjijl{a,r} = dimkRj.

Proof. The first statement and (2.19),{(2.20) follow immediately
from Theorem 2.2. The statement concerning s 2 dimgR;j follows
from the result of Geramita-Maroscia and Orecchia that a set of s
general points in PT"l are in s-generic position (see [GM])},
which in turn is a consequence of (1.10) and the well known fact
that the vector space ®,; is spanned by powers of linear forms.

We let the series Gela,r,Z) = Zcifa,t,r)Z% for t =2 1. We have
Corollary 2.11, For i 2 <T{i+l-a,r), the series Gfla,r,Z)
satisfies

Gla,r,Z)>t = max{0,Zi<r<s Gela,r, Z)zg) .

When i is in Sy and t £ u, then Gela,r,Z) has degree t in s; if i
is in Sy, and t > u then Ge(a,r,Z); is zero.

Summary. We have now decomposed G{a,r.,Z)>y into a sum whose t-th
term Ge{a,r); is for each i a fixed polynomial of degree t in s.
The dependence of the t-th term on i is more complicated: we have
€i,u = eis+1,uy +{u-1), and 1 enters into G¢fl{a,r)i in the factor
dimy®R e; .. In each Koszul region Sy, there are b = min(s,u)
possibly nonzero terms Gila,r.,Z),...,Gpla,r,Z) in the expansion
of G(a,r,Z). When a and i are fixed, i € 8,, and s 2 u, the
bound cjla,r) = Gla,r)i for dimg{(R;/K{P,a)i is a polynomial of
degree u in s, the number c¢f points.

If Conjecture 2.2.0 is true, then given the integer a, there

are only a finite number of exceptional triples (s,r,i) for which
the bound {(2.19) is not an eqguality for a general set P of s
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points in Pr-1, By (2.10), such a failure of equality in (2.19)
requires either a nonzero defect def(j+l-a,r) oOr nonzero error,

thus occurs when A (it+l-a,r) = 0.

Example 2.12A. KOsSZUL REGIONS. When a = 3, the regions are

Sy1: 2(2) < i: 4 < i, where

h(s,3,r); € ¢i(3,r} = min{(dimkRa}s, dimgRi):
Sy: (3/2)2 <« i € 2(2): i = 4, where

hisg,3,r)ag & cg(3,7) = min((dimkRz)s-(;}, dimgRy) ;
S3: (4/3)2 < 1 £ (3/2)(2): 1 = 3, where

¢3(3,7) = min ([ (dimgRz) s—dimle(;)+[;)] ,dimgR3)
=[r+2J_(r—s+2) if s <, and[r+2) otherwise. .
3 3 3
S.: 12, c¢i{3,r) = dimkRj.

Example 2.12B. KOSZUL REGIONS AND n-GENERIC POSITION FOR H(s,3,4), s
SMALL. When s € r+l His,a,r) = G(a®,r) (Proposition 2.3B). In
Table 1 below we give G(a®,4) for 2 £ ¢ £ 5.

For s € 3, the scheme Spec{R/K{(P,3)) becomes regular only in

degree 5. For s = 4, the scheme is not in 40-generic position,
because there is at least one quartic¢ vanishing on it. For s = 5,
the ideal K(P,3) has degree n = 50, and is in 50-generic

position. Note that as s increases, with r,a fixed, the scheme
approaches n-generic position. The defect A = 0 throughout.

s The sequence G(3,4) Comment

2 1 4 10 16 19 20 20 Regularity i = 5.

3 i 4 10 19 27 30 30 Regularity i = 5

4 1 4 10 20 34 406 40 Note tg = 34

5 1 4 10 20 35 50 50 50-generic position

Table 1. Values for H(s,3,4) = G(3,4), whenr =4, 2 £ s £ 5.
{See Example 2.12B.)

Example 2.12C. KOSZUL REGIONS AND n-GENERIC POSITION FOR H{s,3,r}), s
LARGE. When a = 3, r £ 7 and s > r+l, G(3,r) = HGP(n,r}), the
Hilbert function of points in n-generic position, n = (dimgRz)s:

we do not predict surprising behavior.
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However, if we fix b, set s = r+b, and increase r, we soon find
a contradiction to n-generic behavior for i = 4 in the Sz region.
The degree n of R/K(P,3,r) is bounded by a constant multiple of
the cube of r, but dimgR4 is approximately r4/4; when r is large

enough the scheme Spec(R/K(P,3%,r)) cannot be in n-generic
pogition, by Proposition 2.7.
when (r,s) = (8,10), ten points on P7, we have

H(10,3,8)4 € (36)(10)-45 = 315,

which is less than dimgxRg4 = 330, so K{(P,310) is not in n-generic
position in P7.

Likewise, when (r,s) = (9,11), for eleven points on P8 we have
H{11,3,9)4 £ (45) (11)-55 = 445, which is less than the degree n =
495 = 11{(dimkxR2), again preventing n-genericity. Here the

regularity is also affected by the Koszul bound (2.11), as dimgRs

= 495, equal to the degree, but the ideal XK(P,3!1,9) is not 4-
regqular.

For (r,s) = (9,12), twelve points on P8, we have H({12,3,9)4 <
(45) {12)-66 = 485, so K{(P,312,9) is not n-generic.
For a = (3) and more than 12 points, we must take r > 9 to

obtain non n-generic behavior from (2.11).

Example 2.13. KOSZUL REGIONS AND n-GENERICITY FOR a = 4. When N =
4%, the Koszul regions of Theorem 2.10 are

S,i27 8, i=568,i=4and S, i < 4
If s 2 r+l and we take i = 6 then (r,s} = (6,8) is the example
with lowest embedding dimension r where the Koszul bound requires
non n-generic behavior for XK(P,4%,r). When i = 5 the first such
example ig (r,s) = (10,12).
Notation for Table 2. The i1 = 6 column of Table 2 below lists

first the Koszul wupper bound G(4,r)i for H{s,4,r); =
H{R/K(P,4%,r)) satisfying, since i = 6 ig in the 33 region,

s
G(4d,r)i = min(deg K(P,4%,r}) - (2). dim®R 1)

We list the bound in boldface, when it is smaller than dimy® ;i so
by Proposition 2.7 prevents n-genericity. We then 1list the
codimension cod = dime®Rg - G{4.r)g which is a lower bound for
dimg (K(P,48,r)). We next list the difference of G(4%,r)g from n-
generic position,

diff = min(degree K(Pg,4,r), dimkRg) - G(4,r}s. (2.21)

We finally list in boldface the defect
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A =G4, r)g - Hi(s, 4,1} (2.22)
= A(J,r), J = i+l-a = 38

between the actual value of H{(s,4,r)g as calculated 1in
“Macaulay”, and the Koszul bound.

The 1 = 7 column of Table 2 lists G(4,r)7 = deg{(K(Ps,4,r)).
Arrangement of rows in Table 2: For each r, 6§ < r £ 10, we begin
with s = r+2, and end with the highest value of s, for which the
difference of (2.21) is nonzero in degree 6. Thus, for r = g,
K(Pg,4,9)6 has diff # 0 for 11 £ s = 19, but diff = 0 for s 2 20.
A striking aspect of Table 2 is the accuracy of the Koszul upper

bounds: A is nonzero only once!

ris \i |5 dim/cod/A |6 dim/cod/diff/A4|7 dim=n

6; 8 252/0/ 0 420/42/28 / 1 448

7; 9 462/0/ 0 720/204/36/ 0 756

7;10 462/ 795/129/45/ 0 840

7:11 462/ 869/55/55/ 0 924

8;10 792/0/ 0 1155/561/45/ 0 1200

8:;15 792/" 1695/21/21/ 0 1800

9;11 1287/0/0 1760/1243/55/0 1815

9;19 1287/" 2964/39/39/ 0 3135

10;12 1980/22/0 2574/2431/66/0 2640

10;13 2002/0/0 2782/2123/78/0 2860

10;:24 2002/ 5004/1/1/ 0 5280
Table 2, Koszul upper bounds G{s?,r) for H(s,4,r) in the 5
region i = 5,6. The bound for i = 6 prevents n-generic position.

(See Example 2.13). The defect Aj = G{s%,r}i - H(s,4,r)i.

Example 2.14A. KOSZUL REGIONS. When a = 7, the Koszul regions are
S, 12 < i; §,, 10<i<12; 8,,i =9 S,i=82S8,i=78,i<7T.

Example 2.14B. KOSZUL REGIONS AND n GENERICITY, & = 7, & SMALL. We
suppose that r = 4, and N = 7. Table 3 lists the Koszul upper

bounds G(75,4); = c3(7%,4) of Theorem 2.10 for the Hilbert
function H(s,7,4)i = H(R/K(P,7%))i for s = 2,...,6. In each case,
G(75,4) is regular by degree i = 14. A value is listed in

4 The value Az = 0 (or 1 when {r,s) = (6,8)) was checked by calculation in
“Macaulay” for the highest s value for each r = 7, and implies A = 0 for
lower =. See Example 2.8B for (r,s) = (10,24). Finding A7 in Table 2 is out
of the effective range of the computer available, however A7 is certainly
zero because the codimension iz so large in each case.
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boldface when it prevents G(7%,4) from being in n-generic
position.

When s £ 5, H(s,7,4); = G(7%,4); by Proposition 2.3. For s = 6,
G(7%+4) = HGP(n,4), the Hilbert function of an ideal in n-generic
position, n = 84s. The defect A = G{7%,4) - H(s,7,4); is nonzero
when s = 6, 1 = 12,13, or s = 7, i = 13, and is otherwise zero in
Table 3.

s \i| 6 7 8 9 10 | 11 [12/A [13/A | 14
2 84 1112 1133 1148 1158 1164 1167 1168 1168
3 84 1119 |157 1193 |222 |240 1249 1252 1252
4 84 1120 1165 1220 1276 1312 1330 1336 1336
5 84 1120 1165 1220 1286 1364 1410 1420 1420
6 84 1120 1165 1220 1286 1364 1455/1 150474504
7 84 1120 1165 1220 1586 1364 1455 1560/11588

Table 3. Upper bounds for H(s,7,4) when r = 4, 2 £ s < 7. (See
Example 2.14B.). The three nonzero valueg of defect are in bold.

Example 2.14C. KOSZUL REGIONS AND n GENERICITY, a = 7, r = 9,10, $;
REGION, If N = 7%, s 2 r+2, the case (r,s) = (9,11) is the
smallest value of r for which there is impact of Theorem 2.10 on
the S3 region, i = 9. See Table 4.

Notation for Table 4. We follow the notation of Table 2. In
degrees i = 10-12 of the S3 region we give the predicted
difference, usually (dimgRi2-i) (Bin(s,2), from the n-generic-
position wvalue HGP{(n,r}) of (2.12). The entries are in bocldface
when the upper bound prevents n-generic position. The four
entries A in bold when i = 9 are the actual defects from the
Koszul upper bound, based on calculation in “Macaulay”.

Remark. Proposition 2.7 requires non n-generic position in
H(R/K(P,N)) only for sufficiently large r. When N = 7, and s 2
r+2, one must go to r = 5 variables to have non n-generic
behavior: there, when r = 5 only s = 7 and 8 must be non n-
generic because of the Koszul bounds (2.11), and then only in the
largest possible degree, i = 12, the top of the S; region. Again
when N = 7, and s 2 r+2, for Proposition 2.7 to imply non n-
generic behavior in degree i = 9, the S3 region, we need at least
9 wvariables,
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r;s\\j_ 9 dim/cod/A® 10 dim/cod/dif 11 dif |12 dif|degree
9:10 22725/1585 28005/15753/45-4519-45 45 30030
9:11 24123/187/154131558/12200/45-5519-55 55 33033
9:12 24310/0/0 34066/9692/45-66 19-66 66 36036
2:16 A" 42648/1110/1110 9:120 1120 48048
9:;17 " /0/0 43758/0/0 9-136 1136 51051
10;12 145760/2860 56430/35948/55.66:10-66 166 60060
10;13 148191/429 60775/31603/55.78:10.78 178 65063
10;20 148620/0 89650/2728/2728 10.190 1190 100100
10;21 " /0 92378/0/0 10-210 {210 105105

Table 4. Koszul upper bounds G(78,r) for H(P,Z7,r), in the S3 and
S» regions, r = 9,10. Values also of cod, a lower bound for
dimk (K(P,7%,r)i), difference from n-generic position, and some
defects A (See Example 2.14C.}).

2C, Lower bound for regularity.

We now give a lower bound for the regularity of K{(P,N}. We also
give an example with nonzero defect A, showing that the lower
bound is not always sharp.

Proposition 2.15. LOWER BOUND FOR REGULARITY. Suppose that r is
fixed, that N = (n3,...,ng), ny 2 ... 2 ng, and that K(pP,N) =

mp(1)™MN. . . N (s)Ps, where P = {p(l),...,p(s)} are s general points
of Pr-1, Let t = t{s,N,r} denote the smallest integer such that

deg(K(P,N}} < dimygR¢.
Then the regularity ¢ (K(P,N)) satisfies

¥ (K(P,N)) 2 max(nq+n3-1,t). (2.22)
Proof. Immediate from Theorems 2.2 and 2.10, since when i =
ni+nz-2 there are relations in degree 1 between the two lowest

degree generators of K-1(p,N), and the dimension of Ri/K(P,N}i
cannot attain n = (Z1<y<sdimgRp,-1)., the multiplicity of R/K(P,N}.

5 The values of A for 1 > 9 and those not listed when i = 9 have not been
checked by “Macaulay”, as they are out of the effective range of the
available computer. Technically, the values listed should be considered
upper bounds for A - it is conceivable that the sets of linear forms we used
were not general enough - but we believe they are accurate. The value
def(311,9)y = 154 included for r = 9, s = 11, i = 10 was calculated in
characteristic 997, and took 15 hours and 5 MB space on an accelerated
Macintosh SE-30; the calculation of def(3!2,9)y = 0 took over 40 hours.It is
often simpler to check higher values of s, where the socle degree is lower:
finding def(319,9); = 0 for (r,s) = (9,19) in Table 2 took only one hour.
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Remark. When r = 3, A. Hirschowitz gives a set of inequalities
satisfied by the regularity ¢ (K(P,N}) in [H2]; the formula (2.21)
is the simplest of the set. We now give an example where the
defect is nonzero, and his bounds are sharper.

Example 2.16. LOWER BOUND NOT OPTIMAL, POSITIVE DEFECT. By Example
1.6A and Theorem 2.2, if (r,s) = (3,5), N = (&), so P consists of
5 general enough points of P2, then K(P,8) has degree (21)(5) =
105. We have calculated H(5,6,3) to be

H(5,6,3) = (1,3,6,10,15,21,28,36,45,55,66,78,90,93,104,105,...)

while G(5,6,3) = (1,3,...,78,91,105,105,105). Thus, K(P,8) 1is
regular only in degree 15, not 13, the bound of (2.21).

A. Hirschowitz states that the Hilbert function of R/K(P,N) is
known for r = 3, s £ 9 points, and any weights N, and he explains
this kind of example in [H2]. Here the five points P lie on a
conic Y, and dimg (T (v, ©®(13)) = 105-78 = 27. The condition that a
form of degree 13 on Y vanish to order 6 at each of the points
would tend to impose 30 conditions, but there are only 27
available: three don’'t count. This explaing a defect, but more isg
needed to explain Ajz = 6. See §1-4 of [H2], and also [Hal, [G].

Remark. PATTERN IN THE DEFECT. To calculate H(5,6,3) above, we
found the size of RsgLi, LI = <x3,y7, 23, (x+y+2)3, (x+2y+3z)3>, for 6
< j € 10, and checked this when the result was surprising, for j
= 7,8,9, by altering the last linear form. The difference of the

sideg in (2.11) is Z1246713,714  The key part of the Hilbert
function H(5,6,3), can be written as

(90,99,104) = (91,104,120)-(1,6,16},

where (91,104,120) is a portion of H{(R) and (1,6,16) is related
to stability in the last portion of the set of Hilbert functions

{H{R/(LF))}, with socle 6 = 2j-2, namely

H(R/(LI)) = (1,3,...... ,16,6,1).

By the degree j = 20, the stable ending sequence of H(R/(LJ)) has
grown to (...,106,76,51,31,16,6,1) with 1 in degree 6 = 38. We
study patterns in defects further in §3D below.
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3, Thin algebras and fat points.

When a = 2, A. Alexander and A. Hirschowitz have determined
the Hilbert function H(2,s,r) = H(R/K(P,2)); we have discussed
the consequences in [I3]. In Section 3A we consider what 1s known
for a 2 3. In Section 3B we show how to <calculate the Hilbert
functions of vanishing ideals from those of power algebras. In
Section 3C we give a symbolic algebra program for finding the
Hilbert functions of vanishing ideals in this way. Section 3D
gives examples of patterns in the defects, and Section 3E gives
evidence for our Conjecture 2.2.0.

32, Cconsequences for the thin algebra problem when u = a-1 > 1.
We first compare the lower bounds previously obtained by others
for H{R/K(P,a)) with the upper bounds of Theorem 2.2 and Theorem
2.10, as well as with experimental evidence.
N.V. Trung and G. Valla as well as A. Gimigliano have studied
the gquestion of regularity of EK{(P,a) for points in generic
position. We give a result of N.V. Trung and G. Valla (Theorem

2.6 from [TV]). For simplicity we assume char k = 0 here. If N =
(ny,...,ns), N3 2 ... 2 ng we let v = v(N) be the least integer
such that

n+r-2 r—1+v
Y < . (3.1)
r—1 r—1

2siss
Equivalently, v is the smallest integer for which
dimgRy > deg K(P,N} - deg{niPi). (3.2)

Lemma. ({(See [TV]). If P = {P1,...,Pg) are generically chosen
points of Pr-1, then the regularity ¥ (K(P,N)) satisfies,

Y(K(P,N)) £ {(v+ny-1). (3.3)
If N = g then u = a-1 is the difference in degree from the
generators 9(P,N,i) of VYV (P,N,i) to the degree 1i. Thus (3.3)
implies ¥ (K(P,N)) < (v+a-1) = v+u. Applying (1.11), we have

Corollary 3.2. Suppose that 3j,u,s satisfy

dimc®R4 > (dimcRy) (s-1). (3.4)
If L igs a sufﬁicient;y general set of s linear forms, then the
vector space L3 = <Li3,...,Lgl> satisfies,

dimp<RyLi> = (AimkRy)s. (3.5)

when r = 3, then A. Gimigliano [Gil] has shown
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Lemma. Let d be the regularity of K{(p,1;3). If N = {(ni,...,ns),
with ny 2 ... 2 ng, and P is generically chosen in P2, then
¥ (K{(P,N))} £ ni+...+ngq.

N.V. Trung and G. Valla have weakened the hypothesis on P to
uniform position property in most cases (Corollary 3.7 of [TV]).
Since for P general, K(P,1;3) is in s-generic position by [GM] or
[GO2], d is the smallest integer such that s £ dimgRq. When N =
a8 and u = a-1, we obtain from Gimigliano’s result, and (1.10),

Corollary 3.3. Suppose that r = 3, s € dimgRgq, u = a-1, and i =
j+u satisfies

i 2 ad. {3.6)

If L is a sufficiently general set of g formsg in Ry, then the
dimension of ®yLi is (dimR,)s. Also,

def(j*,3);,, = err(j*3),, = O, when j > (u+1)(\25-1). (3.7)

We apply these results for s 2 r+2, r = 3,4,5.

Example 3.4A. CONSEQUENCES IN THE PLANE. If we take (r,s) = (3,15)
then degree K(P,3;3) = (dimx®R2) (15) = 90, one less than dim®R 1.
We have d = 4, so that taking u = 2 in (3.6) requires j =2 10.
Hence for Lj,...,Lis generically chosen,

dimg R2<L110,...,015105 = 90
in the space W12 of dimension 91, a sharp result - when we

consider degrees j less than 10 we find relations in degree j+2.
Likewise, if we take r = 3, s = 9, then degree K(P,4:3) =

(dimx®R3) (9) = 90, of codimension one in Wi12. We have d = 3, so
that taking u = 3 in (3.6), requires j 2 9. Thus, if L is
general,

dimkﬁi3<L19,...,L99> = 90

in the space ® 12 of dimension 91, also a sharp result.
Finally, taking r = 3, s = 12, u = 3, then d = 4 and (3.6)
requires j 2 13. Hence Corollary 3.3 gives for L general

dime®3<Lq113, .. .,L1213> = 120

in the space W1 of dimension 153. A computer calculation in
“Macaulay” shows that in fact we may replace the degree 13 here
by degree 11: the sgspace ®a<Lq1l,...,L131l> has dimension 120
inside a space of dimension 120.
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Example 3.4B. CcoNseQuENCES IN P3, If we take (r,s) = (4,7), then
(dimg®4q) (6) = 210, which is less than dimg®R ¢ = 220. Corollary
3.2 states that if Lj,...L7 are generically chosen, then

dimy R4<L19, e ,L79> = 245

inside W13, a space of dimension 560. A calculation shows
K(P,57;4) is in 245-generic position, and we may take j = 6 above
in place of 9: ®4L% has dimension 245 and codimension 41 in ®1g.

Example 3.4C. HIGHER VDIMENSIONS. When (r,s) = (5,8} then
(dimkg®R 4) (8-1) = 490, less than dimx®R g = 495. Corollary 3.2
states that if Li,...,Lg are generically chosen, then

dime Wa<t18,...,La8> = 560

inside ®,12, a space of dimension 1820.
Calculation shows that for s = 8, K(P,58,5) is in 560-generic

position, regular in degree 9, so dime®g<Li>,...,Lg%> = 560 in
Mg, a space of dimension 715.

When s = 9,10 there is a defect def(5,5)9 0of 5 and 7,
respectively, so H(9,4,5)9 = 625 and H(10,4,5) = 692, preventing

regularity of K(P,4%,5) and K(P,410,5) in degree 9.

Remark. The conseguences for the thin power algebra problem, u >
1 of the existing regularity results for K(P,N) are most striking
for IP2; there is room for substantially stronger results when r 2
4. Even when r = 3, there are cases not covered by the existing
regularity results.

It is natural to believe that higher powers of a seguence of
forms are more independent - have less relations - than lower
powers. We show this as a Corollary of a result of Geramita and
Maroscia, based on R/K{P,N) being Cohen-Macaulay of dimension
one. Proposition 3.5B is perhaps classical, but we do not have a
reference; the case N = {1} is in [DK].

Proposition 3.5A (A. Geramita and P. Maroscia, [GM]) Suppose Z
= Spech{(R/K(P,N)} is the subscheme of Pr-1 defined by the
intersection K(P,N) = mp(1)3B10...Nmy(g)"s. Then the Hilbert
function H(R/K{(P,N})) = (..., hi = dimx(Rij/K{(P,N)i),..) 1is
nondecreasing, and attains degree K(P,N} for i large.

Proposition 3.5B., If L = <Li,...,Lg> are s linear forms in W,
and u is a natural number, then we have

dime®Ruld € dimR LI+, (3.8)
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and more generally,

dimg [ (LTYNR1] € dime [ (LI NR 41] . (3.9)
Maroscia point out that Proposition
being Cohen-Macaulay of
(Proposition 1.4 of [GM], but see also [GO]). The
formula (1.10) shows that if J = j+1-N, then the vector spaces
(LINR ;1 and (LI*L)NR 141 in (3.9) are the duals of the spaces
R;/K(P,N); and Rj,1/K(P,N)i+1 (Proposition 1.3B is a special
case). Thus, (3.9) follows from Proposition 3.5A.

A. Geramita and P.
is a consequence of R/K(P,N)

Proof.
3.5A
dimension one

3p. F lgel ishi i deal
We study the case r = 4, g8 = 6, where the weights N = a = u+l
are equal. We use computer calculation to ascertain the defects

def(6,i+l_§,4 = T’(6;1.+l_§,_ 14) - T(6J;__,_é.+l_ 14)1
and thus determine the postulation of K(P.,a). Here L =

<L1,...,Lg> = <W,X,Y,2, W+X+¥+Z ,W+2X+3Y¥+4Z> and (L3) is the ideal
generated by L3 = <IqJ,...,Lgl>. The (j,u) entry of Table 5 is the
size of RyLJ computed in the “Macaulay” symbolic algebra program
[BSE], followed by the defect A = def(J,4}ysj from the Koszul
bound when A is nonzero. We have omitted some entries where ®RLI
= ﬂu+j-

The striking aspect of Table 5 is the existence of limit values
of the defects from the thin algebra values: the value 4 and the

value 35, the first values of f{v) in Table 7. We discuss the
limit behavior further in Example 3.11 below.

N\ uw/A[ 1 2 3/A | 4 5 6 7 8/A

2 20 35 56

3 24 56 84

4 24 60 116/4 :165

5 24 50 120 206/4 {28B6/35

6 24 60 120 210 332/4 1454/35

7 24 60 120 210 336 500/4 1670/35

8 24 60 120 210 336 504 716/4 1940/35
9 24 60 120 210 336 504 720 986/4

Table 5, Dimengion of R yLJ and defects A from thin algebra
values, whenr = 4 and s = 6. The degree i = j+u.

Observation 3.6. When (r,s) = (4,6), then when 5 £ j £ 8, the
defects of Table 5 in the j row are zero except for two values;

dimkﬁlj_le which has defect A = dEf(j6,4)2j_1 = 4 from the Koszul
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bound when j = 4, and dimx®R4LI which has defect A = def(36,4)25 =
35 when j 2 5. The length of the sequence of nonzero defects in
the j row increases with j (see Table 7 and Example 3.11}.

The points P = P1,...,Pg € P3, corresponding to the forms L are
(1,0.0,0),(0,1,0.0),(0.0.1,0),(0,0,0,1),(1,1.1.1),(1,2,3,4)-
By (1.12e), the Hilbert function of R/K(P,a;4) ig obtained by
reading the u = a-1 column of Table 5 (including the wvalues not
shown). We explore (r,s) = (4,6) further in Example 3.11.

Example 3.7A. POSTULATION OF K(P,46;4). From the u = 3 column of
Table 5, we have

H(R/K(P,45;4)) = (1,4,10,20,35,56,84,116,120,120,...),
with regularity in degree 10, and defect 4 in degree 7.

Example 3.7B. POSTULATION OF K(P,76;4). From the u = 6 column of
Table 5 we have

H(R/K(P,75;4)) = (1,4,....,286,364,454,500,504,504,...),

regular in degree 14, with defects 35 and 4 in degrees 12 and 13.

3C, Calculating defects, using a symbolic algebra progran,

We here give the program in “Macaulay” that we used to calculate
Table 5 with comments in italics to right.® Other examples and
tables in the article were calculated similarly.

<ring 4 w-z R Or set up a ring in small characteristic
<ideal L w X Yy 2 W+X+Y+X W+13x+3y+17z2

<pow_entry L 1 I Script raises entries to j-th power
std T I

hilb I Gives Hilbert function of ®/I

A second script
<pow_hilb L s ji j2

repeats the above process for jl £ j £ 32, using the first s
entries of L.

when working close to the limits of the machine, we first set
up a ring S of small characteristic, as 17 in Example 2.8B, where
r = 10 variables. There for s = 24 we constructed L via

random 10 14 M
mult S M L Gives a 1%14 matrix L of linear forms

§ fThe “Macualay” scripts used are available from the author.
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concat L S Adds the variables of S to L

This gives a 1X24 matrix L of 1linear forms, containing the
variables of S. One then proceeds as above.

The Hilbert function *“hilbI” of R/I, is hopefully T’ (J,r) with
J = (j®), if L has been general enough. We subtract it from the
Hilbert function of R to find the entries of Table 5,

dime®Ryld = dimeRyyy - HIR/(LI) ) yug = dimg(R/K(P, (u+1)5) )ysq.
Example 3.B. When (r,s) = (5,10), we used the scripts
<ring 5 v-z R
<ideal L VW X YV 2 V+WH+X+Y+Z .. u.. ten linear forms,

<pow_hilb L 10 2 8

The resulting list of Hilbert functions T’ (10,j,5), 2 £ j £ 8

shows that for 2 £ § £ 4, the socle degree of R/LJ is 2j-2; for 5
< 3j <8 it isg 2j-1. Also T'(10,3.5) = T(10,3.5), and AJJ , 51 =
err(j1%,5) = 0, for j < 8, amcgpééﬁgrzggg%yg;ues

- j+é\~.whte{5 <3< 8, (3.10)

\
i+rl-a é\ﬁ we haée by experlment

\!

=G(\10 5)1 f\or J.\<2a2

&\\ii 5)2a 1 - (afx). (3.11)
; N
249- then 3 = \+1 a & a so (3.10) implies (3.11).

"‘1&

We suggest that determining the Hilbert functions of order a
vanishing ideals at s general points of PPr-1 is best approached
experimentally by determining the Hilbert functions T’ {jS,r} of
thin power algebras R/LJ. Both the Koszul bounds Fgq estimating
the Hilbert functions T(jS,r) of thin algebras, and the patterns

in the defects A(jS,r} = T'(js,r) - Fq are simpler than their
tranglations to vanishing ideals. We give data and suggest some
patterns in the defects A (j%,r) when (r,s) = (5,10), (5,7),
(4,6), and (4,9). In the last two cases, we give conjectures that

fit the data, would determine T’ {(j%,r) for all j, and that we
feel are compelling. The conjectures concern the postulation of
any equal-order-a vanishing ideal at 6 and 9 general points of P3
(Examples 3.11ff and 3.12ff). We have chosen r = 4, so P3, as it
is the lowest r where the Koszul bounds give new data about
vanishing ideals. . The pair (r,s) = (4,6) is special since six
general points of P3 lie on a unique complete intersection of
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quadrics. The pair (4,9) is special as nine general points on P3
lie on a unigque guadric.

Definition 3.9, If J 1is a nondecreasing seqguence of
nonnegative integers, we denote by o (J,r) the degree of the socle
of R/(1LY), for L a generically chosen set of linear forms. We let
the adjusted defect be the following polynomial in Z,

AD(J,r,Z) = def(J,r,Z°1).ZoJ,x}

Conjecture 3.9.0. For appropriate pairgs (r,s), given a
nondecreasing sequences J = (Jj1,....,Js) with j; = 0, there is a

fixed polynomial SD(J,r,t,Z}), in t and Z, the stable defect, and
an integer b{J,r) such that if t 2 b(J,r), then

SD(J,r.t,7) = AD(J +t,r.Z).

< 8 gives AD(J,5,Z) = (3+ there. Phis-data is consistent with
the guess, SD(QlO.S,t,ZN 2. However, wé\@on't think so!
In Example 3.16\we show!that kthe socle degree of R/LJ is at least

2.293 for large Wherl j £ 8 e socle degree is less than 2j.
our data does not \inclyde high enough values 0f j to determine a

limit SD(j19,5,t,2).

Example 3.10A. If (r,s),~ (5,10), the date in Example 3.8 for j
6\2\
! = b+

j\\é- 29-11 23 |23+1]23+2|23+3}23+4|23+5
2 1
3 1
4 5 1
5 1 35 1
6 157 136 1
7 5 70 36 1
8 1 35 210 136 1
Table 6. Case (r,s) = (5,7}, defects A = def(j7,5)i, 2 £ j £ 8.

Zero values are omitted. (See Example 3.10C).

Example 3.10B. When (r,s} = (4,6), from Table 5 we have
AD(J,4,7Z) = 35447,

for J = 3%, 5 < j £ 8. We conjecture below that Zf(v)ZV =
35+4Z+.... = lim; 77(21-2)def (j®,4,Z) (see Example 3.11).

7 If dim®¢ iz not considered, then def(37)s would be 15, equal to def(67);3.
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Example 3.10C. Calculation of other cases suggest that for
certain J, the Conjecture 3.9.0 needs modification. In Table 6,
where (r,s) = (5,7) we have indicated in boldface wvalues of the
defect Aj = def(j7,5); (See Table 6). There appears to be both a
stable defect (...,36,1), and a pattern depending on j mod 3. For
example, the start (1,35,...) for j = 5 is repeated for j = 8.

Example 3.11. When (r,s) = (4,6), we calculated the Hilbert
function T’ (36,4) for 1 € j € 15. It has a pattern, depending on
3 mod 5 and detailed in Observation 3.11A. We suppose j = 5t#l
or 5t+2, 5t+3, and let

t = |(i+1)/5),
{2! if j =12 0r3 modS}

2t-1if j=0or 4 modS$

o = 2j-2+k, | (3.12)
1 (3Sv3+6v2—12v) if v is even
fv) = 1 .
3 (35v +9v* =27v+15) if v is odd
v 1 2 3 4 5 6 7 8 9 10

f{v) 4 35 120 286 (560 {963 {1534:22761325214435

We let A’ = def’(j%,r); denote the deficiency of the actual value
of dimg® i (L), L = (Ly,..,Lg) general, from the Koszul value,

without considering the size of dimx®i. In the region j £ i < 3]
we have, for general L,

R 5
dimkﬁiidjL3 = (dimkﬁli_j)(s) - dimkgii_zj(zj - def’' (3%, r);. (3.13)

By definition, if cod{(®i-jL3) is the codimension in Rivg. we
have

def (3%,r); = min(cod(Ri-_4LI), def’ (3%, 1r)i). (3.14)
Observation 3.11aA. For (r,s) = (4,6) and j £ 15, we have
a. The socle degree of R /L] is o.
b. def(j®,4); = def’(j%,4); = 0 if i € 23-2 = o-k.

c. def’ (3%, 4)24-24v = £(v) 1f 1 £ v = k.



d. T (3%, 4)g = {

Note:

The following conjecture would completely determine T’ (38, 4),

THIN ALGEBRAS AND FAT PCINTS

Lif j
4. j
We calculated £{v)
need to modify Conjecture 3.9.0

in

(3.12)

1 mod 5
—1 mod 5

as fo

llows.

AD’ (36,4,7) = def’ (35,4,Z)-Z7(0+1-K),

using Observation d. Here we
We first define

hence also H{(K(P,a®,4)) for all a and general P in P23,

Conjecture

3.11B.
Zv<kf (v) ZV and approaches

AD’ (j8,4,7Z)

satisfies
F = ZE(v)ZV ag j —F oo,

INv/A |v=1/Aa |2 3 4 5
9 154/4 60/35 4/120 0
10 224/4 105/35 $120/120 0
11 312/4 166/35 i50/120 1/286 0
12 420/4 245/35 196/120 10/286 0
13 550/4 344/35 1160/120135/286 0
14 704/4 465/35 £244/120178/286 4/560
15 384/4 610/35 [350/120§141/286120/560
Table 7, Case (r,sg}) =

and of A’a5-24v, 9 <
is in boldface.

Observation

K(P,ab,4).

let 3

= i+l-a,

3.11C:

(4,6). Calculated values of H(R/{LJ))24-2+v,

} €15, 1 £ v =5,

Transglation

and define o,t,k as in
set of points P in P3, and i+l-a £ 15, we have

The defect A =

to

(3.12).

Vanishing
We translate to the Hilbert function H{a,6,4)
H(R/K(P,ab,4)) determined by the vanishing ideals K(P,a®,4).

Then for a general

AD' (36,4,7)

min(A’,H)

a. K(p,a®); = 0 if i < 2a-k.

b. H(a,6,4); = ci(a®,4) if 1 2 2a. is

regular in degree Za.

In particular, K(P,a$,4)

c. H(a,6,4)2a = Coa-vla®,4) - £(v), for 1 £ v € k.
1if j=1mod5
d. dimg{(K(P,a®)za-kx) = .
img (K({P,a®%) 2a-x) {4z'ij—lmod5}

Conjecture 3.11B asserts that Observation 3.11A is valid for all
pairs j,i, or that Observation 3.11C is valid for all palirs a,i.



A, IARROBINO 36

Example 3.12. When (r.s}) = (4,9), then observation of Table 8
shows the socle degree o of R/LJ} is 2j-2. The first and second
difference columns - with respect to j - of the columns of Table
8 are highly regular (see Table 8). In the k = 1 cclumn of Table
8 the boldface values 11,30,40,56 are symmetrically positioned
with respect to the pattern shown in Table 9. Likewise, in the k
= 2 column of Table 8, the bolface wvalues 26, 213,250, and the
predicted wvalue 416 for j = 17 are symmetrically located. We

define
17k+1)  (8k+1) .
3 | 9 3 if kis odd,
8(k) = ik +3 of %2 4 (3.15)
- i is even.
3 3
k 0 1 2 3 4 5 6
gi{k) 1 60 426 1400 3299 6400 11060
j\\\i o |o-1i]|o-2|o-3|0o-4106-5|0-6|0-7|06-8|0c-9 |o-10
2 1 4 1
3 1 11 10 4 1
4 1 20 26 20 10 4 1
5 1 30 48 47 35 20 10 4 1
6 1 40 75 84 75 56 35 20 10 4 1
7 1 49 106 $1130 1129 1111384 56 35 20 10
8 1 56 140 1184 1196 184 156120 {84 56 35
9 1 60 176 1245 1275 1274 1250 12111165 §120 |84
10 1 60 213312 1365 {1380 1365 [328 1277:220 1165
11 1 60 2501384 1465 {501 1500 [470 1419 {355 286
12 1 60 286 1460 1574 1636 1654 1636 1590 (524 1446
13 1 60 320 1539 1691 {784 826 1825 {789 726 {644
lim 1 60 42631400 limit gik), k = 0,... ]
Table 8. Case (r,s) (4,9). Calculated values of H(R/(LI);, i =
c-k, where o = 2j-2 is the socle degree of R/(LJ): we write the

Hilbert function backwards.

The wvalues for

i =

in

j are
boldface, as well as certain others - see Example 3.12.°8

The value gi{k) 1is just the

(§o.i) = (9k, 2(9k)-2-k) =
Koszul estimate for (ji,1i) =

“Koszul” estimate of H(R/(L3J)); for
(9k,040-k) when k is odd, and the
(9k+1,2(%k+1)-2-k} when k is even.

8 These values were obtained for L = {(W,X,Y, 2, WiX+y+2Z, w+32+7y+2372,
w-5bx+1lly-17z, 13w-2x+9y -2, 2w+29x~5y+19z) .
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Conjecture 3.12a. If r = 4, s = 9, the socle degree of R/(LJ)
ig 0 = 2j-2. If k 2 0, and j 2 9k for odd k, or j 2 9k+1 for even
k, we have

H(R/(LI))25-2-x = g(k). (3.16)
For j € 9k, H(R/(L3) has the “Koszul” value
H(R/LJI)24-2-k = dimgRzj-2-x - 9dimkRj-2-k. (3.17)
The defect satisfies
o 0if j <9, ork <0
A(j A0 = k) — : _Odi T
g(k) — max{(dim,R,, ,_, —9dim R; , .}, O] i j > Sk.

As j increases the defect A4j9,4)2j_2_k approaches g(k), so
SD(09,4,t,Z) = Zg(k)Zk.

j\k 1,68s]2.5 6

2 4 4 1

3 “H 7 8

4 49 7

5 110 6

6 10 5

7 9 4

8 7 3

) 4 2

10 0 1

11 0 0

12 0 1

13 0 2

lim = B A 4 -
Table 9. Calculated values of S{j.k) = H(R/(LI))25-2-x, for (r,s)
= (4,9) and of the first differences 06S(j, k) = S(j+1,k)-S(j, k), 1
€ k € 4, as well as the second difference 62 when k = 2. The

chaded columns are the same as the first 4 columns of Table 8.
(See Example 3.12 and Remark 3.12B.}

Remark 3.12B what makes this prediction compelling is a
comparison of the first differences 81(s(j,k)) with respect to j
of the sequence S{-,k),

S{3.k) = H(R/(LI))p4-2-x = H(6,3-1-k,4)24-2-k (3.18)
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The sequence S{j,k) for k fixed has a beginning portion j £ k+1
satisfying S(j,k) = H(R)2j-k-2. The middle portion k+2 £ j £ 8k-2
has first differences 63 that are symmetric about [9k/2]1%f, and
second differences -1. The last portion j 2 8k-1 has first
differences the same in size and opposite in sign to the first
portion, and ends as S(j,k) achieves the stable wvalue g(k). From
the symmetry of the first differences we predicted the degree of
stability S(j,k) = g{(k) to be 9k for k odd or 9k+1 for k even. We
assumed that, as for j £ 13, the defect Ajzy-x 1s nonzero only
when j 2 9k (or 9k+l) where stability occurs: the formula (3.15)
for g(k) follows. In Table 9 we show the observed wvalues of
S(j,k) and the first differences 8S for (j,k) € (13,3} as well as
the second differences 828 for k = 2. Nine general points in P3
lie on a unigue guadric surface, and this behavior may be related
to the geometry of the surface obtained by blowing up the points.
Note that since the socle degree of R/(L3) is 2j-2, less than 27,
any nonzero defect Aj; must arise from extra relations among the
generators of the ideal (LJ), that are non-Koszul.

Conjecture 3.12C. Translation to Vvanishing ideals
K(P,a%,4). We translate to the Hilbert functions H{a,9,4) =
H(R/K(P,a%,4)) determined by the vanishing ideals K(P,a%,4). Then
J = i+l-a, o = 2j-2, k = 6-1i = i-2a, so i € 0 is the condition i
2 2a, and j 2 9k+x 1is the condition i1 € {(17a+l-«x)/8. We have
conjecturally,

dim,R, if i < 2a,

dim R, —g(i—2a) if 2a £ i < (17a+x)/8,

where K =0 if i—2a is odd, and x =1 if i—2a is even,
if i 2 (17a+x)/8.

Hfa,9,4) =

9dim, R, _,
The conjecture has been verified experimentally when j £ 13, so
for all pairs (i,a) for which i € 12+a. The Koszul upper bound is
H(a,%,4); € min{dimgRji,9dimgxR4-1); according to the conjecture

there is nonzero defect when 2a < i < (17a+x)/8.

Remark. BETTI NUMBERS FOR R/LY. It is possible that the patterns
in the Betti numbers/degrees, which we denote Betti(R/L3), of the
minimal resolution of R/(LJ), would be simpler than the patterns
in the Hilbert functions. Does R/LJ have the “earliest”
resolution possible consistent with the observed defects?
Sometimes one can conclude by degree that the observed defects
must come from extra relations among the generators LI, so
Betti(R/(L3) = H(R/LJI). Unfortunately, finding Betti(R/LJ)} in
*Macaulay* even for (r,s) = (4,6), J = 4 was beyond our
equipment range, requiring more than 26 MB active memory.
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3E, Sharpness of the upper bounds. Conjecture 2.2.0 states that
there would be a finite number T {a) of triples (N,i,r) satisfying
ny € a for each u, and for which Hy(r) # cj(N,r}). The data above
suggest that nonzero defects def{(J,r) occur very close to the
socle degree of ®, /17, and when the expected dimension of (®/LI);
is small. Tt is natural to believe that when (LJ); has large
expected codimension in W ;, the condition for it to be of
smaller than expected rank should greatly restrict L.

If N = {(aS), then we take J = (j%}) and u = a-1; in order to
have H(s,a,r) # cj(a%,r) we must have nonzero defect

def(jsrr)j+u # 0.

Suppose for the moment that r, a are fixed and that any nonzero
defect for (s,a,r) occurs in the degree © of the socle of (R /V)g,
where V = LO+l-a  The larger the codimension of ®a-1V in Wy, the
more restrictive is the condition on V for R ,-1V to drop rank. So
we expect defects only when this codimension is small enough. Can

we find pairs (s,j) with j large so that for a general set L of s
forms,

i. ®yLI has small codimension in ®Ry,4? (3.19)

The distribution of the remainders dimg®Ry45/dimg®Ryv should be
random, 8o given r, there are indeed examples of pairs (s,j) with

s = I_dimkﬁ,,,,j/dimkﬁ‘,VJ and j arbitrarily large, where the

codimension of {(3.19) is small. However, when u = 1 the work of
A. Alexander and A. Hirschowitz shows there are only four
exceptional wvalues [I3].The Example 2.8B where (s,a,r} =
(24,4,10), Ag = 0 and the codimension of WR3L3 in W is 1, the
Koszul wvalue, suggest that nonzero defects are rare. How rare?

Question F. Is there a uniform bound <T(a,r) for regularity for
K(P,N) where r is fixed, N satisfies ny € a, and s is arbitrary?

zul regiong for N = a® depend

Comment on Quegtion F., The Kogzu
d > 2a, one is always in the 51

enly on a, so for given a an
region where

ci (N, r) = deg K{(P,N).

Thus, Conjecture 2.2.0 restricted to a fixed r is equivalent to
there being such a uniform bound for regularity of K(P,N,r),
independent of s (Question F). Corollary 3.2 does not answer
Question F: when 4§ is large, Corollary 3.2 reguires very high
codimension of K(P,N)j in Rj. Corollary 3.3 of Gimigliano’'s
result in the case r = 3, 1is closer, but since (3.7) depends on
s, it 1s not the uniform bound needed to answer Question F
affirmatively for r = 3.
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3r, Further defects, r = 4,5. We include the results of computer
calculation of A (j%,4) = T(jS,4) - T’ (j*,4) assuming Conjecture 2
for the value of T(3j%,4), for r = 4 and 5 = 7,8,11,12,16,19, and
for j £ 12 or so. The values were calculated using the *“Macaulay”
computer algebra program on an accelerated SE-30 with 26MB of RaM
{(i.e. on a souped up antigque Model T Ford). We used generators L
= (W,X,¥,Z,Ww+X+y+2,Lg,...,Ls)] where Lg,...Ls were chosen using
“random” values, and worked in characteristic p = 31,997. The
calculations passed some rudimentary checks on accuracy: they are
consistent with Propositions 3.5A,B, which compares the wvalues
for different j, although the computation for each wvalue j is
made independently. And the defects were non-negative!?

Example 3.13. casE r = 4. We found A(s,a,4); = 0 for s =
8,10,16,19, and all pairs (a,i) for which j = i+l-a was less or
equal to 12. If A(s,a,4); = 0 except for s £ 7 and & = 9, and our
Conjecturesg 3.11B, 3.12A, and 3.13B ccncerning the cases (r,s) =

(4,6),(4,9), and (4,7) are correct, then Conjecture F would be
true for r = 4.

Example 3.13A. CASE (r.s) = (4.7). We found that for 2 £ j <
the socle degree of R/LJ is 2j-2 and A(j7,4); = 0 there. When 8
j € 13, the socle degree of R/LJ is 2i-1, and A (37,4);
A7 (37,4); = 0 except for

IA

A’ (37,4)25-1 = 28 (8 < 3§ <13)

When 3 = 14 or 15 the socle degree of R/LJ is 29 and A(37,4)y = 0
except for

A(37,4)25-1 = 28, A7 (37,4)25 = 245 (3 = 14,15).

Conjecture 3.13B. casE (r,s) = (4,7). The defect A(j7,4);
for i < 23-1, and lim_ A(j,4h, ., = TdimR,

It
o

a+1°

? fThe data thrown out: strange phenomena occurred when <to_div_powers
was inserted after finding LJ before finding H(R/L3).
i. We found an error in “Macaulay” function “diff x;J L3i* for j 2 13.
ii. When j £ 12, the Hilbert functions H{R/div(L3)) were in general
larger than H{(R/LJ), and much more sensitive to the randomness of L
when s was large. This result was counterintuitive, as the ideal
div(L3) is then calculated in the usual polynomial ring, where the
divided powers ought to be less related or more general than the usual
powers, so yvield a lower Hilbert function.
We have not included the strange calculations here; they did pass the same
inner consistency tests just mentioned in the text for H(R/LI).
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Example 3.13C. casE (r,s) = (4,8). We found A(j8,4) = 0 for j <
11. The socle degree values of T’ (j8,4) from j = 4 to 11 were
T'(j*,4), = j, with o = 23j-2. It is easyto check that these
statements would be true for all j if A(j%,4) is always zero.

Example 3.13D. cAsSE (r,s) = (4,8), s > 9. In limited exploration
of pairs 1r = 4,8 > 9 we found A(j®,4) = 0 for all wvalues we

tried, including

i. (r,s) = (4,10), 3 < 10
ii. {r,s) = (4,16), 1 < 12
iii. {(r,s) = (4,19), j < 12.
Example 3.14. CASE r = 5. We are expecting A(j%,r) to be zero

for r 2 4 and 2r-1 € s, and nonzero for values of s close to r.
Here 2¥-1 = 16 is the boundary. We tested s = dimgRz-r and s =
dimgR;-1 to see if patterns in Examples 3.11 and 3.13 carry over
to higher embedding dimension than four. The case (r,s) = (5,7)
is Example 3.10C and Table 6, and the case {(5,10) is in Example

3.10A.

Example 3.14A, CasE (r,s) = (5,8). When j £ 8 we found A{j8,5)4
= 0 except for

40, both in the socle degrees, and
280, the latter in the socle degree.

I
Il

8, A(78,5)15
8, A(88,5)18

A (58,5) 19
A (88,5)17

From Proposition 3.15 below the socle degree of R/L} for large j
is greater than 2.57j!

Example 3.14B. casg (r,s) = (5,9). For j £ 7, A(3°,5) = 0.

Example 3.14C. caseE (r,s) = (5,14). For 4 £ § £ 7 we found socle
degrees 23j-2, and A(jl4,5) = 0 and except for A(414,5),4 = 1. The
latter corresponds to dimg(K(P,314)4) = 1 for a general set P of

14 points in P4, in instead of the expected zero; the scheme
Spec (R/K(P,314)) of length 210 is regular in degree five instead
of four.

Example 3.14D. casE (r,s) = (5,16). Here 16 = 2r-1, go this is

the boundary case where socle degree R/LJ is predicted to be just
below 27 (see Proposition 3.15ff. below). When 3 £ j £ 7 the

socle degree is 2j-2 and A(j1%,5) = 0.

Example 3.14E. casg (r,s) = (5,19). For j s 9, A(31%,5) = 0

We now determine the socle degree of certain thin algebras:
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Proposition 3.15. SOCLE DEGREE OF THIN POWER ALGEBRAS. Suppose that

g 2 2r-1, Then if the defect A (j%,r)j+ = 0 so does not intervene,
the socle degree j’' = SOCDEG(j,r,s) of a thin power algebra
gatigfies
1
SOCDEG(j,r,s) = bj+0O(j), where b = I+WT—1' (3.20}
S ——

Proof. Immediate from Lemma 1.7.

Remark. The limit ratio b of (3.20) is rarely a rational number.
Thus, SOCDEG(j,r,s) cannot usually be simply expressed in terms
of j or of j mod k for a fixed integer k unless the defect

enters strongly, as when (r,s) = {4,6) or (4,9). An example of
the defect intervening strongly is the case (r,s) = (4,9): if the
Conjecture in Example 3.12 is true the SOCDEG(j,4,9) = 2j-2.

When (r,s) = (4,8 = 24-1), then ¢ = SOCDEG(j,r,s) = 2j-2 for jJ
< 11. We expect T’(j,s,r) for s = 2¥1 to have zero defect, hence

it would have predictable patterns resembling Examples 3.13C and
3.14D.

When s < 2¥1l, the expression for the limit
b, = lim,, SOCDEG(j,r,5)!]

is more complicated. If 2 € b < 3, corresponding to roughly,

(3/2)t*"1 < g £ 2 then if the defect A(jS,r)j- = 0 , it is easy to
see from a refinement of the proof of Lemma 1.7 that b = by, s
satisfies
5

b"‘——s(b—i)"‘+(2](b—2)’“‘ = (. (3.21)
Example 3.16. When (r,s) = {(5,10) we obtain a limit ratio b =
2.293765553 (See also Example 3.10A). When (r,s) = (5,8) we
obtain a limit ratio b = 2.509833693. When (r,s) = (4,7) we
obtain b = 2.096961266.19 The existence of nonzero defects for

thin power algebras could only increase the actual limit ratio
over these predicted thin algebra values.

10 golutions to (3.21) were calculated using the Maple software.
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Errata for Inverse Systems III.

p.32 Example 3.8: OMIT. In fact, the value of A(jl0,5) = 0
for Jj £ 9. The incorrect value given came from a too-
special choice of linear forms.

p.33. Example 3.10A: OMIT OLD EXAMPLE - again the case (r,s)
= (5,10). Replace with following NEW EXAMPLE:

Example 3.10A. When (r,s} = (6,8), 3 £ j £ 5 we have that
the socle degree of A = R/LJ is 3j-3 for j = 3, and is 33-2
for j = 4,5. We also find A(j8,6)34-.3 = dimkRy.2; while
A(48,6)35-2 = 118, and A (5%,6)34.2 = 150. Does the polynomial
A (38,6) -2-33+3 approach a limiting value?






