M417 Homework 4 Solutions Spring 2004

- (1) Determine the orders of the groups of symmetries of the Platonic solids: The tetrahedron, as we found in class, has symmetry group of order 12. Likewise, the cube's has order 24. The octahedron has 6 vertices, with 4 faces at each vertex, so the order is $6 \times 4 = 24$. The dodecahedron has 20 vertices, with 3 faces at each vertex, so the order is $20 \times 3 = 60$. The icosahedron has 12 vertices, with 5 faces at each vertex, so the order is $12 \times 5 = 60$.
- (2) If $x^2 = e$ for every element x of a group G, show that G is abelian: given $a, b \in G$, we must show ab = ba. But $aabb = a^2b^2 = ee = e = (ab)^2 = abab$, so cancelling gives ab = ba.
- (3) # 16, p. 38: Label the H's, in order, by the integers, using subscripts. Let t_d be the translation $t_d(H_i) = H_{i+d}$. Let h be the reflection across the horizontal line through the center of the H's. Let r_d be the rotation by 180°, centered on H_d , let r'_d be the rotation by 180°, centered between H_d and H_{d+1} , let v_d be the reflection across the vertical line through the center of H_d , and let v'_d be the reflection across the vertical line midway between H_d and H_{d+1} . Any symmetry takes H_0 somewhere, say to H_d , first either rotating H_0 by a half turn, or flipping H_0 across either its horizontal or vertical axis of symmetry. And once you know how H_0 was moved, you know how all the other H's were moved too. Thus every symmetry is either $t_d r_0$, $t_d v_0$, or $t_d h$. (These are just the symmetries we found above, since $t_2 d r_0 = r_d$, $t_2 d + 1 r_0 = r'_d$, $t_2 d + 1 r_0 = v'_d$, and $t_3 d \in \mathbf{Z}$.) But $t_3 d = t_3 d + t_3 d + t_3 d = t_3 d + t_3 d = t_3 d$
- (4) # 50, p. 71: if a subgroup contains positive integers, a and b then it contains every integer linear combination of a and b, hence it contains k = gcd(a, b). Since $\langle k \rangle$ contains a and b, $\langle k \rangle$ is the smallest subgroup of \mathbf{Z} containing a and b. Thus the answer for: (a) is k = gcd(8, 14) = 2; (b) is k = gcd(8, 13) = 1; and (c) is k = gcd(6, 15) = 3. For (d), the same reasoning gives k = gcd(|m|, |n|), unless m = n = 0, in which case gcd(|m|, |n|) is undefined but we can take k = 0. For (e), any subgroup that contains 12 and 18 contains 6, and any subgroup that contains 6 and 45 contains 3, while $\langle 3 \rangle$ contains 12, 18 and 45, so the answer is k = 3. Note that again k = gcd(2, 18, 45).
- (5) # 52, p. 71: Consider $e \neq x \in G$. Since G is finite, we know there exist integers m < n such that $x^m = x^n$. Cancelling gives $e = x^k$, for k = n m > 1 (since k = 1 implies x = e). This shows that $x^k = e$ has solutions k > 1. Replace k by the least such solution. Thus we may assume that k > 1 and that $x^k = e$, but that $x^i \neq e$ for $1 \le i < k$. Let p be any prime dividing k, and define m by pm = k. Let $p = x^m$. Then $p^p = x^{pm} = x^k = e$, but for $0 , <math>p^p = x^{pm} = x^{p$