M918: Algebraic Curves Problem Assignment 1, due Friday, September 4, 2009.

(Do the problems appropriate for your background or those for which you'd like feedback on. You may assume $k = \mathbf{C}$ if you prefer.)

- [0] Let k be a field and let $a_1, \ldots, a_n \in k$. Then $M = (x_1 a_1, \ldots, x_n a_n) \subset k[x_1, \ldots, x_n]$ is a maximal ideal.
- [1] Let $S \subseteq k[x_1, \ldots, x_n]$, where k is a field and let $\bar{a} = (a_1, \ldots, a_n) \in k^n$. Show $f(\bar{a}) = 0$ for all $f \in S$ if and only if $I(S) \subseteq (x_1 a_1, \ldots, x_n a_n)$.
- [2] Let $h \in k[x,y]$ be non-constant, where k is an algebraically closed field. Show that V(h) is infinite.
- [3] Let $f, g \in k[x, y]$ where k is an algebraically closed field. If f and g have a non-constant common factor, show that V(f, g) is infinite.

For the next problem, recall that the radical \sqrt{I} of an ideal I in a commutative ring R is the intersection of the prime ideals $P \subset R$ which contain I (where the empty intersection is by convention R itself), and that when R is a polynomial ring $k[x_1, \ldots, x_n]$ over a field k, \sqrt{I} is the intersection of finitely many of the primes which contain I. Also recall for R = k[x, y], in the case that k is algebraically closed, that every prime ideal is either principal or of the form (x - b, y - c) for constants $b, c \in k$.

[4] Let $f, g \in k[x, y]$ where k is an algebraically closed field. If f and g have no non-constant common factor, show that V(f, g) is finite.

For the next problem, it is helpful to note that if $f(x,y) \in k[x,y]$ is a polynomial of degree r with coefficients in a field k, then $z^r f(x/z,y/z) \in k[x,y,z]$ is a homogeneous polynomial of degree r, and that if F(x,y,z) is non-zero and homogeneous of degree t and r is the degree of F(x,y,1), then $t \geq r$ and $F(x,y,z) = z^r f(x/z,y/z)z^{t-r}$.

[5] If k is a field and if $F, G \in k[x, y, z]$ are homogeneous with no common factor of positive degree, then F(x, y, 1) and G(x, y, 1) also have no common factor of positive degree.