M902-2009 Assignment 6: Due Wednesday March 11

Instructions: Do any three of the following problems.

- (1) Show that \mathbf{Q} is a flat \mathbf{Z} -module but not faithfully flat and not projective.
- (2) Give an example of a non-Noetherian module M over a commutative ring A such that M_P is a Noetherian A-module for every prime $P \subset A$ (hence being Noetherian is not a local property.)
- (3) Let m and n be two positive integers with greatest common divisor d. Show that $\mathbf{Z}/m\mathbf{Z} \otimes_{\mathbf{Z}} \mathbf{Z}/n\mathbf{Z} \cong \mathbf{Z}/d\mathbf{Z}$.
- (4) Let m and n be two positive integers with greatest common divisor d. Show that $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z},\mathbf{Z}/n\mathbf{Z}) \cong \mathbf{Z}/d\mathbf{Z}$.
- (5) Let A be a commutative ring, $f \in A$. Let $\Phi : A[x] \to A_f$ be defined by $ax^n \mapsto a/f^n$. Show that Φ is surjective with kernel (xf-1). Conclude $A_f \cong A[x]/(xf-1)$.
- (6) Let A be a commutative ring. We say A is a Hilbert ring if, given any ideal $I \subseteq A$, the radical \sqrt{I} of I is the intersection of the maximal ideals that contain I. One way to state Hilbert's version of the Nullstellensatz is that the complex polynomial ring $\mathbf{C}[x_1,\ldots,x_n]$ is a Hilbert ring. In fact, show that $k[x_1,\ldots,x_n]$ is a Hilbert ring for any field k.