Homework 1: Math 953 Spring 2005

Due January 21, 2005

Let \mathcal{C} and \mathcal{D} be categories.

Definition: A (covariant) functor $F: \mathcal{C} \to \mathcal{D}$ is an assignment of an object F(A) of \mathcal{D} for each object A of \mathcal{C} and a collection of maps $F: \operatorname{Hom}(A, B) \to \operatorname{Hom}(F(A), F(B))$ for each pair of objects A and B of \mathcal{C} , such that $F(1_A) = 1_{F(A)}$ and whenever $f \circ g$ is defined, $F(f \circ g) = F(f) \circ F(g)$.

Definition: A contravariant functor $F: \mathcal{C} \to \mathcal{D}$ is an assignment of an object F(A) of \mathcal{D} for each object A of \mathcal{C} and a collection of maps $F: \operatorname{Hom}(A,B) \to \operatorname{Hom}(F(B),F(A))$ for each pair of objects A and B of \mathcal{C} , such that $F(1_A) = 1_{F(A)}$ and whenever $f \circ g$ is defined, $F(f \circ g) = F(g) \circ F(f)$. (Alternatively, a contravariant functor $F: \mathcal{C} \to \mathcal{D}$ is just a functor $\mathcal{C}^{\operatorname{op}} \to \mathcal{D}$.)

Definition: A functor $F: \mathcal{C} \to \mathcal{D}$ is an *isomorphism* of categories if there is a functor $G: \mathcal{D} \to \mathcal{C}$ such that FG is the identity functor on \mathcal{D} and GF is the identity functor on \mathcal{C} .

Definition: Let $f \in \text{Hom}(B, A)$ be an arrow in a category C. We say that f is a monomorphism if for every object C, there never are arrows $g, h \in \text{Hom}(C, B)$ such that fg = fh but $g \neq h$.

- (1) Let G and H be groups and let \mathcal{G} (\mathcal{H} , resp.) be the category with a single object whose arrows are the elements of G (H, resp.), with the group law giving composition of arrows. Show that there is a bijection between functors $F: \mathcal{G} \to \mathcal{H}$ and homomorphisms $f: G \to H$, and that F is an isomorphism if and only if its corresponding homomorphism f is.
- (2) Let X and Y be topological spaces and let $\mathcal{T}o\mathcal{P}(X)$ and $\mathcal{T}o\mathcal{P}(Y)$ be the corresponding categories. For each continuous map $f: X \to Y$ define a functor $F_f: \mathcal{T}o\mathcal{P}(Y) \to \mathcal{T}o\mathcal{P}(X)$ such that F_f is an isomorphism if f is a homeomorphism. If F_f is an isomorphism, must f be a homeomorphism? Is every functor $F: \mathcal{T}o\mathcal{P}(Y) \to \mathcal{T}o\mathcal{P}(X)$ of the form F_f for some f?
- (3) Show that a monomorphism in the category $\mathcal{S}\varepsilon\tau$ of sets is the same thing as an injective map.
- (4) Define *epimorphism* in an arbitrary category such that an epimorphism in the category $\mathcal{E}\mathcal{T}$ of sets is the same thing as a surjective map. Compare epimorphisms in a category \mathcal{C} with monomorphisms in \mathcal{C}^{op} .