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COMPARISON OF

SYMBOLIC AND ORDINARY

POWERS OF IDEALS

by Melvin Hochster and Craig Huneke

1. Introduction

All given rings in this paper are commutative, associative with identity, and Noetherian.

Recently, L. Ein, R. Lazarsfeld, and K. Smith [ELS] discovered a remarkable and surpris-

ing fact about the behavior of symbolic powers of ideals in affine regular rings of equal

characteristic 0: if h is the largest height of an associated prime of I, then I(hn) ⊆ In

for all n ≥ 0. Here, if W is the complement of the union of the associated primes of

I, I(t) denotes the contraction of ItRW to R, where RW is the localization of R at the

multiplicative system W . Their proof depends on the theory of multiplier ideals, including

an asymptotic version, and, in particular, requires resolution of singularities as well as

vanishing theorems. We want to acknowledge that without their generosity and quickness

in sharing their research this manuscript would not exist.

Our objective here is to give stronger results that can be proved by methods that are,

in some ways, more elementary. Our results are valid in both equal characteristic 0 and

in positive prime characteristic p, but depend on reduction to characteristic p. We use

tight closure methods and, in consequence, we need neither resolution of singularities nor

vanishing theorems that may fail in positive characteristic. For the most basic form of the

result, all that we need from tight closure theory is the definition of tight closure and the

fact that in a regular ring, every ideal is tightly closed. We note that the main argument
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2 MELVIN HOCHSTER AND CRAIG HUNEKE

here is closely related to a proof given in [Hu, 5.14–16, p. 45] that regular local rings in

characteristic p are UFDs, which proceeds by showing that Frobenius powers of height one

primes are symbolic powers.

Our main results in all characteristics are summarized in the following theorem. Note

that I∗ denotes the tight closure of the ideal I. The characteristic zero notion of tight clo-

sure used in this paper is the equational tight closure of [HH6] (see, in particular Definition

(3.4.3) and the remarks in (3.4.4) of [HH6]). This is the smallest of the characteristic zero

notions of tight closure, and therefore gives the strongest result. See §3.1 for a discussion

of the Jacobian ideal J (R/K) utilized in part (c).

Theorem 1.1. Let R be a Noetherian ring containing a field. Let I be any ideal of R,

and let h be the largest height1 of any associated prime of I.

(a) If R is regular, I(hn+kn) ⊆ (I(k+1))n for all positive n and nonnegative k. In

particular, I(hn) ⊆ In for all positive integers n.

(b) If I has finite projective dimension then I(hn) ⊆ (In)∗ for all positive integers n.

(c) If R is finitely generated, geometrically reduced (in characteristic 0, this simply

means that R is reduced) and equidimensional over a field K, and locally I is

either 0 or contains a nonzerodivisor (this is automatic if R is a domain), then,

with J = J (R/K), for every nonnegative integer k and positive integer n, we have

that JnI(hn+kn) ⊆ ((I(k+1))n)∗ and Jn+1I(hn+kn) ⊆ (I(k+1))n. In particular, we

have that JnI(hn) ⊆ (In)∗ and Jn+1I(hn) ⊆ In for all positive integers n.

These results, when specialized to the case where R is regular, recover the cited result

from [ELS].

The theorem above is a composite of Theorems 2.6, 3.7, and 4.4 below.

We note that by results2 of [Swsn] one expects, in many cases, to have results that

assert that, given a fixed ideal I in a Noetherian ring, for some choice of positive integer

h′ (independent of n but depending on I) one has I(h′n) ⊆ In for all positive integers n.

What is not expected is the very simple choice of h′ that one can make in a regular ring,

and the extent to which it is independent of information about I. E.g., when d = dim R

1The results stated here are all valid if one defines h instead to be the largest analytic spread of IRP

for any associated prime P of I, which, in general, may be smaller: see Discussion 2.3
2E.g., it is shown in [Swsn] that if I ⊆ J are ideals of a Noetherian ring, and we let I : J∞ =

⋃
t
I : Jt,

then if the I-adic filtration is equivalent to the In : J∞ filtration, there exists an integer h′ such that for

all n, Ih
′
n : J∞ ⊆ In.
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is finite, then with a = d one has that I(an) ⊆ In for all ideals I (if R is local one has this

for all unmixed I with a = max {d − 1, 1} — one does not have to worry about letting

h = d, since for the maximal ideal one has that ordinary and symbolic powers coincide).

We conclude this introduction by sketching the proof of Theorem 1.1(a) for regular

domains in characteristic p > 0 when k = 0 in the special case where I is a radical ideal.

The proof is very simple and brief in this case, and we hope that this argument will help

the reader through the complexities of the rest of this paper. Suppose that I 6= (0) is a

radical ideal, and let h be the largest height of any minimal prime. If u ∈ I(hn), then for

every q = pe we can write q = an + r where a ≥ 0 and 0 ≤ r ≤ n − 1 are integers. Then

ua ∈ I(han) and Ihnua ⊆ Ihrua ⊆ I(han+hr) = I(hq). We now come to a key point: we can

show that (∗) I(hq) ⊆ I [q]. To see this, note that because the Frobenius endomorphism

is flat for regular rings, I [q] has no associated primes other than the minimal primes of I

(cf. Lemma (2.2d)), and it suffices to check (∗) after localizing at each minimal prime P of

I. But after localization, I has at most h generators, and so each monomial of degree hq

in these generators is a multiple of the q th power of at least one of the generators. This

completes the proof of (∗). Taking n th powers gives that Ihn2

uan ⊆ (I [q])n = (In)[q], and

since q ≥ an, we have that Ihn2

uq ⊆ (In)[q] for fixed h and n and all q. Let d be any

nonzero element of Ihn2

. The condition that duq ∈ (In)[q] for all q says precisely that u

is in the tight closure of In in R. But in a regular ring, every ideal is tightly closed (cf.

[HH2, Th. (4.4)]), and so u ∈ In, as required. �

2. The regular case in characteristic p

Discussion 2.1. We recall some terminology and notation. R◦ denotes the complement of

the union of the minimal primes of R, and so, if R is reduced, R◦ is simply the multiplicative

system of all nonzerodivisors in R. We shall write F e (or F e
R if we need to specify the base

ring) for the Peskine-Szpiro or Frobenius functor from R-modules to R-modules. This is a

special case of the base change functor from R-modules to S-modules that is simply given

by S ⊗R : in the case of F e, the ring S is R, but the map R → R that is used for the

algebra structure is the e th iteration F e of the Frobenius endomorphism: F e(r) = rpe

. We

shall use the notation (e)R for R viewed as an R-algebra via the homomorphism F e
R: R → R.

In particular, if M is given as the cokernel of the map represented by a matrix
(
rij

)
,

then F e(M) is the cokernel of the map represented by the matrix
(
rpe

ij

)
. Unless otherwise
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indicated, q denotes pe where e ∈ N. For q = pe, F e(R/I) ∼= R/I [q], where I [q] denotes

the ideal generated by the q th powers of all elements of I (equivalently, of generators of

I). Note that F e preserves both freeness and finite generation of modules, and is exact

precisely when R is regular (cf. [Her], [Kunz]).

Lemma 2.2 (Peskine-Szpiro). Let R be a Noetherian ring of characteristic p, and M

be a finitely generated R-module of finite projective dimension over R. Then:

(a) For all i ≥ 1, TorR
i (M, (e)R) = 0.

(b) If R is local and one applies F e to a minimal free resolution of M , one obtains a

minimal free resolution of F e(M). In particular, pdRM = pdRF e(M).

(c) For all e ≥ 1, the set of associated primes of M is the same as the set of associated

primes of F e(M).

(d) In particular, if R is regular, so that F e is flat, then the conclusions of (b) and

(c) are valid for every finitely generated R-module.

Proof. We refer to [PS] for part (a). Part (b) is well-known and is immediate from

(a). Part (c) is likewise well-known, but we mention that it reduces to the local case by

localization at a given prime, and so it reduces to checking that the maximal ideal of R

is associated to M if and only if it is associated to F e(M). But when M is a module of

finite projective dimension, m is associated to M if and only if pdRM = depthR.

We refer the reader to [PS], [Her], and [Kunz] for related results. �

Discussion 2.3: integral dependence of ideals, analytic spread, and minimal

reductions. Recall that an element r of a ring R is integrally dependent on an ideal I if

there is an integer t ≥ 1 and an equation of the form rt+i1r
t−1+ · · ·+ikrk+ · · ·+it−1r+it =

0, where ik ∈ Ik, 1 ≤ k ≤ t. The elements of the ring R integrally dependent on I form an

ideal J ⊇ I, the integral closure of I in R. We refer the reader to [L1], §5 of [HH2], and

[NR1–2] for more detailed information about integral dependence and analytic spread.

(a) In a Noetherian local ring (R, m, K) with maximal ideal m and residue field K, the

analytic spread a(I) of an ideal I ⊆ m is the Krull dimension of the ring

K ⊗R grIR
∼= K ⊕ I/mI ⊕ I2/mI2 ⊕ · · · ⊕ Ik/mIk ⊕ · · · ,

The analytic spread is a lower bound on the least number of generators of an ideal I0 ⊆ I

such that I is integrally dependent on I0. If K is infinite, there always is an ideal I0 with
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a(I) generators such that I is integral over I0, and such an ideal I0 is called a minimal

reduction of I. When K is infinite, one may find generators for a minimal reduction I0

of I by simply taking a linear homogeneous system of parameters for K ⊗R grIR, say

f1, . . . , fa ∈ I/mI ∼= [K ⊗R grIR]1, and lifting the fj to elements of I.

Note that the analytic spread of I is bounded both by the number of generators of I

and by the Krull dimension of R.

(b) If I is an ideal of R and t is an indeterminate over R, then the associated primes of

IR[t] are those of the form Q = PR[t] where P is an associated prime of I. For this Q the

analytic spread of IR[t]Q is the same as the analytic spread of IRP . Thus, the maximum

analytic spread after localization at an associated prime is the same for IR[t] in R[t] as it

is for I in R. Moreover, the symbolic powers of IR[t] are the expansions of the symbolic

powers of I.

(c) If S is flat over R then the maximum analytic spread of IS after localizing at an

associated prime in S is at most what it was for I in R. To see this, first note that by

replacing R → S by R[t] → S[t] and I by IR[t], we may assume without loss of generality

that the residue fields of the local rings of associated primes of I in R are infinite. We

return to the original notation. By Proposition 15 in Section IV B.4. of [Se], Q is an

associated prime of IS if and only if it is an associated prime of (0) in S/PS for some

associated prime P of I. But S/PS is flat and, hence, torsion-free over the domain R/P ,

which implies that Q lies over P . Thus, we have a map RP → SQ. If the analytic spread

of IRP is h, it is integral over an ideal with h generators. But then ISQ is integral over

the expansion of the same ideal, and the result follows.

(d) We recall also that in a Noetherian ring R, I is integrally dependent on I0 if and

only if there exists an integer k such for all positive integers n, Ik+n = IkIn
0 . In particular,

it then follows that Ik+n ⊆ In
0 for all positive integers n.

Part (b) of the next result plays a critical role in the proofs of our theorems. It is

closely related to the Briançon-Skoda theorem, and related results were used to prove a

tight closure form of the Briançon-Skoda theorem in §5 of [HH2]. In fact, our first proofs

of some of the results here made use of the Briançon-Skoda theorem in a sharpened form3

3To be precise, if I is integral over an ideal with at most h generators in a Noetherian domain of
characteristic p > 0, then the integral closure of Ih is contained in I+. Here, if R+ denotes the integral

closure of R is an algebraic closure of its fraction field (which is unique up to non-unique isomorphism),
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given in [HH5], Theorem (7.1), that uses plus closure instead of tight closure, together

with the fact that plus closure commutes with localization.

Lemma 2.4. Let R be a ring.

(a) If I = (u1, . . . , uh) then for all integers t ≥ 1 and k ≥ 0,

Iht+kt−h+1 ⊆ (ut
1, . . . , ut

h)k+1.

In particular, Iht+kt ⊆ (ut
1, . . . , ut

h)k+1. Hence, if R has prime characteristic

p > 0 and q = pe is a power of p, then Ihq+kq ⊆ (I [q])k+1 = (Ik+1)[q].

(b) (Key Lemma) Let R be Noetherian of positive prime characteristic p. Suppose

that I is an ideal of R, that W is the complement of the union of the associated

primes of I, and that W indicates the result of expanding an ideal of R to RW and

then contracting it to R. Suppose that for every associated prime P of I, IRP has

analytic spread at most h in RP . Then there is a fixed positive integer s (depending

on I) with the following property:

For all choices of integers n ≥ 0, q = pe, and k ≥ 0, we have that if u ∈ I(hn+kn)

then

Is+(h+k)(n−1)u⌊q/n⌋ ∈
(
(I(k+1))[q]

)W
,

where ⌊q/n⌋ denotes the integer part of q/n. If R is regular or if I has finite

projective dimension and k = 0, the superscript W can be omitted.

Proof. Consider any monomial ub1
1 · · · ubh

h in the uj in which the sum of the exponents,

b1 + · · · + bh, is at least ht + kt − h + 1. Write each bj = ajt + cj where aj is a positive

integer and 0 ≤ cj ≤ t − 1. Then it suffices to prove that the sum of the aj at least k + 1,

for then the original monomial is a multiple of (ut
1)

a1 · · · (ut
h)ah ∈ (ut

1, . . . , ut
h)k+1. But,

otherwise, we have that the sum of the ak is at most k, which means that the sum of the

bj is at most kt + h(t − 1) < ht + kt − h + 1, a contradiction. (A slightly weaker version

is proved in a parenthetical comment near the bottom of p. 45 of [HH2].) The remaining

statements in (a) are immediate.

then I+ = IR+ ∩R. It is known that I ⊆ I+ ⊆ I∗, while equality for ideals generated by part of a system

of parameters in an excellent local domain is established in [Sm1]. Because the formation of R+ commutes
with localization at a multiplicative system, plus closure commutes with localization. We refer the reader

to [HH4–5] and [Sm1] for further discussion of R+.
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For part (b), first note that the issues are unaffected by adjoining an indeterminate t to

the ring R and replacing I by IR[t]. A choice of s that works for IR[t] and R[t] will work

for I and the original ring R: the associated primes of IR[t] are simply those of the form

PR[t], where P is an associated prime of I, and if W ′ is the complement of the union of

the associated primes of IR[t] we have that R[t]W ′ is faithfully flat over RW . Moreover,

for every P , the analytic spread of IR[t]PR[t] is the same as the analytic spread of IRP .

Thus, we may assume without loss of generality that the residue field of each of the rings

RP is infinite when P is an associated prime of I, and it follows that for each associated

prime Pi of I we can choose an ideal Ji ⊆ I with at most h generators such that IPi
is

integral over (Ji)Pi
. By 2.3(d) there is a positive integer si such that Isi+N

Pi
⊆ (Ji)

N
Pi

for all

positive integers N . Let s be the maximum of the si. Write q = an+r with 0 ≤ r ≤ n−1.

To prove that Is+(h+k)(n−1)ua ∈
(
(I(k+1))[q]

)W
it suffices to prove that whenever P = Pi

is an associated prime of I, we have that

Is+(h+k)(n−1)uaRP ⊆
(
(I(k+1))[q]

)
RP .

Let J = Ji. Since RP contains W−1, after localization at P the symbolic and ordinary

powers of I are the same. But then (recall that q = an + r with 0 ≤ r ≤ n − 1), we have

that

I
s+(h+k)(n−1)
P ua ⊆ I

s+(h+k)r+(h+k)an
P ⊆ I

s+(h+k)(an+r)
P ⊆ J

(h+k)q
P

(the last inclusion holds by the choice of s). But J
(h+k)q
P ⊆ (Jk+1

P )[q] by part (a), and this

is clearly contained in (I
(k+1)
P )[q]), as required.

The omission of W when R is regular is justified by the fact that I(k+1) has the property

that no element of W is a zerodivisor on R/I(k+1), and, since the Frobenius endomorphism

is flat, the elements of W are also nonzerodivisors on R/(I(k+1))[q] for all q by Lemma

2.2(d). If instead k = 0 and I has finite projective dimension we may apply Lemma 2.2(c)

instead. �

We shall say that an ideal I of a Noetherian ring R is locally generically free if for

every prime ideal P of R, IRP is either (0) or contains a nonzerodivisor. When R is local

with total quotient ring T , this is equivalent to requiring that IT be free (of rank 0 or

1, necessarily). Notice that ideals of finite projective dimension are automatically locally

generically free. This is well-known, but we indicate a brief argument. The point is that in

the local case one has a free resolution, and so whenever one has a localization such that
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the ideal is projective (≡ free), the rank is the same as the alternating sum of the ranks

of the free modules in the finite free resolution. Once one tensors with the total quotient

ring (of the local ring) one has a semilocal ring with all maximal ideals of depth 0. By the

Auslander-Buchsbaum theorem, all modules of finite projective dimension are now locally

free. By the remarks above the rank is constantly 0 or 1, so that the ideal has become

either (0) or free of rank one.

Lemma 2.5. Let R be a Noetherian ring.

(a) If R is Noetherian and I is an ideal containing a nonzerodivisor, then I is generated

by the nonzerodivisors in I.

(b) If R is Noetherian local and I 6= 0 has finite projective dimension, then it contains

a nonzerodivisor. I.e., if R is any Noetherian ring and I has finite projective

dimension, then I is locally generically free.

(c) If R is Noetherian with SpecR connected and I 6= 0 is locally generically free, then

it contains a nonzerodivisor.

Proof. For part (a), let I0 ⊆ I be the ideal generated by all nonzerodivisors in I. Then

I is contained in the union of I0 and the associated primes of (0) in the ring. Since I is

not contained in any associated prime of (0), we must have that I ⊆ I0, and so I = I0.

Part (b) was established in the discussion preceding the statement of the lemma. Finally,

to prove (c), let S be the set of primes P such that IRP contains a nonzerodivisor and let

T be the set of primes P such that IRP is zero. Then Spec R is the disjoint union of these

two sets. Both have the property that if P ⊆ Q and Q is in the set, then P is in the set.

It follows that if P ⊆ Q and P is in one of these sets, then Q is in the same set. Thus,

both sets are Zariski closed. Since Spec R is connected, one of these sets is empty, and

since I 6= (0), we have that T is empty. Then I is not contained in any associated prime

P of (0) (or its localization IRP would consist entirely of zerodivisors). Hence, there is an

element of I not in any associated prime of (0). �

We are now ready to prove one of our main results.

Theorem 2.6. Let I be ideal of a Noetherian ring of positive prime characteristic p. Let

h be the largest height of any associated prime of I (or let h be the largest analytic spread of

IRP for P an associated prime of I). Then, if R is regular, I(hn) ⊆ In for every positive

integer n, while if I has finite projective dimension, I(hn) ⊆ (In)∗ for every positive integer
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n.

If R is regular one has more generally that for every nonnegative integer k, I(hn+kn) ⊆

(I(k+1))n for every positive integer n.

Proof. Since I has finite projective dimension (this is automatic if the ring is regular), we

may apply Lemma 2.4. If R is a product we may consider the problem for the various factors

separately, and so we may assume without loss of generality that Spec R is connected. If

I = (0) there is nothing to prove. Otherwise, by Lemma 2.5(c), I contains a nonzerodivisor.

We handle all cases of the theorem at once by assuming either that R is regular or that I

has finite projective dimension and that k = 0. Choose s as in the Key Lemma 2.4(b). For

every q = pe we may write q = an+ r, where a is a nonnegative integer and 0 ≤ r ≤ n− 1.

Now, u ∈ I(hn+hk) implies, by Lemma 2.4(b), that Is+(h+k)(n−1)ua ⊆ (I(k+1))[q] (note

that in both cases the superscript W is not needed) and we may raise both sides to the

n th power to get

Isn+(h+k)(n−1)nuan ⊆ ((I(k+1))n)[q].

We may multiply by ur, and so abbreviating b = sn+(h+k)(n−1)n we have that Ibuq ⊆

((I(k+1))n)[q] for all q. Since I contains a nonzerodivisor, so does Ib: call it d. Notice that

b, and, hence, Ib, does not depend on q. We therefore have that duq ∈ ((I(k+1))n)[q] for

all q. Thus, u ∈ ((I(k+1))n)∗. Since every ideal is tightly closed in case the ring is regular,

the proof is complete in all cases. �

Remark 2.7. The result above is also valid for ideals I in Noetherian rings R if V (I) is

disjoint from the singular locus of R, and the singular locus is closed. (If I1 defines the

singular locus then I + I1 = R. Choose f ∈ I1 so that it is a unit in R/I. Then it is also a

unit modulo any any ideal containing a power of I. It follows that R/I ′ ∼= Rf/I ′ whenever

I ′ = In, I(hn+kn), or (I(k+1))n, and the result is immediate from this observation and

the fact that we may apply Theorem 2.6 to the regular ring Rf .) Precisely the same

observation holds in the equal characteristic 0 case, making use of Theorem 4.4 instead.

3. Singular affine algebras in positive characteristic

The results of this section depend heavily on the fact that, in positive characteristic,

the elements of the Jacobian ideal can be used not only as test elements, but also have
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the property that their q th powers “multiply away” the effects of embedded components

of q th bracket powers of unmixed ideals (these do not occur in the regular case): a precise

statement is given in Lemma 3.6. Statements of this sort depend heavily in turn on the

Lipman-Sathaye Jacobian theorem.

Discussion 3.1: the Jacobian ideal. Let A be a reduced Noetherian ring with total

quotient ring T = T (A), so that T is a finite product of fields. Let R be a finitely generated

A-algebra such that R is torsion-free over A (i.e., nonzerodivisors of A are nonzerodivisors

on R) and such that T ⊗A R is equidimensional of dimension d and geometrically reduced.

We then define the Jacobian ideal J (R/A) as follows. Choose a finite presentation of R over

A, say R ∼= A[x1, . . . , xn]/(f1, . . . , fm), and let J (R/A) denote the ideal of R generated

by the images of the n − d size minors of Jacobian matrix
(
∂fj/∂xi

)
. An important case

is where A = K is a field.

We note the following easy facts:

(1) J (R/A) is independent of the choice of presentation. E.g., if one changes the set

of generators fj of the denominator ideal, it suffices to compare the result from

each set of generators with the union. By induction, one only needs to see what

happens with one additional generator. The calculation is then very easy. If one

has two different presentations one can put them together (think of the two sets

of variables as disjoint and independent). Thus, one need only compare Jacobians

when one uses some extra generators to give a presentation, and, by induction,

it suffices to consider the case of one extra generator. But then the denominator

ideal has the form f1, . . . , fm, y − g(x1, . . . , xn) where y is a new variable and g

maps to the extra generator in R. Again, the calculation is now easy.

(2) Let A → B be any map such that B is reduced and flat over A, and let RB =

B⊗AR. Then J (RB/B) is defined, and J (RB/B) = J (R/A)RB. Note that there

is an induced map of total quotient rings T → T ′, and it follows easily that T ′⊗RB

is geometrically reduced and equidimensional of dimension d. Also note that RB

is torsion-free over B: R is a directed union of finitely generated A-submodules

that are embeddable in free A-modules, and since B is flat over A this property is

preserved by B ⊗A .

(3) In particular, we may apply (2) whenever B is any localization of A, or if A is a

field and B is any extension field.
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(4) If J (R/A) is defined and S is the localization of R at one element f , i.e., S = Rf ,

then J (S/A) is defined and equal to J (R/A)Sf . Note that if we have a presenta-

tion of R such that g(x1, . . . , xn) maps to f , then we get a presentation of S by

using one additional variable y and one additional generator for the denominator

ideal, yg − 1, and the calculation is then routine.

(5) Given ring extensions A → R and R → S such that J (R/A) and J (S/R) are de-

fined with T (A)⊗AR of dimension d and T (R)⊗RS of dimension d′, then J (S/A)

is defined, T (A)⊗A S has dimension d+d′, and J (S/A) ⊇ J (S/R)J (R/A). (Cer-

tainly, S is torsion-free over A. The statements about being reduced or geomet-

rically reduced and about dimension can be checked after tensoring with T , and

we may, in fact, assume that A = T is a field. The verifications are now straight-

forward. For example, the statement about dimension can be verified, for each

component of S, using the additivity of transcendence degree. For the statement

about products of Jacobians we can take a presentation of S over A of the form

A[x1, . . . , xn, y1, . . . , yt]/(f1(x), . . . , fm(x), g1(x, y), . . . , gs(x, y))

where x = x1, . . . , xn and y = y1, . . . , yt. Here, we can assume that

A[x1, . . . , xn]/(f1(x), . . . , fm(x))

is a presentation of R over A (let M be the Jacobian matrix with entries mapped

to R), and that the images of the gk in R[y1, . . . , yt] may be used to give a

presentation of S over R (let N be the corresponding Jacobian matrix with entries

mapped to S). Then the Jacobian matrix for S over A for this presentation with

entries mapped to S has the block form

(
M U
0 N

)
. Given n−d rows and columns

of M (corresponding to the choice of a minor) and t − d′ rows and columns of N ,

we get (n+t)−(d+d′) rows and columns of this block matrix, and the determinant

of the minor they determine is the product of the determinants of minors chosen

from M and N .)

Discussion 3.2: test elements. An element c ∈ R◦ is called a test element if, whenever

M is a finitely generated R-module and N ⊆ M is a submodule, then u ∈ M is in the tight

closure of N if and only if for all q = pe, cuq ∈ N [q] (the image of F e(N) → F e(M)). Thus,
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if the ring has a test element, it “works” in any tight closure test where some choice of

c ∈ R◦ “works.” Test elements are also characterized as the elements of R◦ that annihilate

N∗/N for all submodules N of all finitely generated modules M .

A test element is called locally stable if its image in every local ring of R is a test

element (this implies that it is a locally stable test element in every localization of R at

any multiplicative system). A test element is called completely stable if its image in the

completion of each local ring of R is a test element: a completely stable test element is

easily seen to be locally stable. We refer the reader to [HH1], [HH2, §6 and §8], and [HH3,

§6] for more information about test elements, For the moment we simply want to note that

if R is any reduced ring essentially of finite type over an excellent local ring, then R has a

test element. In fact, if c is any element of R◦ such that Rc is regular (and such elements

always exist if R is excellent and reduced), then c has a power that is a completely stable

test element. This follows from Theorem (6.1a) of [HH3].

3.3 Discussion. When R is a reduced ring of positive prime characteristic p and q = pe,

we write R1/q for the unique reduced R-algebra obtained by adjoining q th roots for all

elements of R. Thus, there is a commutative diagram:

R
ι

−−−−→ R1/q

1R

y
yφ

R −−−−→
F e

R

where ι is an inclusion map and φ(s) = sq. We write R∞ for the increasing union of the

rings R1/q. The following result is a variant of the results of §1.5 of [HH6]: the differences

from what is done in [HH6] are discussed in the proof.

Theorem 3.4. Let R be a geometrically reduced equidimensional affine algebra of dimen-

sion d over a field K of positive prime characteristic p. Let t be an indeterminate over K,

let L = K(t), and let RL = L ⊗K R. Let J ′ = JRL/L be the Jacobian ideal of RL over

L, which is evidently J (R/K)RL. There are always elements of J (R/K) in R◦ (so that

J (R/K) is generated by such elements), and these are completely stable test elements for

R. Moreover, J ′ is generated by elements c such that

(∗) There is a regular subring A of R (depending on c), in fact, a polynomial ring over

L, such that RL is module-finite and generically étale over A and such that for
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every q = pe, cR1/q ⊆ A1/q[R]: moreover, A1/q[R] ∼= A1/q ⊗A R is R-flat for every

q.

Proof. We note that, in essence, all of this is established in the proof of (1.5.5) of [HH6].

The fact that J (R/K) is not contained in a minimal prime of R follows from the fact

that R is geometrically reduced. The statement about completely stable test elements is

proved in (1.5.5) of [HH6] (there is an unnecessary additional hypothesis in [HH6] that R

be a domain — we discuss below why this can be removed).

The infinite field L is needed so as to be able to map a polynomial ring, say in n variables,

onto R in such a way that the variables, after a suitable linear change of coordinates, are

in sufficiently general position. Then, R will be a module-finite generically étale extension

of any polynomial subring A generated by d of these variables, and it follows that every

size n − d minor c of the matrix occurs in a Jacobian ideal J (R/A) (the notation agrees

with that used in §(1.5.2) of [HH6]), and so multiplies R1/q into A1/q[R] as a corollary of

the Lipman-Sathaye Jacobian theorem [LS]. There is one point that needs a comment: the

Lipman-Sathaye theorem as given in [LS] assumes that the ring R is a domain, and because

of this the result in [HH6] is also stated with a domain hypothesis for R. However, the

Lipman-Sathaye theorem is valid in the reduced equidimensional case: the needed result

is given in [Ho]. Finally, we note that the isomorphism A1/q[R] ∼= A1/q ⊗A R is proved in

[HH2], Lemma (6.4), and since A1/q is flat over A (because A is regular: cf. [Kunz]) the

result follows. �

Lemma 3.5. Let R be a reduced Noetherian ring of positive prime characteristic p, let

c ∈ R, and suppose that for every power q of p there is an R-flat submodule Nq of R1/q

such that cR1/q ⊆ Nq. Let W be a multiplicative system in R and let I be an ideal of R

that is contracted with respect to W . Let Iq denote the contraction of I [q]RW to R. Then

for every q = pe, cqIq ⊆ I [q].

Proof. Since Nq is R-flat, (R/I)⊗R Nq is (R/I)-flat. Since the elements of W are nonze-

rodivisors in R/I, it follows that they are not zerodivisors on Nq/INq. If u ∈ Iq we can

choose f ∈ W such that fu ∈ I [q] and then f qu ∈ I [q] as well. Taking q th roots we find

that fu1/q ∈ IR1/q, and multiplying by c gives that cfu1/q ∈ I(cR1/q) ⊆ INq. But f is

not a zerodivisor on Nq/INq (note that cu1/q ∈ Nq) and so cu1/q ∈ INq ⊆ IR1/q. Taking

q th powers yields that cqu ∈ I [q], as required. �
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Lemma 3.6. Let R be a geometrically reduced equidimensional K-algebra finitely gener-

ated over a field K of positive prime characteristic p. Let I be any ideal of R, and let W be

a multiplicative system consisting of nonzerodivisors modulo I. Let Iq be the contraction

of I [q]RW to R. Then for every q = pe, J (R/K)[q]Iq ⊆ I [q].

Proof. Let L be as in Theorem 3.4. After a flat base change from R to RL the image of

W still consists of nonzerodivisors on IRL, and since JRL/L = J (R/K)RL is generated

by elements c satisfying the condition on c in the hypothesis of Lemma 3.5, if I ′
q denotes

the contraction of I [q](RL)W to RL, we have that JRL/LI ′
q ⊆ I [q]RL and so J (R/K)I ′

q ⊆

I [q]RL. Since Iq ⊆ I ′
q, it follows that J (R/K)Iq ⊆ (I [q]RL)∩R = I [q], since RL is faithfully

flat over R. �

Theorem 3.7. Let R be a geometrically reduced equidimensional K-algebra finitely gen-

erated over a field K of positive prime characteristic p. Let I be any ideal such that for

every prime ideal Q of R, IRQ either contains a nonzerodivisor or else is (0) (i.e., I is

locally generically free). Let h be the largest analytic spread of IRP as P runs through the

associated primes of I. Let J = J (R/K) be the Jacobian ideal. Then for every positive

integer n we have that

(a) JnI(hn) ⊆ (In)∗ (tight closure).

(b) Jn+1I(hn) ⊆ In.

More generally, for every nonnegative integer k and positive integer n we have that

(a′) JnI(hn+kn) ⊆
(
(I(k+1))n

)∗
(tight closure).

(b′) Jn+1I(hn+kn) ⊆ (I(k+1))n.

Proof. We have stated parts (a) and (b) separately for emphasis, but evidently it suffices

to prove the more general statements (a′) and (b′). Since J consists of test elements it

multiplies the tight closure of any ideal into the ideal. Thus, (b′) follows from (a′) by

multiplying by J , and it will suffice to prove (a′).

It suffices to prove the result for each connected component of Spec R: tight closures may

be computed componentwise, and passing to the component can be achieved by localizing

at an idempotent — since formation of the Jacobian ideal commutes with localization, the

new Jacobian ideal is just the expansion of the original to the factor ring corresponding to

the component.

Thus, we may assume, by Lemma 2.5, that I is either (0) or else contains a nonzerodi-

visor. In the case where I = (0) there is nothing to prove. If I contains a nonzerodivisor
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then this is also true for all powers of I. Let u ∈ I(hn+kn). Let s be as in Lemma 2.4(b).

We must show that Jnu ⊆
(
(I(k+1))n

)∗
. Let W be the complement of the union of the

associated primes of I. For any q = pe we may write q = an + r with a a nonnegative

integer and 0 ≤ r < n, and then by Lemma 2.4(b) we have that

Is+(h+k)(n−1)ua ⊆
(
(I(k+1))[q]

)W

where the superscript W indicates expansion to RW followed by contraction to R. Since

I(k+1) is contracted with respect to RW , we may use Lemma 3.6 to conclude that

J [q]
(
(I(k+1))[q]

)W
⊆ (I(k+1))[q],

and so we have that

J [q]Is+(h+k)(n−1)ua ⊆ (I(k+1))[q].

Taking n th powers and abbreviating b = sn + (h + k)(n − 1)n we have that

Ib(Jn)[q]uan ⊆
(
(I(k+1))n

)[q]

for all q and since q ≥ an this yields

Ib(Jnu)[q] ⊆
(
(I(k+1))n

)[q]

for all q. Let d be a fixed nonzerodivisor in Ib (note that b does not depend on q). The

condition that

d(Jnu)[q] ⊆
(
(I(k+1))n

)[q]

tells us precisely that Jnu ⊆
(
(I(k+1))n

)∗
, as required. �

Example 3.8. Consider the ring R = K[x, y, z]/(xy − zn). The Jacobian ideal J =

J (R/K), if n is a unit, is (x, y, zn−1)R. Let P = (y, z). Then h = 1, and y ∈ P (n). Then

Jn−1 multiplies y into Pn but no smaller power does since y ∈ J and yn−2y /∈ Pn. This

suggests that the result in 3.7 (take I = P ) is close to best possible. We do not know,

however, whether the exponent n used in parts (a) and (a′) can be replaced by n − 1 in

general. Of course, if so, then the exponent n + 1 can be replaced by n in parts (b) and

(b′).
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4. The equal characteristic zero case

We now give the extensions of the various positive characteristic results to the equal

characteristic case. As mentioned in the introduction, the notion of tight closure that we

use here is that of equational tight closure from [HH6, §§3.4.3–4]. The main results of this

section are contained in Theorem 4.4 below. We need to do some groundwork before we

can prove that theorem, however. The proof of the main results depends on three steps:

one is to localize and complete, the second is to descend from the complete case to the

affine case, and the third is to use reduction to positive characteristic in the affine case.

The second step is based on the following result from [AR]:

Theorem 4.1. Let K denote either a field or an excellent discrete valuation ring. Let

T = K[[x1, . . . , xn]] be the formal power series ring in n variables over K. Then every K-

algebra homomorphism of a finitely generated K-algebra R to T factors R → S → T where

the maps are K-algebra homomorphisms and S has the form (K[x1, . . . , xn, y1, . . . , yt]m)h,

where the xi are as above, the xi and yj are algebraically independent elements, over K,

of the maximal ideal of T , m is the ideal of the polynomial ring K[x, y] generated by

(x, y) and, if K is a DVR, by the generator of the maximal ideal of K, and h denotes

Henselization. �

This is a special case of general Néron desingularization (cf. [Po1], [Po2], [Og], [Swan]),

but the argument is simpler in this case (we note that [Swan] has removed any possible

doubt about the validity of the general theorem — however, we only need the result of

[AR]). In [HH6] this is used to prove the following result, which is Theorem (3.5.1) there:

Theorem 4.2. Let K be a field of characteristic zero and let (S, m, L) be a complete local

ring that is a K-algebra. Assume that S is equidimensional and unmixed.

Suppose that R0 is a subring of S that is finitely generated as a K-algebra. We also

assume given finitely many sequences of elements {z
(i)
t }t in R0, each of which is part of a

system of parameters for S.

Then there is a finitely generated K-algebra R such that the homomorphism R0 →֒ S

factors R0 →֒ R → S and such that the following conditions are satisfied:

(1) R is biequidimensional.

(2) The image of each sequence {z
(i)
t }t in R is a sequence of strong parameters: this
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means that after localization and completion at any prime that contains them, they

form part of a system of parameters modulo every minimal prime.

(3) If m is the contraction of m to R, then dimRm − depthRm = dimS − depthS. In

particular, Rm is Cohen-Macaulay iff S is Cohen-Macaulay.

(4) If S is a reduced (respectively, a domain) then so is R.

(N.B. In general, dim Rm is substantially bigger than dim S.) �

In the sequel we need a version of this result in which the equidimensionality of the ring

is not assumed. Moreover, we need to keep track of some complexes of modules, bounds on

analytic spreads after localization at associated primes, the fact that one ideal is a certain

symbolic power of another, and so forth. The following result suffices:

Theorem 4.3. Let K be a field of characteristic zero and let (S, m, L) be a complete local

ring that is a K-algebra. Assume given each of the following:

(1) Finitely many finitely generated S-modules with specific finite presentations, finitely

many maps of these S-modules with specific presentations of the maps, and finitely

many specified equalities among the compositions of these maps.

(2) Using the modules and maps in (1), finitely many short exact sequences. Finitely

many finite complexes with specified homology. Finitely many instances in which

one of the specified modules is identified with a submodule of another. Finitely

many instances in which one of the modules is specified to be the intersection of

finitely many of the others, where all are submodules of a given specified module.

(3) Finitely many ideals of S with specified generators.

(4) From among the ideals in (3), a finite subset with a finite set of associated primes

of specified heights, and a finite subset such that the maximum analytic spread after

localizing at an associated prime has a given bound.

(5) From among the ideals in (4), finitely many choices of I, I ′, such that I and I ′

have the same associated primes. Also, finitely many choices of I and I ′ and an

integer k such that I ′ = I(k).

(6) From among the ideals and modules given in (1) and (3), finitely many pairs M ,

I such that IM = 0.

(7) A finite set of finite sequences in S, each of which is specified to be part of a system

of parameters for S, and a finite set of sequences each of which is specified to be a

regular sequence on a given one of the given modules.
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(8) A finitely generated K-subalgebra R0 ⊆ S so large that it contains all the entries

needed for the presentations of the modules and maps in (1), all of the specified

generators of the ideals in (3), and the elements of the sequences in (7), so that

we may view all of the given modules, maps, sequences, and ideals as arising from

corresponding ones over R0 either by tensoring, taking images, or expanding ideals.

Then there is a finitely generated K-algebra R such that the homomorphism R0 →֒ S

factors R0 →֒ R → S and such that the following conditions are satisfied:

(a) The specified presentations of maps of modules are maps of modules over R, and

the specified exacts sequences of modules, descended to R by tensoring up from the

their counterparts over R0, are exact. All of the other specified relations among

the given modules and ideals continue to hold after descent, including specifications

of the homology of a given complex and specifications that a certain submodule (or

ideal) be a finite intersection of finitely many given other submodules (or ideals).

Likewise, the specification that a certain ideal be the annihilator of a certain module

can be preserved.

(b) The image (under the map R0 → R) of each set of elements that is part of a

system of parameters for S has height equal to its length. The image of each

regular sequence on a specified module is a regular sequence on the corresponding

module over R.

(c) The specified ideals, descended to R by expanding their counterparts over R0, are

unmixed when the original ideals are. For a specified ideal I, the greatest number of

generators and the greatest analytic spread after localization at an associated prime

do not increase. Moreover, for the given choices of I, I ′, k such that I ′ = I(k),

this remains true after descent to R.

(d) R is regular if S is.

(N.B. In general, dim Rm is substantially bigger than dim S.)

Proof. If S is regular we apply the Artin-Rotthaus theorem (4.1) directly to the power

series ring S = L[[x1, . . . , xn]], where the coefficient field L has been chosen to contain K.

We first solve the problem over L and then descend to K. As the latter step is routine,

we shall simply treat the case L = K.

We are free to enlarge R0 repeatedly, and so may assume that x1, . . . , xn ∈ R0. Since

the Henselization of a local ring is a direct limit of finitely presented étale extensions,
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we have that S is a filtered inductive limit of regular rings R of finite type over L with

maps R0 → R → S such that R is smooth over L[x1, . . . , xn] and such that the xi

form a permutable regular sequence in R. In this case, we can keep track of whether a

sequence of elements is part of a system of parameters by extending it to a full system of

parameters, say, y1, . . . , yn. There will be equations expressing a power of every yj as a

linear combination of the xi and conversely. We may enlarge R0 so that all these equations

hold in R0. Conditions such as having a specified ideal kill a specified module are likewise

expressible equationally and can be guaranteed by enlarging R0. We shall leave many

straightforwarded details to the reader, noting that the proof of (3.5.1) in [HH6] is given

in great detail and is a very similar kind of argument. We focus here only on some critical

issues.

One can keep track of short exact sequences by using an exact sequence of finite free

resolutions over R. The rows will be split exact. To guarantee that a finite free resolution

stays a resolution one keeps track of all the matrices. R0 is enlarged to contain all their

entries. The condition that one has a complex is equational, and so is the condition that

the determinantal ranks be preserved. By the result of [BE], one only needs to guarantee

that the largest nonvanishing ideals of minors have specified depths, i.e., that each contains

a subset, of a certain specified size, of a system of parameters for the ring, and we may

apply the discussion of the preceding paragraph.

This enables one also to keep track of finite complexes with specified homology (express

all the conditions by using suitable short exact sequences) and of finite intersections as

well: e.g., the intersection of N1 and N2 within N may be characterized as the kernel of

the map N → N/N1 ⊕ N/N2. The annihilator I of a single element u of a module N

may be characterized by an injection R/I → N carrying the image of 1 to u, and the

annihilator of N may be characterized as the intersection of the annihilators of specified

generators of N .

One can preserve depths of modules and, hence, regular sequences by expressing them

in terms of the vanishing of Koszul homology.

One can keep the associated primes of an ideal having specified heights as follows: keep

track of its entire primary decomposition, preserving the fact that components intersect

to give the ideal. To preserve the relation between an ideal I primary to P and and P ,

note that S/I has a filtration by modules that are embeddable in finitely generated free
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(S/P )-modules, and this can be preserved. Now, the height property can be preserved by

keeping P height unmixed in the descent: we do not need to keep P prime. This can be

achieved by writing P in the form

(f1, . . . , fd)R :R gR

where the elements fi are part of a system of parameters for S. Note that the number of

primary components may increase, but the largest height of an associated prime does not.

The same idea can be used to ensure that two specified ideals I, I ′ that have the same

associated primes continue to do so.

When S is not necessarily regular write it as T/J0 where T is regular, and transfer the

problem to T (while keeping track of J0). Ideals of S correspond to ideals of T that contain

J0, and R-modules to T -modules that are killed by J0. For example, to maintain a specific

symbolic power relationship, one may suppose that one of the ideals is I ⊇ J0 and that it

has a certain set S of associated primes while the other has the form (Ik + J0) : g with g

a nonzerodivisor on I and that it has as its associated primes a certain subset of S. We

have seen that all this can be preserved while descending.

Finally, we want to explain how to preserve the condition that the maximum analytic

spread of I after localizing at an associated prime of I be at most h. Again, we think of S

as T/J0 where T is regular. Call the associated primes P1, . . . , Ps. Then for each Pi, ISPi

is integral over IRPi
after localizing at Pi. Thus, for each Pi we can choose an element

v = vi not a zerodivisor on Pi such that IRv is integral over I0Rv, where I0 is generated

by at most h elements of R. (In the equal characteristic 0 case, the residue field is always

infinite.) After clearing denominators by multiplying by a power of v, for each generator

r of I we get an equation

vNrt + i1r
t−1 + · · · + ikrk + · · · + it−1r + it = j,

with ik ∈ Ik
0 and with j ∈ J0. We can preserve all this by placing all of the needed

elements in R0. As we descend, the Pi are replaced by unmixed ideals, while each vi

is kept a nonzerodivisor on the descended version of Pi. By including sufficiently many

coefficients in R0 we can preserve that every ik ∈ Ik
0 where I0 is generated by at most h

elements. Any associated prime of the descended version of I will be an associated prime

of one of the descended Pi, and so will fail to contain the corresponding vi. Thus, after
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descent, when one localizes at an associated prime of the descended version of I, at least

one of the vi becomes invertible, and it follows that the descended version of I becomes

integrally dependent on an ideal with at most h generators. �

Theorem 4.4. Let R be Noetherian ring containing a field of characteristic 0. Let I be

any ideal of R, and let h be the largest analytic spread of IRP for P an associated prime

of I.

(a) If R is regular, I(hn) ⊆ In for all positive integers n. More generally, I(hn+kn) ⊆

(I(k+1))n for all positive integers n and nonnegative integers k.

(b) If I has finite projective dimension then I(hn) ⊆ (In)∗ for all positive integers n.

(c) If R is affine and equidimensional over a field K, and locally I is either 0 or

contains a nonzerodivisor, then with J = J (R/K), for every nonnegative integer

k and positive integer n we have JnI(hn+kn) ⊆ ((I(k+1))n)∗ and Jn+1I(hn+kn) ⊆

(I(k+1))n. In particular, JnI(hn) ⊆ (In)∗ and Jn+1I(hn) ⊆ In for all n.

Proof. We first prove (c), and at the same time we prove (b) for finitely generated algebras

over a field K. We use the standard descent theory of Chapter 2 of [HH6] to replace the field

K by a finitely generated Z-subalgebra A, so that we have a counterexample in an affine

algebra RA over A with RA ⊆ R and R ∼= K ⊗A RA. In particular, RA will be reduced. In

doing so we descend I to an ideal IA of RA as well as the ideals and their prime radicals in

its primary decomposition. We have an element uA that fails to satisfy the containment

we are trying to prove. In the regular case, we can localize at a nonzero element of A

to make RA smooth over A. In either case, we can localize at a nonzero element of A

to make A smooth over Z. Since J (RA/A)J (A/Z) ⊆ J (RA/Z) and since J (A/Z) = A

when A is smooth over Z, we see that we may assume that J (RA/A) ⊆ J (RA/Z), which

means that we can work over Z instead of A. The result now follows from the fact that, for

almost all fibers, the containment holds for the map Z → RA after passing to fibers over

closed points of Spec Z. Notice that as we pass to fibers κ → Rκ we may assume that each

minimal prime PA of IA becomes a radical ideal whose minimal primes in Rκ are all of the

same height as the original. Thus, in the fiber, the primary decomposition of Iκ may have

more components, but each of these will be obtained from the image of one of the original

components by localization. The biggest analytic spread after localizing at an associated

prime will not change. It follows in both parts that we have the required containment in

a tight closure. In the regular case, we have that all ideals are tightly closed.
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We now consider the general case for (a) and (b). The problem in each part reduces to

the local case: note that it suffices to check whether an element is in a tight closure locally

after completion.

One may then complete: although IR̂ may have more associated primes, Discussion

2.3(c) shows that the biggest analytic spread as one localizes at these cannot increase.

Note that once we have Î(hn) ⊆ (În)∗ in R̂, it follows that I(hn) ⊆
(
(In)R̂

)∗
since R̂ is flat

over R, and this implies that I(hn) ⊆ (In)∗, which is In when R is regular.

In the regular case, next note that Î(k+1) = I(k+1)R̂, so that (Î(k+1))n = (I(k+1))nR̂.

(The associated primes of R̂/I(k+1)R̂ are among those associated to R̂/P R̂ for some as-

sociated prime P of I, by Proposition 15 in IV B.4. of [Se], since any associated prime of

I(k+1) must be an associated prime of I, and by another application of Proposition 15 in

IV B.4. of [Se] these in turn are associated primes of IR̂.) Thus, we get

I(hn+kn) ⊆ Î(hn+kn) ⊆ (Î(k+1))n = (I(k+1))nR̂

and so

I(hn+kn) ⊆ (I(k+1))nR̂ ∩ R = (I(k+1))n,

as required, by the faithful flatness of R̂ over R.

Using Theorem 4.3 above one may then descend to a suitable affine algebra over a

coefficient field for the complete local ring, and the results follow from what we have

already proved in the affine case. �

5. Questions

Evidently, if we fix an ideal I in a Noetherian ring R, for every integer N there is a

least integer g(N) ∈ N such that I(g(N)) ⊆ IN , and there are clearly deep results about

the behavior of g(N)/N . Our result that in equicharacteristic regular rings (or when I

has finite projective dimension), g(N)/N is bounded by the largest height of an associated

prime of I (or the largest analytic spread of IRP for P an associated prime of I) might be

improved in any number of ways.

One possibility is to study the case where the ring need not be regular (and I does not

have finite projective dimension). Note that our results here for this case, involving the



COMPARISON OF SYMBOLIC AND ORDINARY POWERS OF IDEALS 23

Jacobian ideal, do not directly give information about the question raised just above. (We

mention again that we do not know whether the exponents used on the Jacobian ideal

in Theorem 3.7 and Theorem 4.4(c) are best possible: it may be possible to decrease the

exponent by 1.)

We do not know what the situation is in mixed characteristic regular rings. But even

in equicharacteristic regular rings there may be better bounds that make use of additional

information about I. Notice, for example, that the height is never the best bound when I

is m-primary in a regular local ring (R, m), since then I(n) = In for all n.

It is not clear what the best bound is in equicharacteristic regular rings even for primes

of codimension 2.

In quite a different direction, we observe that there have been several instances in which

the theory of multiplier ideals and tight closure theory have either interacted, or have been

used to prove similar results. E.g., tight closure can be used to prove the Briançon-Skoda

theorem (cf. [HH2, §5]), as can the theory of multiplier ideals. (Cf. [L2], where these are

called adjoint ideals. This is also done implicitly in [EL] and explicitly in [Laz, §10]).

The connection between the multiplier ideal and the test ideal of tight closure theory is

explored in [Sm2]. It would be desirable to understand fully the underlying reasons for

this connection.
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