Show that every directed path in the subgroup digraph of a cyclic group of order \(N \) has length at most \(\log_2 N \).

Every directed path in such a digraph corresponds to a sequence \(H_0 < H_1 < \cdots < H_r \) of subgroups \(H_i \) in \(G \). The longest path must have \(e = H_0 \) and \(G = H_r \). Let \(p_i = |H_i|/|H_{i-1}| \), so any path for which \(e = H_0 \) and \(G = H_r \) gives a factorization of \(|G| \), and any factorization \(|G| = p_0 \cdots p_r \) gives a path corresponding to subgroups \(H_0 < H_1 < \cdots < H_r \), where \(H_i \) is the unique subgroup of \(G \) of order \(p_0 \cdots p_{i-1} \). Thus the length of the longest path is just the length of the longest factorization \(|G| = p_0 \cdots p_r \). The longest factorization is the one in which each \(p_i \) (except \(p_0 \), since \(p_0 = 1 \)) is prime. If \(n \) is the length of the longest path, we know \(|G| \) is the product of \(n \) primes \(p_1, \ldots, p_n \), and since 2 is the least prime, we have \(2^n \leq p_1 \cdots p_n = |G| \), or \(n = \log_2 2^n \leq \log_2 |G| \).

(2) Let \(x, g \in S_n \). Assume that \(x = (a_1 \ldots a_r) \) is an \(r \)-cycle. Show that \(gxg^{-1} = (g(a_1) \ldots g(a_r)) \).

For \(0 \leq i < r \), \((gxg^{-1})(g(a_i)) = gx(a_i) = g(a_{i+1}) \), so \(gxg^{-1} \) takes \(g(a_i) \) to \(g(a_{i+1}) \), while \((gxg^{-1})(g(a_r)) = gx(a_r) = g(a_1) \). And if \(z \in \{1, 2, \ldots, n\} - \{g(a_1, \ldots, a_r)\} \), then \(z = g(y) \) for some \(y \), which is not among \(\{a_1, \ldots, a_r\} \), so \(x(y) = y \) and \((gxg^{-1})(z) = (gxg^{-1})(g(y)) = gxg^{-1}(g(y)) = g(y) = g(y) = z \). This shows that \(gxg^{-1} \) and the cycle \((a_1) \ldots (a_r) \) permute the elements of \(\{1, \ldots, n\} \) in exactly the same way, so \(gxg^{-1} = (g(a_1) \ldots g(a_r)) \).

(3) Find the centralizer of \((1234)\) in \(S_4 \).

Let \(x = (1234) \) and \(g \in C_{S_4}(x) \). Then \(gx = xg \), hence \(x = gxg^{-1} \). But \(gxg^{-1} = (g(1)g(2) \cdots g(4)) \), so we need \((1234) = (g(1)g(2) \cdots g(4)) \). Since we can write the 4-cycle \((1234)\) in only four different ways (i.e., as any of \((1234) = (2341) = (3412) = (1243)\)), the only thing that \(g \) can do is cyclically permute the numbers \(1 \) through \(4 \), \(\text{can't change their relative order (else (g(1)g(2) \cdots g(4)) is not one of the four different ways to write (1234)). But the only cyclic permutations of } 1, 2, 3, 4 \text{ which don't change their relative order is a power of } x, \text{ hence } g \in S_4 \text{. Since } x > C_{S_4}(x), \text{ we see that } C_{S_4}(x) \text{, hence } |C_{S_4}(x)| = |x| = 4. \) Alternatively, it is not hard to use brute force to find \(C_{S_4}(x) \), since \(S_4 \) has only 24 elements.

(4) Let \(n \) and \(N \) be positive integers.

(a) If \(f : Z_n \to Z_N \) is a homomorphism of groups and \(m = f(1) \), show that \(N|m| \) and that \(f(x) = mx \text{ mod } N \), for all \(x \in Z_n \).

(b) Conversely, if \(m \) is a positive integer such that \(N|m| \), show that \(f(x) = mx \text{ mod } N \) defines a homomorphism \(f : Z_n \to Z_N \).

(a) Denote + in the group \(Z_n \) or \(Z_N \) by \(\oplus \), to distinguish it from ordinary addition. Now take the image of \(1 \oplus \cdots \oplus 1 \) (i.e., \(1 \) added to itself \(n \) times), keeping in mind that this is the identity in \(Z_n \); i.e., \(0 = f(0) = f(1 \oplus \cdots \oplus 1) \). Since \(f \) is a homomorphism, this is \(0 = f(1) \oplus \cdots \oplus f(1) = nf(1) \text{ mod } N = nm \text{ mod } N \). Thus \(N|nm \), since \(nm \) modulo \(N \) is \(0 \). But we can write any \(x \in Z_n \) as a sum \(1 \oplus \cdots \oplus 1 \) with itself \(x \) times, so we have \(f(x) = f(1 \oplus \cdots \oplus 1) = f(1) \oplus \cdots \oplus f(1) = mx \text{ mod } N \).

(b) Let \(x, y \in Z_n \) and let \(x + y = qn + r \), with \(0 \leq r < n \). Then \(f(x + y) = f(r) = mr \text{ mod } N \). But \(f(x) \oplus f(y) = mx + my \text{ mod } N \). Note that \(mx + my - mr = m(x + y) - r = mnq \), hence \(mnq = Nz \) for some \(z \) since \(N|mn \), hence \(mnq = Nz \), so \(mx + my \text{ mod } N = mr \text{ mod } N \). Thus \(f(x + y) = f(x) \oplus f(y) \), so \(f \) is a homomorphism.

(5) Let \(f : G \to H \) be a homomorphism of groups. If \(G \) is finite, show that \(|f(G)| \cdot |\ker f| = |G| \).

Since every element of \(G \) is in \(f^{-1}\{h\} \) for some \(h \in H \), yet inverse images of different elements are disjoint, we see that \(|G| = \sum_{h \in H} |f^{-1}\{h\}| \), but \(|f^{-1}\{h\}| = 0 \) unless \(h \in f(G) \), so \(|G| = \sum_{h \in f(G)} |f^{-1}\{h\}| \). And if \(h = f(g) \), then \(f^{-1}\{h\} = g\ker(f), \) and we know multiplication by an element in a group is injective, so \(|g\ker(f)| = |\ker(f)| \), hence \(|G| = \sum_{h \in f(G)} |f^{-1}\{h\}| = \sum_{h \in f(G)} |\ker(f)| = |f(G)| \cdot |\ker(f)| \).