M901-2008 Assignment 2: Due Monday September 15

Instructions: Do any three of the following problems.

- (1) Prove $F = \langle X | xy = yx$ for all $x, y \in X \rangle$ is a free abelian group with respect to the map $f: X \to F$ where f is the composition of the canonical inclusion $i: X \to F(X)$ of X into the free group F(X) with the canonical quotient homomorphism $F(X) \to F$.
- (2) Let $f: X \to Y$ be a map of sets. Prove that f is surjective if and only if, whenever h and g are maps $Y \to Z$ of sets with hf = gf, then h = g.
- (3) Let G be a finite group acting on a finite set S.
 - (a) Prove that $|G||S| \ge \sum_{s \in S} |Gs|$, with equality if and only if every nonidentity element of G is fixed point free.
 - (b) Find a lower bound for $\sum_{s \in S} |G_s|$ which holds if and only if the action is trivial.
- (4) Show that any finite group G is finitely presented.
- (5) Let $\phi: G_2 \to \operatorname{Aut}(G_1)$ be a homomorphism. Show that $G_1 \rtimes_{\phi} G_2$ is abelian if and only if ϕ is trivial and G_1 and G_2 are abelian.
- (6) Let $p \le q$ be primes. Prove there exists a nonabelian group of order pq if and only if $p \mid q-1$.