Instructions: Do any three of the following problems.

(1) Show that \mathbb{Q} is a flat \mathbb{Z}-module but not faithfully flat and not projective.

(2) Give an example of a non-Noetherian module M over a commutative ring A such that M_P is a Noetherian A-module for every prime $P \subseteq A$ (hence being Noetherian is not a local property.)

(3) Let m and n be two positive integers with greatest common divisor d. Show that $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/d\mathbb{Z}$.

(4) Let m and n be two positive integers with greatest common divisor d. Show that $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}$.

(5) Let A be a commutative ring, $f \in A$. Let $\Phi : A[x] \rightarrow A_f$ be defined by $ax^n \mapsto a/f^n$. Show that Φ is surjective with kernel $(xf - 1)$. Conclude $A_f \cong A[x]/(xf - 1)$.

(6) Let A be a commutative ring. We say A is a Hilbert ring if, given any ideal $I \subseteq A$, the radical \sqrt{I} of I is the intersection of the maximal ideals that contain I. One way to state Hilbert’s version of the Nullstellensatz is that the complex polynomial ring $\mathbb{C}[x_1, \ldots, x_n]$ is a Hilbert ring. In fact, show that $k[x_1, \ldots, x_n]$ is a Hilbert ring for any field k.