December 19, 2002 M314 Final Exam Name :_____ Problem : Points : $\begin{array}{c} \mathbf{Score}:\\ \mathbf{Total}: \end{array}$ 1 9 2 10 3 30 4 10 5 16 Instructions: Show all of your work; your work must justify your answers. [1] Consider the systems of equations: $$x + (k+5)y = h$$ $$x + y = 3$$ (a) Determine all values of k and h such that the system has no solutions. Explain your answer. (b) Determine all values of k and h such that the system has infinitely many solutions. Explain your answer. (c) Determine all values of k and h such that the system has exactly one solution. Explain your answer. [2] Let A be an $n \times n$ matrix. (a) If A^2 is the 0 matrix, prove that $\lambda = 0$ is an eigenvalue of A and that it is the only eigenvalue of A. (b) If A^2 is the 0 matrix and A is diagonalizable, prove that A is the 0 matrix. | [3] In this problem, R_A is the reduced row echelon form of the matrix A . For each of the following statements, circle T if it is true and F if it is false. In addition, if it is false, write down a specific matrix A for which the statement does not hold. | | | | |--|--|---|--| | (a) T F: | For every matrix A , $Nul(A) = Nul(R_A)$. | (b) T F: For every matrix A , $Row(A) = Row(R_A)$. | | | (c) T F: | For every matrix A , $Col(A) = Col(R_A)$. | (d) T F: Every $n \times n$ matrix A has the same characteristic polynomial as R_A . | | | (e) T F: | For every $n \times n$ matrix A , $det(A) = det(R_A)$. | (f) T F: An $n \times n$ matrix A is invertible if and only if R_A is. | | | (g) T F: R_A is. | An $n \times n$ matrix A is diagonalizable if and only if | (h) T F: For every matrix A , rank $(A) = \text{rank}(R_A)$. | | | (i) T F: | For every matrix A , $\dim \text{Row}(A) = \dim \text{Row}(A^T)$. | (j) T F: For every matrix A , $\operatorname{Nul}(A) = (\operatorname{Row}(A))^{\perp}$. | | | [4] Let H be the subset $\{[a+1,b]^T: a,b \in \mathbf{R}\}$ of \mathbf{R}^2 . Let W be the subtance (a) Is W a subspace of \mathbf{R}^2 ? Explain why or why not. | set $\{[1,b]^T:b\in\mathbf{R}\}$ of \mathbf{R}^2 . | | |---|--|--| | (b) Is H a subspace of \mathbf{R}^2 ? Explain why or why not. | | | | [5] Let H be the span of the vectors $[0,1,0,1]^T$, $[1,0,1,0]^T$, $[0,1,1,0]^T$, and $[1,0,0,1]^T$. For each part, show your work or explain your answer. | | | | (a) Find the dimension of H . | (b) Determine if $[1, 1, 1, 1]^T$ is in H . | | | | | | | | | | | | | | | | | | | (c) Find an orthogonal basis for H . | (d) Find $\operatorname{proj}_{H}\mathbf{v}$ for $\mathbf{v} = [1, 2, 3, 4]^{T}$. | | | | | |