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Introduction

1. Quite a number of results in algebraic geometry have been made to

depend on Noether's fundamental theorem that a Cremona transformation

of the plane can always be resolved into a product of quadratic ones. It is

therefore desirable that this theorem be proved in as simple and convincing a

manner as possible. Now, as was pointed out by Segre, f the proofs by

Noether, Clifford, and others are incomplete and even break down for certain

examples that can be effectively set up. There remains a very interesting

proof by Castelnuovo Î which is especially designed to meet Segre's objections

and which, along with a footnote to the same by Segre, suggested the method

exposed in Part II below. The present proof, however, besides being con-

siderably simpler and shorter, appears to be free from certain objections that

might perhaps be raised to Castelnuovo's method. These objections, which

are analogous to those directed against the older proofs, will be presented in

Part I.
I

2. Let A be the homaloidal net of a plane Cremona transformation and let

Oo, Oi, • • ■ , Ok be the base points of A arranged in order of decreasing multi-

plicities. Castelnuovo shows that a Jonquières transformation § of suitable

order v having its base point of order v — 1 at 0O and its 2^ — 2 simple base

points at 0i, 02, • • • ) 02^-2 will, if it exists, reduce the net A to one made up

of curves of lower degree. Hence, if it can be shown that the transformation

always exists, Noether's theorem will follow at once from the fact that every

Jonquières transformation can be factored into quadratic ones.||

* Presented to the Society, December 28, 1915.

t Segre, Atti della R. Accademia delle Scienze di Torino, vol.

36 (1901), p. 645.
t Castelnuovo, ibid., p. 861.

§ Defined below.
|| See the proofs by Castelnuovo and Segre in the paper by the former already quoted.

The proof in Part II does not make use of Jonquières transformations.
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Now, to prove the existence of the necessary Jonquières transformation,

it must be shown (a) that there exist «>2 curves of order v satisfying the given

conditions at the base points, and (b) that these curves are not all reducible.

Under these conditions, the curves will make up the homaloidal net of the

desired transformation. Castelnuovo appears to assume (a) tacitly in his

proof of (b),* making an assumption which might give rise to doubts when

some of the base points 0, are of the infinitely neighboring kind.t When

the base points 0O, Oi, • • •, 02r-2 are all distinct, there can be no question

whatsoever. The conditions imposed upon the curves of order v cannot

exceed v(v - l)/2 + 2v - 2 - (v2 + 3j> - 4)/2, while there are oo"<"+3)'2

curves of this order. Hence, there exist at least a>2 curves satisfying the

conditions. But suppose the points 02u-2 and 02v-3 could both be infinitely

neighboring to 0i in the neighborhood of the first order.J Then in order to

pass through 02>_2 and 02^.3, a curve would necessarily have a double point

at 0i, and the condition of passing through these three points would be ex-

pressed by 5 equations among the coefficients instead of by 3 as in the general

case. We would then no longer expect to find oo2 curves satisfying all the

conditions. A number of other cases are conceivable which, if they could actu-

ally arise, would lead to difficulties; we cite only two:

(a) Could not the sum of the multiplicities of those of the points 0i, 02,

• • •, 02l—2 which were infinitely neighboring of the first order to 0O be greater

than v — 1, imposing upon the curves of degree v the condition of having

at 0o a multiple point of order greater than v — 11

iß) When we impose on the curves of degree v the condition of passing in

the way assigned through 00, 0i, • • •, 02v-3 might they not all in consequence

be tangent at 0i to a fixed line t. If this were possible and if at the same time

02!—2 were infinitely neighboring to 0i along a line other than t, the curves

could not pass through 02l—2 without having a double point at 0i.

3. The objections that were raised in the last section will perhaps not seem

over-critical if it is recalled that only the impossibility of making an assumption

like (a) prevents one from reducing the order of a net by means of a single

quadratic transformation. It is well known that the sum of the multiplicities

of the three points 0O, 0i, and 02 is greater than the order n oí the net N ,§

so that if these points can be taken as the base points of a quadratic trans-

formation, they will transform the net N into one of lower order.    Further-

* Castelnuovo, "... ammesso che ciascuna delle °°2 curve C ... si spezzi." Loc.

cit., p. 866, 1. 5.
t An explanation of this terminology, which was introduced by Noether, will be found

in Severi, Lezioni di Geometría Algébrica, Chap. II.
î Base points in the neighborhood of the first order are those which can be put in evidence

by a single quadratic transformation having a fundamental point at 0\.

§ Cf. footnote on p. 298 below.
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more, if there exist oo2 curves of the second degree passing through the points

in question it is easily seen that they are not all reducible. Because if they

were, their variable portion would be a general line of the plane and their

fixed portion a line through 0O, Oi, and 02, which is impossible since no line

can meet a curve of the net in more than n points. It is however false to

assume that there always exist oo2 conies satisfying the given conditions.

II

4. Noether's theorem is equivalent to the theorem that a homaloidal net

can always be carried into a net of straight lines by a series of quadratic trans-

formations.    Let A be a homaloidal net of degree n and let

(1) «o = «i S • • • =£ ak S 1

be the multiplicities of its base points

(2) 0o,0i, ■•■0k

respectively, where (2) includes all the base points, ordinary and infinitely

neighboring.    We then have the two well-known relations

(3) £aï = (n-l)(n + l),
<=0

and

(4) E«,(«,— l) = (n-l)(n-2),

the first expressing the condition that all but one of the intersections of two

curves of the net occur at the base points, the second that the curves of the

net are of genus zero. Multiplying (3) and (4) by j — 1 and j respectively,

and subtracting the first from the second, we have

(5) Zai(ai-j) = (n-l)(n-3j + l);
<=o

and since, when we put j = a<>, all the terms of the sum are zero or negative,

we have

(6) 0£(n-l)(n-3a0 + l),

from which we conclude that

... n + 1     n
(7) aoS-g— >3-

5. From now on, we shall put

/■en •     n - ap     1
(8) j = —g— = 2>       or       n = a0 + 2j,
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and shall denote by h the number of base points other than 0O of multiplicities

greater than j. The multiplicities of these points are limited by the ine-

qualities

(9) 2j _: «i =; a2 • • • Sai>j

because the line 0O 0i can only meet a curve of the net N in 2j points aside

from 0o. Moreover, their number is always greater than 1 except for a net

of lines, as the following argument will show.

From the right-hand member of (5), we drop off the positive quantity

3j — 1 and from the other, all the terms of the summation after the one

in ah, that is, all the terms which are negative or zero.    We then have

A

JLcti(ai - j) > n(n - 3j) = n(a0 - j);
i=0

or, on transposing the first term of the sum,

A

Eff¡(«¡ - j) > (m - a0)(«o - j) = 2j(a0 - j).
i=l

Then, on account of (9), we have a fortiori

A

2jHica-j) >2j(a0-j),
i=l

and therefore,
A

(10) H(txi - j) > tx0 - j = n - 3j.
i=l

Finally, since «i i£ a0,

(11) h^2.*

We also have from (10)
h

YjCti > n + (h - 3)j,
¿=i

so that
A

(12) Ea¡>n       when       h ^ 3,
i=i

an inequality which we shall have occasion to use presently.

6. It will be convenient to let the integer 2j be a measure of the complexity

of the net N. The simplest nets after the linear ones will then be those for

which 2j = 1 .f With this convention, it will be shown that the net N can

always be simplified (and therefore finally reduced to a net of lines) by a

* This is one way of showing that the sum of the multiplicities of O0, Oi, and Oi is greater

than an + 2j = n.

t These are the nets defining the so-called Jonquières transformations. They have a

base point of order v — 1 and 2v — 2 simple base points. The proof from now on is a direct

generalization of Segre's method for reducing Jonquières nets.
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series of quadratic transformations. In simplifying the net, we shall make

use only of quadratic transformations of the involutoric type with three

distinct base points A, B, and C, each of which is carried into the line through

the other two. Moreover, we shall always choose the point 0O as the base

point A, so that the pencil of lines through 0O will at each stage be trans-

formed into itself. Under these conditions, the complexity 2j of each suc-

cessive net will remain invariant just as long as the point 0O remains one

of the points of highest multiplicity, being measured by the number of vari-

able points of intersection of a line through 0O with a curve of the net. If,

however, the point 0O ever ceases to be the point of highest multiplicity, the

net A' appearing at that stage will be simpler than A, for its complexity will

be measured by 2/, the number of free points of intersection with A' of a line

through a point of higher multiplicity than 0O. It is evident that 2/ is less

than 2j.

7. Suppose to begin with that two points 0X and 0V of the set

(0i, 02, ••• 0h) = [0,]î

of multiplicities greater than j are distinct from one another and from 00.

They can then be dispersed by a quadratic transformation with 00, 0X, and

Oy as base points. Furthermore, the two new base points which are ordinarily

introduced at 0X and 0y are certainly each of multiplicities less than j, because

the lines 0O 0X and Oo 0V meet the curves of A in at most n — a0 — an < j

points. A single transformation will therefore reduce by two the number of

base points of multiplicities greater than j. Moreover, if two of the re-

maining points of the set [0,]t are distinct from one another and from Oo,

we can disperse them in turn by a second transformation, and so on, until

less than two remain. But the net A' appearing at this stage must now be

simpler than A, for if 2j' were equal to 2j, we should be led into a contra-

diction with (11). In the particular case where 2j is unity, the net A' must

consist of straight lines.

8. There remains to be considered the case where at some stage, which

we can suppose to be the first, no two points of the set [0»]A are distinct

from one another and from 0O. Our first quadratic transformation will then

be made with one base point at 00, and the two others A and B in general

position. Instead of dispersing any of the points [0,-]î, this transformation

will introduce two new ones of multiplicities 2j > j, one at A and one at B.

On the other hand, it will detach from Oo all its infinitely neighboring base

points, transforming them into points on and infinitely neighboring to the

line AB. If after the transformation there is a point 0" of [0»]A+2 infinitely

neighboring to another 0', we shall apply a second quadratic transformation

with base points at 00, 0', and some third point C in general position.    This
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one will disperse 0', putting 0" in evidence somewhere along 00, but at the

same time it will introduce at 0' a new base point of multiplicity 2j.    It will

therefore not alter the number of points in the set [ 0» ]î+2 while it will increase

by one the number of distinct ones.    Since the line 0O 0' is a fundamental

line of the transformation, the last statement would not be true if there could

be points of [ 0» ]A+2 other than 0' along 0O 0', nor would it be possible to

put 0" in evidence il it were infinitely neighboring to 0' along 0O 0'; but

neither of these cases can arise, since the sum of the multiplicities of any

two points of [0»]A+2 exceeds 2j.   By a finite number of steps like the last,

we can therefore pass to a net with only h' = h + 2 points other than 0O of

multiplicities greater than j, all of which will be distinct.   We then observe

by (12), where h' now replaces h in the formula, that the points [0»]A' are not

all collinear, so that the next quadratic transformation can be made to disperse

a pair of them while leaving at least two others distinct from one another

and from 0o.   A second pair can therefore be dispersed at the next step, after

which there will be two less points in the set than there were at the very start.

Repeating the whole process a sufficient number of times, we can thus cut

down the number of points of the set [ 0,- ] to less than two, when we shall be

back to the case previously considered.    It is therefore clear that any net

may be simplified by successive stages and finally reduced to a net of straight

lines.

Princeton University,

November, 1915

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use


