December 19, 2002 M314 Final Exam Solutions

[1] Consider the systems of equations:

$$x + (k+5)y = h$$
$$x + y = 3$$

(a) Determine all values of k and h such that the system has no solutions. Explain your answer.

Subtract equation 2 from equation 1 to get (k+4)y = h-3. This has no solution if and only if k = -4 and $h \neq 3$, since in that case (k+4)y = h-3 becomes 0 = 1, while if $k \neq -4$ we have y = (h-3)/(k+4) and x = 3 - (h-3)/(k+4), and if k = -4 and k = 3, then k = 3 and k = 3, then k = 3 and k = 3 are solution for any value of k = 3.

(b) Determine all values of k and h such that the system has infinitely many solutions. Explain your answer.

We just saw that we have a free variable if and only if k = -4 and h = 3.

(c) Determine all values of k and h such that the system has exactly one solution. Explain your answer.

All that remains is the case that $k \neq -4$ for which we have y = (h-3)/(k+4) and x = 3 - (h-3)/(k+4).

- [2] Let A be an $n \times n$ matrix.
- (a) If A^2 is the 0 matrix, prove that $\lambda = 0$ is an eigenvalue of A and that it is the only eigenvalue of A.

Say that $Av = \lambda v$, where v is an eigenvector, hence $v \neq 0$. Then $0 = A^2v = \lambda Av = \lambda^2 v$, so $v \neq 0$ implies $\lambda^2 = 0$, hence $\lambda = 0$.

(b) If A^2 is the 0 matrix and A is diagonalizable, prove that A is the 0 matrix.

There is an invertible matrix P such that $P^{-1}AP = D$ is diagonal. Thus $0 = P^{-1}A^2P = (P^{-1}AP)(P^{-1}AP) = D^2$, so D = 0, so $A = PDP^{-1} = 0$.

- [3] In this problem, R_A is the reduced row echelon form of the matrix A. For each of the following statements, circle T if it is true and F if it is false. In addition, if it is false, write down a specific matrix A for which the statement does not hold.
- (a) True: For every matrix A, $Nul(A) = Nul(R_A)$.
- (b) True: For every matrix A, $Row(A) = Row(R_A)$.
- (c) False: For every matrix A, $Col(A) = Col(R_A)$. Let $A = (1,1)^T$. Then $Col(A) = Span((1,1)^T)$, but $Col(R_A) = Span((1,0)^T)$, and these are different.
- (d) False: Every $n \times n$ matrix A has the same characteristic polynomial as R_A . Let A = 2I. Then the polynomial for A is $(2-t)^n$, but $R_A = I$ has $(1-t)^n$.
- (e) False: For every $n \times n$ matrix A, $\det(A) = \det(R_A)$. Again, use A = 2I and A = I: $\det(A) = 2^n$, but $\det(R_A) = 1$.
- (f) True: An $n \times n$ matrix A is invertible if and only if R_A is.
- (g) False: An $n \times n$ matrix A is diagonalizable if and only if R_A is. Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then $R_A = I$ is diagonalizable (even diagonal), but A is not diagonalizable, since the eigenvalue $\lambda = 1$ has algebraic multiplicity 2 but geometric multiplicity only 1.
- (h) True: For every matrix A, $rank(A) = rank(R_A)$.
- (i) True: For every matrix A, $\dim \text{Row}(A) = \dim \text{Row}(A^T)$.
- (i) True: For every matrix A, $Nul(A) = (Row(A))^{\perp}$.
- [4] Let H be the subset $\{[a+1,b]^T: a,b\in\mathbf{R}\}\$ of \mathbf{R}^2 . Let W be the subset $\{[1,b]^T: b\in\mathbf{R}\}$ of \mathbf{R}^2 .
- (a) Is W a subspace of \mathbb{R}^2 ? Explain why or why not.

No, W is not a subspace, since it is not closed under vector addition or scalar multiplication. For example, $[1,0]^T \in W$, but $2[1,0]^T \notin W$.

(b) Is H a subspace of \mathbb{R}^2 ? Explain why or why not.

Yes, H is a subspace, since in fact $H = \mathbb{R}^2$.

- [5] Let H be the span of the vectors $[0,1,0,1]^T$, $[1,0,1,0]^T$, $[0,1,1,0]^T$, and $[1,0,0,1]^T$. For each part, show your work or explain your answer.
- (a) Find the dimension of H.

The dimension of H is just the rank of the matrix A whose columns are the given vectors. By row reduction, we find that $\operatorname{rank}(A) = 3$. Note that it is not enough here to find $\det(A)$. If $\det(A)$ were not 0, then we would know that A has rank 4, but here $\det(A) = 0$, so all we know is that the rank of A is less than 4.

(b) Determine if $[1, 1, 1, 1]^T$ is in H.

Here we try to solve Ax = v where $v = [1, 1, 1, 1]^T$. By row reducing we find that the system is consistent, so $v \in H$. In fact, $x = [1, 1, 0, 0]^T$ is a solution.

(c) Find an orthogonal basis for H.

Note that $[0,1,0,1]^T$ and $[1,0,1,0]^T$ are already orthogonal. By Gram-Schmidt, we get from the third vector $[0,1,1,0]^T$, the vector $(1/2)[-1,1,1,-1]^T$. Since the first three vectors give a basis for H, the vectors $[0,1,0,1]^T$, $[1,0,1,0]^T$ and $(1/2)[-1,1,1,-1]^T$ give an orthogonal basis, as does $[0,1,0,1]^T$, $[1,0,1,0]^T$ and $[-1,1,1,-1]^T$.

(d) Find $\operatorname{proj}_{H} \mathbf{v}$ for $\mathbf{v} = [1, 2, 3, 4]^{T}$.

Since we have an orthogonal basis for H, we can use the formula, which gives

$$\operatorname{proj}_{H}\mathbf{v} = (6/2)[0, 1, 0, 1]^{T} + (4/2)[1, 0, 1, 0]^{T} + 0[-1, 1, 1, -1]^{T} = [2, 3, 2, 3]^{T}.$$