
Math 417 Final Exam: May 7, 2003

Instructions: Do any four of the seven problems. Don’t forget to put your name on your answer sheets.

[1] Let G be a cyclic group. Let S be the union of all of the proper subgroups of G.
(a) If G is infinite, show that |G− S| = 2 (i.e., show that there are only two elements in G that are not in S).
(b) If G is finite, show that |G− S| = φ(|G|) (i.e., show that there are φ(|G|) elements in G that are not in S).
(c) Prove that a cyclic group G is never a union of proper subgroups.

Answer: (a) If G =< g > is an infinite cyclic group, then it has only two generators: g, which is given, and g−1. (Clearly,
any subgroup that has either g or g−1 has the other, so one generates if and only if the other does. But if n is an integer but
not either 1 or −1, then < gn > can’t contain g, since then (gn)m = g implies that gnm−1 = eG, and hence that g, and so G,
has finite order. A similar argument shows that < gn > can’t contain g−1.) Every element x ∈ G that is not a generator of
G is in S, since < x > is a proper subgroup. Thus G− S = {g, g−1}, so |G− S| = 2.
Answer: (b) As in (a), G− S is the set of elements of G which are generators of G; if G is a finite cyclic group of order n,
then it is isomorphic to Zn, and hence has φ(n) generators. So |G− S| = φ(n).
Answer: (c) Since |G− S| > 0, we see that G is never the union S of its proper subgroups.

[2] Let G be a group.
(a) Let F and H be subgroups of G, and assume that F does not contain H and that H does not contain F . Let f be

an element of F that is not in H and let h be an element of H that is not in F . Show that fh is not in either F
nor H (i.e., show that fh is not in F ∪H).

(b) Show that G is not the union of any two proper subgroups.

Answer: (a) If fh ∈ F , then fh = g for some g ∈ F , so h = f−1g ∈ F , contradicting our assumption. Similarly, if fh ∈ H,
then f ∈ H, which is a contradiction. This means that fh is in neither F nor H.
Answer: (b) Say G were the union of two proper subgroups; call them F and H. If F ⊂ H, then G = F ∪H = H, which
contradicts H being proper. Likewise, we can’t have H ⊂ F . Thus neither of F and H contains the other, so there is an
f ∈ F −H and an h ∈ H − F , so fh is in neither F nor H, which means that G can’t be the union of F and H.

[3] Let F0, F1, . . . be the Fibonacci sequence (thus F0 = 1, F1 = 1 and Fn+1 = Fn + Fn−1 for every n ≥ 1). Prove that
Fn ≥ 1.5n for all n ≥ 5.

Answer: Clearly, F5 = 8 ≥ 8(243/256) = 243/32 = 1.55, and F6 = 13 ≥ 12(243/256) = 1.56. And if Fk ≥ 1.5k and
Fk−1 ≥ 1.5k−1 for some k ≥ 6, then Fk+1 = Fk + Fk−1 ≥ 1.5k + 1.5k−1 = 1.5k−1(2.5) > 1.5k−1(2.25) = 1.5k+1. Now
Fn ≥ 1.5n for all n ≥ 5 follows by induction.

[4] Prove that Z12 ⊕ Z30 is isomorphic to Z60 ⊕ Z6, but not to Z24 ⊕ Z15.

Answer: First, by the Chinese Remainder Theorem, Z12 ⊕ Z30 = Z12 ⊕ Z5∗6 ∼= Z12 ⊕ Z5 ⊕ Z6
∼= Z12∗5 ⊕ Z6 = Z60 ⊕ Z6.

But no element of Z12 ⊕ Z30 has order more than 60, since 60 is the lcm of 12 and 30, whereas (1, 1) ∈ Z24 ⊕ Z15 has order
120, so Z12 ⊕ Z30 is not isomorphic to Z24 ⊕ Z15.

[5] Let f : G → H be a homomorphism of groups.
(a) Define the kernel of f .
(b) Prove that the kernel of f is a subgroup of G.
(c) Prove that the kernel of f is a normal subgroup of G.

Answer: (a) ker f = {x ∈ G|f(x) = eH}
Answer: (b) Since eG ∈ ker f , we know ker f is not empty. If x, y ∈ ker f , then f(xy) = f(x)f(y) = eHeH = eH , so
xy ∈ ker f , so ker f is closed under the group operation. And if x ∈ ker f , then f(x−1) = (f(x))−1 = e−1

H = eH , so
x−1 ∈ ker f , hence ker f is closed under taking inverses. Thus ker f is a subgroup.
Answer: (c) Let x ∈ ker f and let g ∈ G. Then f(gxg−1) = f(g)f(x)f(g)−1 = f(g)eHf(g)−1 = f(g)f(g)−1 = eH , so
gxg−1 ∈ ker f , hence ker f is normal.

[6] Let n > 1 be a positive integer.
(a) Prove that the number of elements of order n in Sn is at least (n− 1)!. [Hint: look at n-cycles.]
(b) Prove that Sn has an element of order n that is not an n-cycle if and only if n is not a power of a prime.

Answer: (a) There are n! ways to write down an n-cycle (since this is the number of ways of ordering the numbers 1 to n).
But these can be grouped into sets of n orderings which define the same n-cycle, so there are n!/n = (n− 1)! n-cycles in Sn.
Answer: (b) If n is not a power of a prime, then we can factor n so that n = km, where 1 < k < m < n, gcd(k, m) = 1, but
n = km. Now k + m < 2m ≤ km = n, so we can find a disjoint k-cycle (call it σ) and m-cycle (call it τ) in Sn. Then στ has
order n, since n is the lcm of k and m. Conversely, assume Sn has an element τ of order n but that τ is not an n-cycle. If τ
is a cycle, it must be an r-cycle with r < n, but then it has order r < n. Thus τ is a product of disjoint cycles, and the lcm
of the lengths of the cycles is n. If n were a power of a prime, then since each length divides n, the lengths are powers of the
same prime. Thus the lcm is the length which is the largest power, but all of the lengths are less than n, so the order would
be less than n, contrary to assumption. Thus n can’t be a power of a prime.


