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ARE SYMBOLIC POWERS HIGHLY EVOLVED?

BRIAN HARBOURNE & CRAIG HUNEKE

Abstract. Searching for structural reasons behind old results and conjectures of Chudnovksy
regarding the least degree of a nonzero form in an ideal of fat points in P

N , we make conjectures
which explain them, and we prove the conjectures in certain cases, including the case of general
points in P

2. Our conjectures were also partly motivated by the Eisenbud-Mazur Conjecture on
evolutions, which concerns symbolic squares of prime ideals in local rings, but in contrast we consider
higher symbolic powers of homogeneous ideals in polynomial rings.

1. Introduction

Both authors of this paper have been interested for many years in the behavior of symbolic
powers of ideals in regular rings, especially in polynomial rings. In the case of defining ideals of
points, symbolic powers are special cases of ideals of so-called fat points, and their study provides a
meeting ground of geometry and algebra. Hereafter R will denote the ring K[x0, . . . , xN ] = K[PN ]
where K is a field and I ⊆ R will be a homogeneous ideal, with M = (x0, . . . , xN ) being the
maximal homogeneous ideal in R. Many of our arguments hold for arbitrary fields, but in some
cases the field K must be infinite. By symbolic power we mean I(m) = R ∩ (∩P (I

m)P ) where the
intersections take place in the field of fractions of K[PN ], and the second intersection is over all
associated primes P of I. An important special case is that of ideals of fat points; i.e., I = ∩iI(pi)

mi

for non-negative integers mi and a finite set of distinct points pi ∈ PN , where I(pi) is the ideal

generated by all forms that vanish at pi. In this case I(m) is just ∩iI(pi)
mmi . When PN is clear,

we denote the subscheme defined by I by Z = m1p1 + · · ·+mnpn, and denote its ideal I by I(Z).

In this case, I(m) becomes I(mZ).
If J is a homogeneous ideal, we let α(J) be the least degree of a polynomial in J . Let I be the

radical ideal of a finite set of points in PN . Using complex analytic techniques, Waldschmidt and
Skoda [W1, Sk] showed that

α(I(m))/m ≥ α(I)/N (◦)

for every m > 0. Interestingly, this result also follows for any homogeneous ideal I ⊆ R = K[PN ]

because I(Nm) ⊆ Im by [ELS], [HH1] and clearly (I(m))N ⊆ I(mN). These containments imply

that Nα(I(m)) = α((I(m))N ) ≥ α(I(Nm)) ≥ α(Im) = mα(I), so α(I(m))/m ≥ α(I(Nm))/(Nm) ≥
α(I)/N .

When N = 2, Chudnovsky [Ch] improved the bound of Waldschmidt and Skoda [W1, Sk]. Since
only a sketch of Chudnovksy’s proof is given in [Ch], we later give a proof (see Proposition 3.1).
Chudnovsky’s improvement is the following: Let p1, . . . , pn ∈ P2 be distinct points. Let I =
∩iI(pi) ⊂ K[P2]. Then α(I(m))/m ≥ (α(I) + 1)/2 for all m > 0.
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Because the result of Waldschmidt and Skoda can be explained by a general property of symbolic
powers, that I(Nm) ⊆ Im for all m, it is natural to speculate whether or not there is a similar
property which might underlie Chudnovsky’s improved bound. This led us to our first conjecture,
which gives a structural reason for the result of Chudnovsky. Namely, we conjecture that I(2r) ⊆
M rIr for an ideal I of points in P2. This conjecture, which we prove for general points (see
Proposition 3.10), easily implies the result of Chudnovsky. We generalize this conjecture in a natural
way to arbitrary dimension. As it turns out, a positive answer to our more general conjecture also
gives a positive answer to a conjecture of Chudnovsky, that if I is the ideal of a finite set of points
in K[PN ], then α(I(m))/m ≥ (α(I) +N − 1)/N .

Our conjecture relates to evolutions. Evolutions are certain kinds of ring homomorphisms that
arose in proving Fermat’s Last Theorem [F, TW, Wi]; see [B] for an exposition. An important step
in the proof was to show in certain cases only trivial evolutions occurred. Eisenbud and Mazur
[EM] showed the question of triviality (which for the work of Wiles was in mixed characteristic)
could be translated into a statement involving symbolic powers. They then made the following
conjecture in characteristic 0:

Conjecture 1.1 (Eisenbud-Mazur). Let P ⊂ C[[x1, . . . , xd]] be a prime ideal. Then P (2) ⊆ MP ,

where M = (x1, . . . , xd).

Our main conjecture can at least heuristically be thought of as a generalization of the conjecture
of Eisenbud-Mazur to higher symbolic powers. The homogeneous version of Conjecture 1.1 for
symbolic squares is easy to verify:

Fact 1.2. Let I ⊆ K[x0, . . . , xN ] be a proper homogeneous ideal where char(K) = 0. Then I(2) ⊆
MI.

Proof. For any F ∈ I(2) we have ∂F/∂xi ∈ I; if char(K) = 0, then by the Euler identity we have

deg(F )F =
∑

i xi∂F/∂xi ∈ MI, so I(2) ⊆ MI. �

The general question we wish to raise is:

Question 1.3. Let I ⊂ R be a homogeneous ideal. For which m, i and j do we have I(m) ⊆ M jIi?

A complete answer will typically depend on I, but it is also of interest to ask what holds for
all I, knowing only N . Since M jIi ⊆ Ii, we see that whenever I(m) ⊆ M jIi is true we also have
I(m) ⊆ Ii. It is known that I(m) ⊆ Ii holds whenever m/i ≥ N [ELS], also [HH1], and that

whenever m/i < N , there exist ideals I for which I(mt) ⊆ Iit fails for t ≫ 0 [BH1].
Thus an interesting starting point is:

Question 1.4. Let I ⊂ R be a homogeneous ideal. For which j does I(rN) ⊆ M jIr hold for all I
and all r?

The best known general results concerning this question are found in [HH2] and [TY].
In Section 2 we state our main conjecture, and prove it in a very special case. Section 3 gives the

proof of the result of Chudnovsky, which we then slightly generalize and relate to the Noetherian
property for symbolic power algebras. We prove our conjecture for general points in P2. The
last section relates our work to a conjecture of the first author, and has further speculations and
examples.

2. An optimistic conjecture

Note that I(rN) ⊆ M jIr fails in general if j > r(N − 1), even for I = M . So the best we can
hope for is:
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Conjecture 2.1. Let I = ∩iI(pi)
mi ⊂ K[PN ] be any fat points ideal. Then I(rN) ⊆ M r(N−1)Ir

holds for all r > 0.

In fact, as far we know, there is no reason not to raise this question for arbitrary homogeneous
ideals in a polynomial ring, or even for arbitrary ideals in a regular local ring. In this paper, all our
main arguments are for the case of points, so we have chosen not to make the general conjecture
unless more evidence can be found that supports it.

In fact, Proposition 3.3 shows that the conjecture is true for N = 2 for fat point ideals arising as
symbolic powers of radical ideals generated in a single degree. Examples of point sets whose ideals
are generated in a single degree include star configurations (see Definition 3.8) and any set of

(

s
2

)

general points in P2.
Most of our progress on this conjecture relates to the minimal degrees of elements in symbolic

powers. We need the following definition.

Definition 2.2. Let R be a polynomial ring over a field, and let J be a homogeneous ideal. We set

α(J) equal to the smallest integer l such that Jl 6= 0, and set β(J) equal to the smallest integer n
such that Jn contains a regular sequence of length two.

We first note that the conjecture holds provided we know some information about the symbolic
powers.

Proposition 2.3. Let J = ∩iI(pi) ⊂ R = K[PN ] and let I = J (m) ⊂ R be a fat points ideal. If

for some s, J is generated by a set of homogeneous elements each having degree at most s, and if

α(I(Nr)) ≥ rms+ rm(N − 1), then I(Nr) ⊆ M r(N−1)Ir.

Proof. We use that J (Nmr) ⊆ Jmr by [ELS] (also see [HH1]). Since J is generated in degree

s and less, so Jmr is generated in degree at most mrs, and hence Jmr
t = (Mmr(N−1)Jmr)t for

t ≥ mrs + mr(N − 1). Of course, 0 = J
(Nmr)
t ⊆ (Mmr(N−1)Jmr)t for t < α(J (Nmr)), while for

t ≥ α(J (Nmr)) = α(I(Nr)) ≥ rms+ rm(N −1) we have (J (Nmr))t ⊆ (Jmr)t = (Mmr(N−1)Jmr)t and

so I(Nr) = J (Nmr) ⊆ Mmr(N−1)Jmr ⊆ M r(N−1)Ir. �

3. Points in projective space

As discussed in the introduction, if I is the radical ideal of a finite set of points in PN , Wald-
schmidt and Skoda [W1, Sk] showed that α(I(m))/m ≥ α(I)/N for every m > 0, using complex

analysis, but it also follows for any homogeneous ideal I ⊆ R = K[PN ] using the result I(Nm) ⊆ Im

of [ELS], [HH1]. Among other things, the algebraic argument suggests that Conjecture 2.1 is closely

related to the study of α(I(m)).
When N = 2, Chudnovsky improved the bound of Waldschmidt and Skoda [W1, Sk]. Since only

a sketch of Chudnovksy’s proof is given in [Ch], we give both the statement and proof here. We
will give a small improvement of this result in Proposition 3.5.

Proposition 3.1 (Chudnovsky). Let p1, . . . , pn ∈ P2 be distinct points. Let I = ∩iI(pi) ⊂ K[P2].
Then

α(I(m))

m
≥ α(I) + 1

2
for all m > 0.

Proof. Let b = α(I). Choose distinct points q1, . . . , qt ∈ {p1, . . . , pn} with t as small as possible
such that α(J) = b, where J = ∩iI(qi). By minimality, the points qi impose independent conditions

in degree b − 1, hence t =
(

b+1
2

)

(since this is the dimension of the space of all forms of degree
b − 1) and α(J) = reg(J). Thus J is generated in degree b and hence the only base points of Jb
are the points qi; in particular, Jb is fixed component free (i.e., there is no nonconstant common

factor for the homogeneous elements of J of degree b). Now let A be a nonzero form in I
(m)
a , where
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a = α(I(m)). Since Jb is fixed component free, we can choose an element B ∈ Jb with no factor in

common with A. By Bézout’s Theorem, it follows that ab = deg(A) deg(B) ≥ mt = m
(

b+1
2

)

, and

hence that α(I(m)) = a ≥ (b+ 1)/2 = (α(I) + 1)/2. �

Our original motivation for Conjecture 2.1 was exactly this result of Chudnovsky. Just as the
containment result I(rN) ⊆ Ir of [HH1] implies the bound α(I(m))/m ≥ α(I)/N of Waldschmidt
and Skoda, we looked for a new containment which in a similar way would imply the bound in
Proposition 3.1. In addition to the result of Proposition 3.1, Chudnovsky [Ch] has conjectured for

N > 2 that α(I(m))/m ≥ (α(I) + N − 1)/N (actually his conjecture was stated for K = C for
points in affine N -space). We now show that Conjecture 2.1 implies not only Proposition 3.1 but

also α(I(m))/m ≥ (α(I) +N − 1)/N .

Lemma 3.2. Let p1, . . . , pn ∈ PN be distinct points, and let I = ∩iI(pi) ⊂ K[PN ]. If I(Nr) ⊆
M r(N−1)Ir holds for all r ≥ 1, then α(I(m))/m ≥ (α(I) +N − 1)/N holds for all m ≥ 1.

We pause to recall a numerical quantity introduced by Waldschmidt [W1] for sets of points, but
which extends to homogeneous ideals 0 6= I ⊂ K[PN ]. Define

γ(I) = lim
m→∞

α(I(m))

m
.

The limit exists and satisfies γ(I) ≤ α(I(m))
m

for all m ≥ 1; see [BH1, Lemma 2.3.1] and its proof.
We now prove Lemma 3.2.

Proof. Since I(Nr) ⊆ M r(N−1)Ir, we have α(I(Nr)) ≥ α(M r(N−1)Ir) = rα(I) + r(N − 1). Now

divide by rN and take limits as r → ∞ to get α(I(m))/m ≥ γ(I) = (α(I) +N − 1)/N . �

Conversely, we can also use Proposition 3.1 to prove certain cases of Conjecture 2.1.

Proposition 3.3. Let J = ∩iI(pi) ⊂ K[PN ] and let I = J (m) ⊂ R be a fat points ideal. If N = 2
and if J is generated in degree α(J), then I(Nr) ⊆ M r(N−1)Ir for all r.

Proof. Let s = α(J); then α(J (Nmr)) ≥ mrs+mr(N−1) by Proposition 3.1. Now apply Proposition
2.3. �

Remark 3.4. Given I = ∩iI(pi) for any distinct points p1, . . . , pn ∈ PN for N > 2, if Chudnovsky’s

conjecture [Ch] α(I(m))/m ≥ (α(I)+N−1)/N holds, then the proof of Proposition 3.3 would work
for any N , not just N = 2.

We next refine Proposition 3.1 by bringing into play β(I(m)).

Proposition 3.5. Let Let p1, . . . , pn ∈ P2 be distinct points. Let I = ∩iI(pi) ⊂ K[P2] = R. Set

αm = α(I(m)), and βm = β(I(m)). Then we have:

(i) αmβm ≥ m2n, and

(ii)
αm

m
≥
(α1 + 1

2

)(mα1

βm

)

.

Moreover, if αmβm = m2n, then (I(m))k = I(mk) for all k ≥ 1.

Proof. We first prove that αmβm ≥ m2n, which is basically by Bézout’s theorem. Let l be a general
linear form. Choose f of degree αm and g of degree βm in I(m) which form a regular sequence.
Then αmβm = ℓ(R/(f, g, l)) =

∑

P ℓ(P /(f, g)P )ℓ(R/(P, l)), where the sum is over all prime ideals
minimal over the ideal (f, g). Since such P include all the ideals corresponding to the points
p1, . . . , pn, we can restrict the sum to P1, . . . , Pn, where Pi = I(pi). In this case, ℓ((R/(Pi, l)) = 1
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for each i, and ℓ(RPi
/(f, g)Pi

) ≥ m2 since RPi
is a regular local ring and by assumption, the images

of f and g are in (Pm
i )Pi

1 . This gives the first inequality.
To prove the second inequality, we use the idea from the proof of Proposition 3.1. As in that proof,

choose distinct points q1, . . . , qt ∈ {p1, . . . , pn} with t as small as possible such that α(J) = α(I),

where J = ∩iI(qi). As above, t =
(

α(I)+1
2

)

, and α(J) = reg(J). Thus J is generated in degree α(I).

Note that I(m) ⊂ J (m), and so αmβm ≥ α(J (m)))β(J (m)) ≥ m2
(

α(I)+1
2

)

, using the first inequality of
this theorem. This proves the second inequality.

Finally we prove the last part. Suppose that αmβm = m2n. Choose f and g as in the first part
of this theorem. We use the ideas of Theorem 3.1 of [Hu], which cannot be used directly since it
deals with the local case of a prime ideal.

To show I(mk) = (I(m))k for all k ≥ 1, since (f, g)k−1I(m) ⊆ (I(m))k ⊆ I(mk), it’s enough to show

I(mk) = (f, g)k−1I(m). To prove this note that (f, g)k−1I(m) ⊂ I(mk), so it suffices to prove the

equality locally at each associated prime of (f, g)k−1I(m). We prove that the associated primes of
this ideal are exactly the primes ideals Pi = Ipi . Clearly each of these are associated since they
are minimal over the ideal. To prove they are all the associated primes, we use induction on k.
If k = 0, this is clear by the definition of symbolic powers. For k ≥ 1, (f, g)k−1/(f, g)k−1I(m) ∼=
(f, g)k−1/(f, g)k ⊗ R/I(m) since (f, g)k ⊂ (f, g)k−1I(m), and the tensor product is isomorphic to

a free R/I(m)-module as (f, g)k−1/(f, g)k is a free R/(f, g)-module because f, g form a regular

sequence. Hence the only associated primes of (f, g)k−1/(f, g)k−1I(m) are P1, . . . , Pn. Now the
exact sequence

0 → (f, g)k−1/(f, g)k−1I(m) → R/(f, g)k−1I(m) → R/(f, g)k−1 → 0

shows that the associated primes of R/(f, g)k−1I(m) are contained in the union of the associated

primes of (f, g)k−1/(f, g)k−1I(m) together with the associated primes of R/(f, g)k−1. Since the
associated primes of R/(f, g)k−1 are exactly those of R/(f, g), to finish the proof of our claim we
need to prove that all the associated primes of (f, g) are P1, . . . , Pn. As this ideal is unmixed,
this is equivalent to proving that the only points both f and g vanish at are P1, . . . , Pn. Recall
from above that αmβm = ℓ(R/(f, g, l)) =

∑

P ℓ(RP /(f, g)P )ℓ(R/(P, l)), where the sum is over
all prime ideals minimal over the ideal (f, g). Since we are assuming that αmβm = m2n, and
since

∑

Pi
ℓ(RPi

/(f, g)Pi
)ℓ(R/(Pi, l)) ≥ m2n, we see that the only primes minimal over (f, g) are

P1, . . . , Pn.
To finish the proof, we need to prove that (I(mk))Pi

= ((f, g)k−1I(m))Pi
for every i. We know

from the fact equality holds that ℓ(RPi
/(f, g)Pi

) = m2. However the multiplicity of (Pi)
m
Pi

is exactly

m2, and since (f, g)Pi
⊂ (Pi)

m
Pi
, it follows from Rees’s theorem [SH, Theorem 11.3.1] that (f, g)Pi

is a minimal reduction of (Pm
i )Pi

. Moreover, (I(m))Pi
= (Pm

i )Pi
is integrally closed. By the result

of Lipman and Teissier [LT], the result follows. �

Remark 3.6. The second inequality of Proposition 3.5 can be thought of as an improvement of
Proposition 3.1 in the case in which β(I(m)) < α(I)m. However, the proof actually shows that

α(I(m))

m
≥
(α(I) + 1

2

)

(

α(I)m

β(J (m))

)

, (∗)

where J is as in the proof. Moreover, β(J (m)) ≤ α(I)m, since J is generated in degree α(J) = α(I),
and Jm ⊂ J (m). Thus (∗) does represent a small improvement on the orginal result of Chudnovsky.

In fact, suppose that equality occurs in Chudnovksy’s bound, so that α(I(m))
m

= α(I)+1
2 . Then

1In general, if (R,M) is a regular local ring and if x1, . . . , xd ∈ Mn form a maximal regular sequence, then
ℓ(R/(x1, . . . , xd)) ≥ nd. This can be seen, for example, as follows. If I denotes the integral closure of the
ideal (x1, . . . , xd), then I ⊂ Mn as the latter ideal is integrally closed. Hence the multiplicity of I , which is

ℓ(R/(x1, . . . , xd)), is at least the multiplicity of Mn, which is nd.
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necessarily α(I)m = β(J (m)) by (∗). But α(I(m)) ≥ α(J (m)) ≥ (α(J)+1
2 )m, so that equality must

hold and we obtain that α(J (m))β(J (m)) = m2
(

α(I)+1
2

)

. Therefore by Proposition 3.5, it follows

that (J (m))k = J (mk) for all k ≥ 1.

Remark 3.7. The last conclusion in Theorem 3.5 implies that the symbolic power algebra, ⊕I(n)

is a Noetherian ring. (This is a homogeneous version of [Sc, Theorem 1.3].)

Definition 3.8. Let H1, . . . ,Hs ∈ PN be s ≥ N hyperplanes such that no N + 1 meet at a single
point, and let p1, . . . , pn be the n =

(

s
N

)

points such that each point is the intersection of a subset of
N of the s hyperplanes; following a suggestion of Geramita, we refer to such a set of points pi as a
star configuration for s hyperplanes in PN (since 5 general lines in the plane if drawn appropriately
give a 5 pointed star).

We now show that Conjecture 2.1 and the conjecture of Chudnovsky mentioned in Remark 3.4
both hold for star configurations. In fact, we show more.

Corollary 3.9. Let I = ∩iI(pi) where the n =
(

s
N

)

points pi ∈ PN give a star configuration coming

from s ≥ N hyperplanes in PN . Then
α(I(r))

r
≥ α(I)+N−1

N
and I(Nr) ⊆ M r(N−1)Ir hold for all r ≥ 1,

with equality in the former when r is a multiple of N . If moreover N = 2 and m > 0 is an even

integer, then: equality holds in (∗) of Remark 3.6; α(I(m))β(I(m)) = m2n; and α(I)k = β(I(k)) and
(I(m))k = I(mk) hold for all k ≥ 1.

Proof. We have α(I(Nr)) = sr by [BH1, Lemma 2.4.1], so γ(I) = limr→∞ α(I(rN))/(rN) = s/N ,
but we also have reg(J) = α(I) = s − N + 1 by [BH1, Lemma 2.4.2], so we have the equality

α(I(Nr))/(rN) = γ(I) = s/N = (α(I) + N − 1)/N , as claimed. Since as pointed out above

α(I(r))/r ≥ γ(I) holds for all r, we also have α(I(r))
r

≥ α(I)+N−1
N

.

Since α(I) = reg(I), we see I is generated in degree α(I) = s − (N − 1) and since α(I(mrN)) =

mrs ≥ mr(s− (N − 1)) +mr(N − 1), it follows by Proposition 2.3 that I(Nr) ⊆ M r(N−1)Ir.

Now assume N = 2. Then we have α(I(m))
m

≥ α(I)+1
2 from above, so (∗) will be an equality

if we verify that β(I(m)) = mα(I). Note that each of the s lines defining the star configuration
contain exactly s − 1 of the n =

(

s
2

)

points pi. Let L be the linear form defining one of these

lines. If F ∈ (I(k))t is a form of degree t < k(s − 1), then L divides F by Bézout’s Theorem.

Thus k(s− 1) ≤ β(I(k)), but β(I(k)) ≤ reg(I(k)), and, by [GGP, Theorem 1.1], reg(I(k)) ≤ kreg(I).

Since reg(I) = s − 1, we see β(I(k)) = k(s − 1) = kα(I), as we wanted to show. Moreover,

α(I(m))β(I(m)) = (sm/2)m(s − 1) = m2n, so (I(m))k = I(mk) holds by Proposition 3.5. �

Of course, star configurations are very special sets of points, but if one takes the ideal J of a
general set of

(

s
2

)

points of P2, then α(J) = reg(J) so J is generated in degree α(J) and Conjecture

2.1 holds for I = J (m) by Proposition 3.3. More generally, we now show that Conjecture 2.1 holds
for the radical ideal I of any set of n general points of P2.

Proposition 3.10. Let I = ∩iI(pi) ⊂ R for n general points pi ∈ P2. Then I(2r) ⊆ M rIr holds

for all r.

Proof. For n = 1, 3, 6, n is a binomial coefficient, so I(2r) ⊆ M rIr holds as we observed immediately
above. For n = 2, 4, the points are a complete intersection, and so I(2r) = I2r ⊆ M rIr holds. By
Proposition 2.3 it is enough to show that I is generated in degrees s and less for some s such that
α(I(2r))/(2r) ≥ (s+ 1)/2 for all r. Thus it is enough to show that γ(I) ≥ (s+ 1)/2.

Consider the case n = 5. By [BH2, Lemma 3.1], α(I(2r)) = 4r and hence γ(I) = 2. Since the 5
points impose independent conditions on forms of degree s for any s ≥ 2, we see reg(I) = 3 (so I
is generated in degree s = 3 and less). Thus γ(I) = 2 ≥ (s+ 1)/2 as we wanted to show.
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For n = 7, I is generated in degrees 3 and less [Ha1] and γ(I) = 21/8 (see the proof of [BH2,
Proposition 4.3]); for n = 8, 9, I is generated in degrees 4 and less since reg(I) = 4, γ(I) = 48/17
(see the proof of [BH2, Proposition 4.4]) when n = 8 and (it is easy to see) γ(I) = 3 when n = 9.
Thus I(2r) ⊆ M rIr holds for 7 ≤ n ≤ 9. Now say n > 9. If n is a binomial coefficient

(

s
2

)

we

saw above that I(2r) ⊆ M rIr holds, so assume that
(

s
2

)

< n <
(

s+1
2

)

for some s ≥ 5. It is known

that γ(I) ≥
√
n− 1 (see [PSC, Remark 8.3.5] and the proof of [BH1, Theorem 4.2]) and that I is

generated in degree at most s (since reg(I) = s). So we want to check that
√
n− 1 ≥ (s+ 1)/2, or

that n− 1 ≥ (s+ 1)2/4, but n− 1 ≥
(

s
2

)

and
(

s
2

)

> (s+ 1)2/4 for s ≥ 5. �

For later use we have the following results regarding the ideal of 5 general points of P2.

Lemma 3.11. Let I be the ideal of 5 general points of P2. Then I(2r) = (I(2))r and I(2r+1) = I(2r)I
for all r ≥ 1.

Proof. We saw in the proof of Proposition 3.10 that α(I(m)) = 2m. Also, by Bézout’s Theo-
rem we must have 2β(I(m)) ≥ 5m, and by [Ha2, Remark I.5.5] (or by [Ha3, Theorem III.1(a)]),

(I(m))t has no non-constant common factors for 2t ≥ 5m. Thus β(I(m)) = ⌈5m2 ⌉. In particular,

α(I(2r))β(I(2r)) = 5(2r)2, so I(2r) = (I(2))r by Proposition 3.5.
Now consider I(2r+1). Clearly, I(2r)I = I2rI = I2r+1 ⊆ I(2r+1), so consider the reverse inclusion.

By Bézout’s Theorem, since β(I(2)) = 5, we have 5α(I(2r+1)) ≥ 2∗5(2r+1), and hence α(I(2r+1)) ≥
2(2r + 1), but α(I(2r+1)) ≤ α(I2r+1) = 2(2r + 1), so we have α(I(2r+1)) = 2(2r + 1). Thus

0 = (I(2r+1))t ⊆ (I(2r)I)t for t < 2(2r + 1). If 2(2r + 1) ≤ t < 5(2r + 1)/2, then Q is a common

factor for (I(2r+1))t, by Bézout’s Theorem, where Q is a homogeneous form of degree 2 defining

the unique conic through the five general points. Thus (I(2r+1))t = Q(I(2r))t−2, but Q ∈ I2, so
(I(2r+1))t ⊆ (I(2r))t−2I2 ⊆ ((I(2r))I)t. Finally, assume t ≥ 5(2r + 1)/2 = 5r + 3. Then (I(2r+1))t =

(I(2r))5rI3+(t−5r) ⊆ ((I(2r))I)t by [BH2, Proposition 2.4], and hence I(2r+1) ⊆ I(2r)I. �

Remark 3.12. We close this section with a discussion of issues raised by Proposition 3.5. For
example, the bound in Proposition 3.5(ii) improves on Chudnovsky’s bound in Proposition 3.1 only

when mα(I) > β(I(m)), but it certainly can happen that mα(I) < β(I(m)). For example, consider
the ideal I of n > d2 points on a smooth plane curve of degree d. Then (by Bézout’s Theorem) we

have both α(I) = d and β(I(m))d ≥ nm, so β(I(m)) ≥ nm/d > α(I)m. There also are cases with

mα(I) > β(I(m)). For example, given m > 0, let a = (2m + 1)2 − 1 and let n = 2(2m + 1). It is

easy now to check that
(

a+1
2

)

= n2
(

m+1
2

)

. Let I be the ideal of the union Z of n2 general points in

P2. By [CM, E, R], the fat point scheme iZ imposes independent conditions on forms of degree t

for any t such that (I(i))t 6= 0. In particular, it follows that
(

α(I)+2
2

)

> n2, so mα(I) > m(
√
2n−2).

Since
(

a+1
2

)

= n2
(

m+1
2

)

, it also follows that β(I(m)) ≤ reg(I(m)) = a = (2m + 1)2 − 1, hence for

m ≫ 0 we have β(I(m)) < (2m+ 1)2 < 4
√
2m2 < m(

√
2n− 2) < mα(I).

Another issue raised by Proposition 3.5 is whether there are cases of n points in the plane and
integers m > 0 where the ideal I of the points satisfies α(I(m))β(I(m)) = m2n. This holds for the

ideal I of a star configuration by Corollary 3.9, hence I(2k) = (I(2))k for all k ≥ 1. For additional
examples, consider the scheme Z consisting of n general points of the plane. For n ≤ 8 points, we
can assume the points lie on a smooth cubic curve, in which case the results of [Ha3, GuH, GHM]

can be used to determine α(I(m)) and β(I(m)). For n = 1, α(I(m)) = β(I(m)) = m for all m ≥ 1,
hence by Proposition 3.5 we have I(k) = Ik for all k ≥ 1. Of course, in this case Z is a complete
intersection. For n = 2, α(I(m)) = m and β(I(m)) = 2m for all m ≥ 1, hence we have I(k) = Ik for

all k ≥ 1. Of course, in this case Z is again a complete intersection. For n = 3, α(I(m)) = ⌈3m/2⌉
and β(I(m)) = 2m for all m ≥ 1, hence we have I(2k) = (I(2))k for all k ≥ 1. In this case Z is a

star configuration. For n = 4, α(I(m)) = β(I(m)) = 2m for all m ≥ 1, hence we have I(k) = Ik

for all k ≥ 1. Of course, in this case Z is yet again a complete intersection. For n = 5, we
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have I(2k) = (I(2))k for all k ≥ 1; see Lemma 3.11 and its proof. For n = 6, α(I(m)) = ⌈12m/5⌉
and β(I(m)) = ⌈5m/2⌉ for all m ≥ 1, hence we have I(10k) = (I(10))k for all k ≥ 1. For n = 7,
α(I(m)) = ⌈21m/8⌉ and β(I(m)) = ⌈8m/3⌉ for all m ≥ 1, hence we have I(24k) = (I(24))k for all

k ≥ 1. For n = 8, α(I(m)) = ⌈48m/17⌉ and β(I(m)) = ⌈17m/6⌉ for all m ≥ 1, hence we have

I(102k) = (I(102))k for all k ≥ 1.
Again applying the results of [Ha3], for n = 9 general points (which we may assume therefore

lie on a smooth cubic curve), we have α(I(m)) = 3m and β(I(m)) = 3m + 1, so we never have

α(I(m))β(I(m)) = m2n, but if the 9 points pi are chosen to be points on a smooth plane cubic curve
such that p1 + · · · + p9 − p has order r in the divisor class group of the cubic (where p is a flex
point), then α(I(m)) = 3m and β(I(m)) is 3m if r|m, and 3m + 1 if r does not divide m. Thus

α(I(r))β(I(r)) = 9r2, so I(rk) = (I(r))k for all k ≥ 0.

Remark 3.13. Finally, we raise two questions. Given distinct points pi in the plane and positive
integers mi, consider the ideal I = ∩i I(pi)

mi . Is it true that I(mk) = (I(m))k for k ≥ 1 (and hence

that the symbolic Rees algebra ⊕I(n) is Noetherian) if α(I(m))β(I(m)) = m2
∑

im
2
i ? See [BH2,

Example 5.1] for examples with α(I)β(I) =
∑

im
2
i for which I(k) = Ik for all k ≥ 1. Conversely, if

⊕I(n) is Noetherian, must α(I(m))β(I(m)) = m2
∑

im
2
i hold for some m?

4. Additional questions and conjectures

If for some ideal I there is a d such that one has I(m) ⊆ Ir for all m ≥ dr, one can next ask
for what constants c does m ≥ dr − c guarantee I(m) ⊆ Ir. We discuss questions and conjectures
related to this problem of subtracting a constant in Section 4.1. In Section 4.2 we discuss questions
and conjectures arising out of refinements of the Waldschmidt-Skoda bound (◦) of the Introduction.

4.1. Subtracting a constant. The second named author has raised the question whether a radical
ideal I of a finite set of points in P2 always satisfies I(3) ⊆ I2. Examples suggested to the first
named author the following conjectural generalization [PSC, Conjecture 8.4.2]:

Conjecture 4.1.1. Let I ⊆ K[PN ] be a homogeneous ideal. Then I(rN−(N−1)) ⊆ Ir holds for all

r.

Conjecture 4.1.1 holds for star configurations [PSC, Example 8.4.8]; examples of star configura-

tions also show I(rN−N) ⊆ Ir fails in general. When N = 2, Conjecture 4.1.1 is true for any finite
set of general points in P2 by [BH1, Remark 4.3]. Thus, while Conjecture 4.1.1 is open in general,
it is plausible (at least for ideals of points). In fact, the second named author observed that the
principle underlying the main result of [HH1] shows that Conjecture 4.1.1 is true for radical ideals
of any finite set of points if char(K) = p > 0 when r is a power of p [PSC, Remark 8.4.4]. The
same basic argument also verifies Conjecture 4.1.1 for monomial ideals (with no restriction on the
characteristic) [PSC, Remark 8.4.5].

The key in both cases is the use of nice behavior of Frobenius powers. If I ⊆ R is an ideal,
define its qth Frobenius power I [q] to be the ideal generated by all vq for v ∈ I. If I is a monomial
ideal, then I [q] is generated by the qth powers of any set of monomial generators of I. And if
char(K) = p > 0 and q is a power of p, then I [q] is generated by qth powers of any set of generators

of I. A fundamental fact for ideals J1, . . . , Js ⊆ R is that (∩iJi)
[q] = ∩i(J

[q]
i ) if either Ji is monomial

for each i (see [PSC, Remark 8.4.5]) or if p = char(K) > 0 and q is a power of p (by flatness of
Frobenius; see [SH, Lemma 13.1.3, p. 247] and [K]). As a direct consequence we obtain:

Lemma 4.1.2. Let g > 0 be an integer and let J1, . . . , Js ⊆ R be ideals, each generated by at most

g elements. Assume either that each Ji is monomial, or that p = char(K) > 0 and r is a power of

p. Then ∩i(J
m
i ) ⊆ (∩iJi)

r as long as m ≥ gr − g + 1.
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Proof. Because Ji has at most g generators, any product of a choice of gr−g+1 of these generators

is divisible by the rth power of one of the generators. Thus Jm
i ⊆ Jgr−g+1

i ⊆ J
[r]
i , so we have

∩i(J
m
i ) ⊆ ∩i(J

[r]
i ) = (∩iJi)

[r] ⊆ (∩iJi)
r. �

Remark 4.1.3. We now see that Conjecture 4.1.1 holds for any monomial ideal I ⊂ K[PN ]. If

I is not saturated, then I(rN−(N−1)) = IrN−(N−1) ⊆ Ir, and if I is saturated then there is a
(not necessarily irredundant) primary decomposition I = ∩iJi where each Ji is monomial, primary
and generated by positive powers of the variables in some proper subset (depending on i) of the
N + 1 variables (and hence Ji has at most N generators). Moreover, it is not hard to show that

I(m) ⊆ ∩i(J
m
i ) (see [PSC, Remark 8.4.5]). Lemma 4.1.2 now applies, and we have I(m) ⊆ Ir

whenever m ≥ rN − N + 1. Similarly, if p = char(K) > 0 and r is a power of p, then for
the ideal I = ∩iI(pi) of any finite set of distinct points pi ∈ PN , by Lemma 4.1.2 we have

I(m) = ∩i(I(pi)
m) ⊆ (∩iI(pi))

r = Ir as long as m ≥ rN −N + 1.

When N = 2 Chudnovsky’s bound γ(I) ≥ (α(I) + 1)/2 suggests another conjecture (in the
perhaps weak sense that Conjecture 4.1.4 implies the bound):

Conjecture 4.1.4. Let I ⊆ K[P2] be the homogeneous radical ideal of a finite set of points. Then

I(m) ⊆ Ir holds whenever m/r ≥ 2α(I)/(α(I) + 1).

This conjecture does indeed imply Chudnovsky’s bound γ(I) ≥ (α(I) + 1)/2. To see this, let

m = 2α(I)t and let r = (α(I) + 1)t for integers t ≥ 1. Conjecture 4.1.4 then implies that I(m) ⊆ Ir

which in turn implies α(I(m)) ≥ α(Ir) and hence α(I(m))/m ≥ (r/m)α(I). Taking limits as t → ∞
gives γ(I) ≥ (α(I) + 1)/2.

Conjecture 4.1.4 is asymptotically stronger than Conjecture 4.1.1 since 2r−1 > 2rα(I)/(α(I)+1)
for r ≫ 0. But as with Conjecture 4.1.1, Conjecture 4.1.4 holds for star configurations: if I is the
ideal of a star configuration, then α(I) = reg(I) and γ(I) = (α(I) + 1)/2, hence we have I(m) ⊆ Ir

by [BH1, Theorem 1.2.1(b)] (since m/r ≥ 2α(I)/(α(I) + 1) = reg(I)/γ(I)).
It is easy to see that Conjecture 4.1.4 holds if I is a complete intersection, since then I(m) = Im.

Conjecture 4.1.4 also holds for general sets of n points (use [BH1, Remark 4.3] in case n ≥ 6, since
then α(I) ≥ 3 and so 2α(I)/(α(I) + 1) ≥ 3/2, use [BH2, Theorem 3.4(b)] for n = 5, and for n < 5
note that n general points give either a star or a complete intersection or both).

Giving Conjecture 4.1.1 an evolutionary twist, we obtain another possibility:

Conjecture 4.1.5. Let I ⊆ K[PN ] be the ideal of a finite set of points pi ∈ PN . Then I(rN−(N−1)) ⊆
M (r−1)(N−1)Ir holds for all r ≥ 1.

Lemma 4.1.6. Let I ⊆ K[PN ] be the ideal of a finite set of points pi ∈ PN . If I(Nr−(N−1)) ⊆ Ir

and α(I(Nr−(N−1))) ≥ rs+(r− 1)(N − 1) for some s such that I is generated in degrees s and less,

then I(rN−(N−1)) ⊆ M (r−1)(N−1)Ir.

Proof. The same argument (with m = 1) used in the proof of Proposition 2.3 works here. �

Corollary 4.1.7. Let I ⊆ K[PN ] be the ideal of a finite set of points pi ∈ PN , comprising either

a star configuration or a complete intersection. Then I(rN−(N−1)) ⊆ M (r−1)(N−1)Ir holds for all

r ≥ 1.

Proof. Since for star configurations α(I(Nr−(N−1))) = rreg(I) + (r − 1)(N − 1) by [PSC, Lemma
8.4.7], Lemma 4.1.6 applies with s = reg(I) both conditions of Lemma 4.1.6, so the result follows.

For complete intersections we have I(rN−(N−1)) = IrN−(N−1) = IrN−r−(N−1)Ir = I(r−1)(N−1)Ir ⊆
M (r−1)(N−1)Ir. �

Of course, if Conjecture 4.1.5 is true, then so must be the following:
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Conjecture 4.1.8. Let I ⊆ K[PN ] be the ideal of a finite set of points pi ∈ PN . Then

α(I(rN−(N−1))) ≥ rα(I) + (r − 1)(N − 1)

for every r > 0.

Remark 4.1.9. Conjecture 4.1.8 is clearly true if α(I) = 1 or if r = 1. It also holds if γ(I) ≥
(rα(I) + (r − 1)(N − 1))/(rN − (N − 1)), since α(I(rN−(N−1)))/(rN − (N − 1)) ≥ γ(I). But if
α(I) > 1, then (rα(I) + (r − 1)(N − 1))/(rN − (N − 1)) is biggest when r is least, so Conjecture
4.1.8 will hold for all r if γ(I) ≥ (rα(I) + (r − 1)(N − 1))/(rN − (N − 1)) holds for r = 2.

Remark 4.1.10. As mentioned in Remark 3.4, if I is the radical ideal of a finite set of points
pi ∈ PN , Chudnovsky conjectured that γ(I) ≥ (α(I) +N − 1)/N . It seems plausible in fact that
γ(I) > (α(I)+N−1)/N unless either the points lie on a hyperplane or give a star configuration. This

is however open, even forN = 2. The best current result is: if N = 2 and if α(I(2))/2 = (α(I)+1)/2,
then the points pi either lie on a line or give a star configuration [BC]. If it were true that
γ(I) > (α(I) +N − 1)/N unless either the points were contained in a hyperplane or formed a star
configuration, then Conjecture 4.1.8 would at least hold for all r ≫ 0, as the next result shows.

Corollary 4.1.11. For the radical ideal I of a finite set of points p1, . . . , pn ∈ PN we have

α(I(Nr−N+1)) ≥ rα(I) + (r − 1)(N − 1)

for all r ≫ 0 if either α(I) = 1 or the points pi form a star configuration or γ(I) > (α(I)+N−1)/N .

Proof. If α(I) = 1, then α(I(rN−(N−1))) = rN − (N − 1) = rα(I) + (r − 1)(N − 1). By [PSC,
Lemma 8.4.7 ], if the points form a star configuration on s lines, then α(I) = s − N + 1 and

α(I(rN−(N−1))) = (r − 1)s + s − N + 1 = rα(I) + (r − 1)(N − 1). If γ(I) > (α(I) + N − 1)/N ,
then γ(I) = δ + (g + N − 1)/N for some δ > 0 where g = α(I). Hence for r ≫ 0 we have

α(I(Nr−(N−1))) ≥ rg + (r − 1)(N − 1), since α(I(Nr−(N−1))) ≥ (Nr − (N − 1))γ(I) = (Nr − (N −
1))δ+(Nr− (N−1))(g+N −1)/N = rg+(r−1)(N −1)+(N(Nr− (N −1))δ− (g−1)(N −1))/N
and the last term is positive for r ≫ 0. �

Example 4.1.12. We now check that Conjecture 4.1.8 holds for every set of n ≤ 8 points of P2.
By Remark 4.1.9, it is enough to check γ(I) ≥ (2α(I) + 1)/3. When N = 2, γ(I) can be found for
each set of n ≤ 8 points of P2 using the results of [GuH, GHM]
(see http://www.math.unl.edu/~bharbourne1/GammaFile.html). It turns out that
γ(I) ≥ (2α(I) + 1)/3 holds for every configuration of n ≤ 8 points except for four cases: the 3
points coming from the star for 3 lines; the 6 points coming from the star for 4 lines; 6 points where
3 of them are a star for 3 lines and an additional point is chosen on each of those 3 lines but such
that these three additional points are not collinear; and 7 points where 6 of them form the star on
4 lines and an additional point is placed on one of those 4 lines. In each of these cases except for
the star configuration of 6 points, γ(I) ≥ (rα(I) + r − 1)/(2r − 1) holds for r = 3 (and hence by

Remark 4.1.9 for r ≥ 3) and α(I(2r−1)) ≥ (rα(I) + r − 1)/(2r − 1) holds for r = 2. This leaves the
6 point star configuration, but Corollary 4.1.11 shows that Conjecture 4.1.8 holds for stars.

Now we show Conjecture 4.1.5 holds in the case of n general points when N = 2. (We use
the characteristic 0 hypothesis only for some values of r and n where we apply [D]; see the last
paragraph of the proof.)

Corollary 4.1.13. Let I be the ideal of n general points of P2; assume the ground field K has

char(K) = 0. Then I(2r−1)I ⊆ M r−1Ir.

Proof. As noted in Corollary 4.1.7, I(2r−1)I ⊆ M r−1Ir holds for complete intersections and for star
configurations. Thus it holds for n = 1, 2, 4 since in these cases we have a complete intersection,
and it holds for n = 3 since this is a star configuration. It holds for n = 5 by Proposition 3.10

http://www.math.unl.edu/~bharbourne1/GammaFile.html
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and Lemma 3.11, since I(2r−1) = I(2(r−1))I ⊆ M r−1Ir−1I = M r−1Ir. For larger n, note that
I(2r−1) ⊆ Ir holds for general points by [PSC, Example 8.4.9], so I(2r−1)I ⊆ M r−1Ir also holds (by

Lemma 4.1.6) if γ(I) ≥ (rreg(I) + r − 1)/(2r − 1). Therefore I(2r−1)I ⊆ M r−1Ir holds for n = 6
since then α(I) = reg(I) and in Example 4.1.12 we verified that γ(I) ≥ (rα(I) + r − 1)/(2r − 1)

holds for r ≥ 2 for every configuration of 3 6= n ≤ 8 general points. Similarly, I(2r−1)I ⊆ M r−1Ir

holds for n = 7 since (as noted in the proof of Proposition 3.10) I is generated in degree α(I); now
argue as in the case n = 6. For n = 8, reg(I) = 4 and (as in the proof of Proposition 3.10) we have
γ(I) = 48/17 ≥ (rreg(I) + r − 1)/(2r − 1) for r = 3 (and hence for all r ≥ 3), while for r = 2, we

have α(I(2r−1)) = 9 = rreg(I)+ r−1, so I(2r−1)I ⊆ M r−1Ir holds for n = 8. And for n = 9 general
points of P2, γ(I) = 3 = (rreg(I) + r − 1)/(2r − 1) for r = 2, so again I(2r−1)I ⊆ M r−1Ir holds.

Now let n ≥ 10; as in the proof of Proposition 3.10, γ(I) ≥
√
n− 1. If n =

(

s+1
2

)

for some

s ≥ 4, then reg(I) = α(I) = s, and so we have
√
n− 1 ≥ (rreg(I) + r − 1)/(2r − 1) for r = 2,

hence for all r. So now assume
(

s
2

)

< n <
(

s+1
2

)

for some s ≥ 5. Then reg(I) = s, so we

want to check that
√
n− 1 ≥ (2s + 1)/3, or that n − 1 ≥ (2s + 1)2/9, but n − 1 ≥

(

s
2

)

and
(

s
2

)

≥ (2s + 1)2/9 for s ≥ 18. So we need to check s ≤ 17; i.e., 10 < n < 153. By direct check we

have
√
n− 1 ≥ (rreg(I) + r− 1)/(2r− 1) for r = 7 for 10 < n < 153. So now we just need to check

that α(I(2r−1)) ≥ rα(I) + (r − 1) holds for 2 ≤ r ≤ 6 for 10 < n < 153. We verified this using [D]

to determine α(I(2r−1)); note that [D] assumes characteristic 0. �

Remark 4.1.14. It may be worthwhile to consider the maximum height of the associated primes.
If e is the maximum of the heights of the associated primes of a given homogeneous ideal I, then
from [HH1] we know I(re) ⊆ Ir, and it is conjectured in [PSC] that I(re−(e−1)) ⊆ Ir. This raises

the question of whether I(re) ⊆ M r(e−1)Ir and I(re−(e−1)) ⊆ M (r−1)(e−1)Ir are also true.

Remark 4.1.15. As a minor remark, we show how classical methods can be used to show I(2m) ⊆
Im in some cases of ideals of points p1, . . . , pn ∈ P2. Assume I is a radical ideal for a finite set of
points in P2. Assume the characteristic is 0, and that α(I) = reg(I). Using the Euler identity as

in the proof of Fact 1.2, we have I(2m) ⊆ MmI(m). But α(I) = reg(I) implies that Im = M j ∩ I(m)

for j = mα(I) = α(Im), since the saturation degree of Im is bounded above by mreg(I) which by

our hypothesis is equal to α(Im), so truncating I(m) at degree α(Im) gives Im (see [BH2, Remark
4.2]).

Since MmI(m) ⊆ I(m), we now see that MmI(m) ⊆ M j ∩ I(m) = Im if MmI(m) ⊆ M j; i.e.,
if α(MmI(m)) ≥ j. But α(MmI(m)) = α(I(m)) + m ≥ mγ(I) + m so α(MmI(m)) ≥ j holds if
mγ(I) + m ≥ j = mα(I); i.e., if γ(I) ≥ α(I) − 1. This holds if (α(I) + 1)/2 ≥ α(I) − 1 (i.e., if
α(I) ≤ 3) since γ(I) ≥ (α(I) + 1)/2.

This shows that I(2m) ⊆ Im holds in characteristic 0 if α(I) = reg(I) and 3 ≥ α(I). We note
that α(I) = reg(I) implies that n is a binomial coefficient, so we have either n = 6 and p1, . . . , p6
lie on a cubic but not on a conic (there are five essentially different such configurations [GuH]), or
n = 3 and p1, p2, p3 lie on a conic but not on a line, or n = 1.

Additional cases follow from γ(I) ≥ α(I)−1. For example, for any 10 points which do not lie on
a cubic, we have α(I) = reg(I). If some 9 of the points lie on a smooth cubic, then 3α(I(m)) ≥ 9m

holds by Bézout’s Theorem, so we have γ(I) ≥ 3 = α(I) − 1 and thus I(2m) ⊆ Im.

4.2. Further refinements. A refinement of (◦) of the Introduction is given in [W2, Lemme 7.5.2].
In our terms, this refinement is that

α(I(m))

m+N − 1
≤ γ(I). (∗∗)

for the radical ideal I for a finite set of points in the complex projective space PN . The proof
given in [W2] uses complex analytic techniques; for an easy proof using multiplier ideals, see [La,
Proposition 10.1.1 and Example 10.1.3].



12 BRIAN HARBOURNE & CRAIG HUNEKE

In fact, by a variation of the proof given in the introduction for the case m = 1, (∗∗) holds for any

homogeneous ideal 0 6= I ⊆ K[PN ] over any field K. In particular, we have I(t(m+N−1)) ⊆ (I(m))t

for m ≥ 1 by [HH2], so tα(I(m)) ≤ α(I(t(m+N−1))). Dividing by t(m+N − 1) and taking limits as
t → ∞ gives (∗∗).

Again let I be the radical ideal I for a finite set of points in the projective space PN but over
the complex numbers. A further refinement, proved using complex projective techniques, is given
in [EV] for the case that N ≥ 2:

α(I(m)) + 1

m+N − 1
≤ γ(I). (∗∗∗)

This is just Proposition 3.1 whenm = 1 and N = 2. Comparing (∗∗∗) with Chudnovsky’s conjecture
(α(I) +N − 1)/N ≤ γ(I) raises the question:

Question 4.2.1. Let I be the radical ideal I for a finite set of points in PN . Is it true for all

m ≥ 1 that

α(I(m)) +N − 1

m+N − 1
≤ γ(I)?

Using the fact that for the ideal I of a star configuration defined by s hyperplanes in PN with
m = Ni + j for 0 ≤ i and 0 < i ≤ N we have α(I(m)) = (i + 1)s − N + j, one can check that
Question 4.2.1 has an affirmative answer for star configurations.

These speculations and observations raise two additional questions for the radical ideal I of a
finite set of points in PN :

Question 4.2.2. Is it true for all positive integers m and t that I(t(m+N−1)) ⊆ M t(I(m))t, where
M ⊂ K[PN ] is the ideal generated by the variables?

If Question 4.2.2 has an affirmative answer, then we obtain an alternate proof of (∗∗∗) in the
usual way.

Finally we ask:

Question 4.2.3. Is it true for all positive integers m and t that I(t(m+N−1)) ⊆ M t(N−1)(I(m))t?

If so, then Question 4.2.1 must also have an affirmative answer.
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