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Abstract: This paper, which expands on a talk given at the International Workshop on Fat
Points, February 9-12, 2000, in Naples, Italy, surveys problems and progress on certain problems
involving numerical characters for ideals I(Z) defining fat points subschemes Z = m1p1 + · · ·+
mnpn ⊂ P

2 for general points pi. In addition to presenting some new results, a collection
of MACAULAY 2 scripts for computing actual or conjectured values of (or bounds on) these
characters is included. One such script, findres, for example, computes the syzygy modules in
a minimal free resolution of the ideal I(Z) for any such Z with n ≤ 8; since findres does not
rely on a Gröbner basis calculation, it is much faster than routines that do.

I. Introduction
This paper surveys work on certain problems involving fat points subschemes of P2.

To encourage experimentation, I have included a number of MACAULAY 2 scripts for
doing explicit calculations. To simplify using them, I’ve included them in the TEXfile for
this paper in a verbatim listing, without any intervening TEX control sequences. Thus if
you have (or obtain, from, say, http://www.math.unl.edu/∼bharbour/Survey.tex) the
TEXlisting for this paper, you can simply copy the lines for the necessary MACAULAY 2
scripts from this paper directly into MACAULAY, without any additional editing.

Although the most general definition of a fat points subscheme involves the notion of
infinitely near points (see [H6]), it is simpler here to define a fat points subscheme of P2

to be a subscheme Z defined by a homogeneous ideal I ⊂ R of the form I(p1)
m1 ∩ · · · ∩

I(pn)mn , where p1, . . . , pn are distinct points of P2, m1, . . . ,mn are nonnegative integers
and R = k[P2] is the homogeneous coordinate ring of P2 (i.e., a polynomial ring in 3
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variables, x, y and z, over an algebraically closed field k). It is convenient to denote Z by
Z = m1p1 + · · · + mnpn and to denote I by I(Z).

For another perspective, a homogeneous polynomial f ∈ R is in I(Z) if and only if
multpi

(f) ≥ mi for all i, where multpi
(f) denotes the multiplicity of f at pi (this being the

least t such that if l1 and l2 are linear forms defining lines which meet at pi and nowhere
else then f is in the tth power (l1, l2)

t of the ideal (l1, l2) ∈ R).

It is important for what follows to note that I(Z) is a homogeneous ideal, hence I(Z)
is the direct sum of its homogeneous components I(Z)t = Rt∩I(Z) (where for each integer
t, Rt denotes the k-vector space span of all homogeneous polynomials of R of degree t).

I.1. Numerical Characters

The work I am interested in here concerns certain numerical characters of ideals
I(m1p1 + · · · + mnpn) ⊂ R which take a constant value on some nonempty open sub-
set of points (p1, . . . , pn) ∈ (P2)n. Thus we will usually consider fat points subschemes
Z = m1p1 + · · ·+ mnpn for which the points pi ∈ P2 are general. (Saying that something
is true for Z = m1p1 + · · ·+mnpn for general points pi, is the same as saying that it holds
for some open subset of points (p1, . . . , pn) ∈ (P2)n.) In order to establish a result for gen-
eral points, one typically establishes it for some particular special choice of the points and
then argues by semicontinuity. (To justify using semicontinuity, even for specializations
to infinitely near points, see my 1982 thesis, the relevant parts of which were published
in [H2]; alternatively, for specializations keeping the points distinct, see [P].) Thus we will
sometimes consider situations for which the points pi are in some special position.

Given a fat points subscheme Z = m1p1 + · · ·+ mnpn and its ideal I = I(Z), among
the numerical characters which have seen attention by various researchers over the years
are the following:

• α(Z), the least degree t such that I(Z)t 6= 0;

• β(Z), the least degree t such that the zero locus of I(Z)t is zero dimensional;

• hZ , the Hilbert function of I(Z) (i.e., the function whose value hZ(t) for each
degree t is the k-vector space dimension of I(Z)t);

• τ (Z), the least degree t ≥ 0 such that hZ(t) = PZ(t), where PZ is the Hilbert
polynomial of Z (which is simply PZ(s) = (s2 + 3s + 2−

∑

i mi(mi + 1))/2);

• νt(Z), the number of generators of I(Z) in degree t in any minimal set of homo-
geneous generators;

• ε(Z) = limm→∞α(mZ)/(m(m2
1 + · · ·+ m2

n)), the Seshadri constant with respect
to Z.

(In cases where it is understood which Z is meant, I will sometimes write α or β, etc., for
the more explicit but more cumbersome α(Z), etc.)

The most fundamental characters are α, h and νt. For example, hZ immediately
determines α(Z) and τ (Z). Moreover, if one can compute hZ for any Z then one can also
determine β for any particular Z. (This is because t < β(Z) if and only if either t < α(Z),
or t ≥ α(Z) and there exists some nonzero Y = m′

1p1+· · ·+m′
npn with 0 ≤ m′

i ≤ mi for all
i such that hZ(t) = hZ−Y (t−α(Y )). The idea is that for α(Z) ≤ t < β(Z), every element
of I(Z)t is divisible by nonconstant homogeneous polynomials f which define divisors in
the fixed locus of the linear system I(Z)t. Any such f spans I(Y )α(Y ) for an appropriate
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Y , as above. Since there are only finitely many m′
1p1 + · · · + m′

npn with 0 ≤ m′
i ≤ mi,

one can in principle check whether any such Y exists, as long as one can always compute
h.) Similarly, if one can compute α(Z) for any Z then one can also determine hZ for any
particular Z. (Here’s how: to compute hZ(t) for some t and some Z = m1p1 + · · ·+mnpn,
let Z0 = Z and for each j > 0 let Zj = Z0 + q1 + · · · + qj , where q1, . . . , qj are general.
Since each additional point qi imposes one additional condition on forms of degree t up to
the point where no forms remain, we see that hZ(t) = i where i is the least j such that
α(Zj) > t.)

Knowing α(Z) for a particular Z sometimes also means we know νt(Z) for all t.
Indeed, conjectures about the values of α, and, for certain Z, of νt, are made below (see
Conjecture II.3.1). There are examples of Z for which, if α(Z) is what it is conjectured to
be, then so are all νt(Z). (For example, take Z = m(p1 + · · ·+ pn) with general points pi,
where n > 9 is an even square and m is sufficiently large; see Example 5.2 and Theorem
2.5, both of [HHF].) Nonetheless, knowing α in general does not seem to be enough to
determine νt for all t, but if one knows νt for all t, then one can always compute α and
hence all of the other characters listed. (This is because the least t such that νt(Z) > 0
is t = α(Z); moreover, να(Z)(Z) = hZ(α(Z)).) Thus the characters νt are perhaps even
more fundamental than the other characters discussed above.

The characters νt(Z) are also interesting due to their connection to minimal free
graded resolutions of I(Z). A minimal free graded resolution of I(Z) is an exact sequence
0 → F1(Z) → F0 → I(Z) → 0 in which F1(Z) and F0(Z) are free graded R-modules. It
turns out, up to isomorphism as graded R-modules, that F0 is ⊕tR[−t]νt(Z) and F1(Z)
is ⊕tR[−t]st(Z), where the characters st(Z) are defined via νt(Z) − st(Z) = ∆3hZ(t)
[FHH]. Here ∆ denotes the difference operator (so for any function f : Z → Z, we have
∆f(t) = f(t) − f(t − 1)), and R[i]j denotes the direct sum of j copies of the module R
itself but taken with the grading defined by R[i]t = Rt+i.

I.2. Connection to Geometry

Additional interest in these characters (and essential techniques in studying them)
comes from their connections to geometry. Given distinct points p1, . . . , pn ∈ P2, let
π : X → P2 be the birational morphism obtained by blowing the points up. Thus π is the
unique morphism where X is a smooth and irreducible rational surface such that, away
from the points pi, π is an isomorphism and such that for each i, π−1(pi) is a smooth
rational curve Ei. It is known that the divisor class group Cl(X) is a free abelian group
on the classes [Ei] of the divisors Ei and on the class [E0], where E0 = π−1(L), L being
any line in P2 not passing through any of the points pi. Thus for any divisor D on X we
have [D] =

∑n

i=0 ai[Ei] for some integers ai.

It will be useful later to recall the intersection form on Cl(X). This is a symmetric
bilinear form denoted for elements [C] and [D] of Cl(X) by [C] · [D] and determined by
requiring that [Ei] · [Ej ] is 0 if i 6= j, 1 if i = j = 0 and −1 if i = j > 0. If C and D are
curves on X such that C ∩D is finite and transverse, then [C] · [D] = |C ∩D|; i.e., [C] · [D]
is just the number of points of intersection of C with D. If C = D, it is convenient to
denote [C] · [D] by [C]2.

Now, for a divisor D, let OX(D) denote the associated line bundle. Given a fat points
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subscheme Z = m1p1 + · · ·+ mnpn, it turns out for all t that hZ(t) = h0(X,OX(Ft(Z))),
where Ft(Z) is the divisor tE0− (m1E1 + · · ·+mnEn) and h0(X,OX(Ft(Z))) denotes the
dimension of the 0th cohomology group H0(X,OX(Ft(Z))) of the sheaf OX(Ft(Z)) (i.e.,
h0(X,OX(Ft(Z))) is the dimension of the space of global sections of OX(Ft(Z))). Thus
α(Z) is the least t such that h0(X,OX(Ft(Z))) > 0 and τ (Z) is the least t ≥ 0 such that
h0(X,OX(Ft(Z))) = PZ(t). Moreover, note that PZ(t) = (Ft(Z)2 − KX · Ft(Z))/2 + 1.
By Riemann-Roch we have

h0(X,OX(Ft(Z))) − h1(X,OX(Ft(Z))) + h2(X,OX(Ft(Z))) = PZ(t),

and by duality we know h2(X,OX(Ft(Z))) = 0 for t > −3, so h0(X,OX(Ft(Z))) −
h1(X,OX(Ft(Z))) = PZ(t) for all t ≥ 0. Thus hZ(t) = PZ(t) + h1(X,OX(Ft(Z))) =
dimRt − (

∑

i mi(mi + 1)/2 − h1(X,OX(Ft(Z)))). Now, I(Z)t is precisely what is left
from Rt after imposing for each i the condition of vanishing at pi to order at least
mi; what the previous equation is saying is that the number of conditions imposed is
∑

i mi(mi + 1)/2 − h1(X,OX(Ft(Z))). For all t sufficiently large, h1(X,OX(Ft(Z))) = 0
so a total of

∑

i mi(mi + 1)/2 conditions are imposed. For smaller t, h1(X,OX(Ft(Z)))
measures the extent to which these

∑

i mi(mi + 1)/2 conditions fail to be independent,
and we can regard τ (Z) as the least degree in which the conditions imposed become inde-
pendent.

Likewise, the characters νt can be understood from two perspectives. There is a
natural map µt(Z) : I(Z)t ⊗k R1 → I(Z)t+1 given by multiplication, and νt+1(Z) is
just the dimension of the cokernel of the map µt(Z). Corresponding to this map µt(Z)
we have in a natural way a map µ(Ft(Z)) : H0(X,OX(Ft(Z))) ⊗k H0(X,OX(E0)) →
H0(X,OX(Ft+1(Z))), and indeed νt+1(Z) = dimcok(µ(Ft(Z))).

II. Resolutions
Given a fat points subscheme Z = m1p1 + · · · + mnpn, much current work concerns

either computing or bounding one or another of the numerical characters cited above.
Some of the oldest such work concerned bounding the characters νt.

II.1. Dubreil and Campanella Bounds

Dubreil [Dub] obtained two bounds on the minimum number
∑

i νi(Z) of homogeneous
generators of I(Z):

Theorem II.1.1: Let Z = m1p1 + · · · + mnpn be a fat points subscheme of P2 with
distinct points pi. Then

∑

i νi(Z) ≤ α(Z) + β(Z)− τ (Z) ≤ α(Z) + 1.

Sketch of proof: The inequality
∑

i νi(Z) ≤ α(Z) + 1 follows immediately from the
Hilbert-Burch Theorem. Here is a more elementary proof. Given R = k[x, y, z], we may
assume that x, y and z define general lines in P2 (which, in particular, do not contain any
of the points pi). It is then easy to see that the image J = xI(Z)t + yI(Z)t of the map
xI(Z)t⊕yI(Z)t → I(Z)t+1 has dimension 2hZ(t)−hZ(t−1). Since J has a base point (all
elements of J vanish at the common point of vanishing of x and y), we see for all t ≥ α(Z)
that xI(Z)t + yI(Z)t cannot contain zI(Z)t. Hence for t ≥ α(Z) the image of µt(Z) has
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dimension at least 2hZ(t)− hZ(t− 1) + 1, hence νt+1(Z) = dimcok(µt(Z)) ≤ hZ(t + 1)−
(2hZ(t) − hZ(t − 1) + 1) = ∆2hZ(t + 1) − 1, while of course νt(Z) = hZ(t) = ∆2hZ(t)
for t = α(Z). Summing for i = α(Z) to any N sufficiently large so that νj(Z) = 0 and
hZ(j) = PZ(j) for j ≥ N −1, we obtain

∑

i νi(Z) ≤ 1+
∑

i(∆
2hZ(t)−1) = 1+∆hZ(N)−

(N − (α(Z) − 1)) = PZ(N) − PZ(N − 1) −N + α(Z) = N + 1−N + α(Z) = α(Z) + 1.
The foregoing proof is based on an argument given by Campanella [Cam]. Using a

result of [GGR], Campanella there also gives a similar but slightly more refined bound,
νt+1(Z) ≤ ∆2hZ(t + 1) − εt, where εt is 0 for t < α(Z), 1 for α(Z) ≤ t < β(Z) and 2
for β(Z) ≤ t ≤ τ (Z). Summing these refined bounds for i from α(Z) to τ (Z) + 1 gives
∑

i νi(Z) ≤ α(Z) + β(Z) − τ (Z). (This argument requires that one knows that νi(Z) = 0
for i > τ (Z) + 1, but this is true and well known; see [DGM]. It is also not hard to see
this directly, at least from the point of view of the surface X obtained by blowing up the
points pi. Let [E0], . . . , [En] be the corresponding basis for Cl(X), as discussed in Section
I. The statement we need to prove is then that µ(Ft(Z)) is surjective if t > τ (Z). But
t > τ (Z) means t−1 ≥ τ (Z) and hence h1(X,OX(Ft−1(Z))) = 0, so taking global sections
of the exact sheaf sequence 0 → OX(Ft−1(Z)) → OX(Ft(Z)) → OE0

⊗ OX(Ft(Z)) →
0, we see H0(X,OX(Ft(Z))) surjects onto H0(E0,OE0

⊗ OX(Ft(Z))). But since E0 is
isomorphic to P1, we know that OE0

⊗ OX(Ft(Z)) is isomorphic to OE0
(t) and that

H0(E0,OE0
(1)) ⊗ H0(E0,OE0

(t)) → H0(E0,OE0
(t + 1)) is surjective, and hence that

H0(E0,OE0
(1)) ⊗H0(E0,OE0

⊗OX(Ft(Z))) → H0(E0,OE0
(t + 1)) is surjective. Taking

global sections (denoted by Γ) of 0 → OX → OX(E0) → OE0
(1) → 0, tensoring by

V = H0(X,OX(Ft(Z))) and mapping by multiplication, one obtains the diagram

0 → ΓX(OX) ⊗ V → ΓX(OX(E0))⊗ V → ΓE0
(OE0

(1)) ⊗ V → 0
↓ ↓ ↓

0 → ΓX(OX(Ft(Z))) → ΓX(OX(Ft+1(Z))) → ΓE0
(OE0

(t + 1)) → 0

in which the leftmost vertical map is obviously an isomorphism and the rightmost vertical
map as we saw is surjective, so the snake lemma gives an exact sequence in which the
cokernels of the outer vertical maps are 0, hence the cokernel cok(µ(Ft(Z))) of the middle
vertical map also vanishes; i.e., νt(Z) = 0 for t > τ (Z) + 1.) ♦

In addition to Dubreil’s bounds in Theorem II.1.1, and Campanella’s upper bounds
νt+1(Z) ≤ ∆2hZ(t +1)− εt mentioned in the proof above, Campanella also gave the lower
bound that νt(Z) ≥ max{∆3hZ(t), ε′t}, with ε′

β(Z) = 1 and ε′t = 0 otherwise (these bounds

of course follow from νt(Z) − st(Z) = ∆3hZ(t); Campanella was actually working in the
more general situation of perfect codimension 2 subschemes of any projective space).

Here is a result (a slight restatement of Lemma 4.1, [H7]) that in many cases turns out
to be an improvement on the bounds above of Dubreil and Campanella, proved in a way
very similar to the proof of Theorem II.1.1 given above. It underlies many of the results
of [H7], [H8], [HHF] and [FHH].

Lemma II.1.2: Let Z = m1p1 + · · ·+mnpn be a fat points subscheme of P2 with distinct
points pi such that m1 > 0, and let Z ′′ = Z − p1 and Z ′ = Z + p1. Then max{hZ(t + 1)−
3hZ(t) + hZ′′ (t− 1), 0} ≤ νt+1(Z) ≤ hZ(t + 1)− 3hZ(t) + hZ′′(t − 1) + hZ′(t).
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II.2. Exact Results

Campanella’s and Dubreil’s bounds hold for any Z = m1p1 + · · · + mnpn ⊂ P2, not
just when the points pi are general. Thus it is not surprising that the bounds are not
always exact. For example, for Z = 3(p1 + · · ·+ p5) with pi general we have ν8(Z) = 2 but
max{∆3hZ(8), ε′8} = 1 while ∆2hZ(8) − ε7 = 3.

Thus we can try to obtain exact results. The typical pattern for work on fat points has
been first to obtain results when either the multiplicities mi are small or the number n of
points is small, and this is what we see regarding ν. In particular, for Z = p1+· · ·+pn with
pi general, it is easy to see that α(Z) is the least t such that t2+3t+2 > 2n and that τ (Z) is
the least t such that t2+3t+2 ≥ 2n. And, as always, νt(Z) = 0 unless α(Z) ≤ t ≤ τ (Z)+1,
with, as always, να(Z)(Z) = hZ(α(Z)), so for Z = p1 + · · · + pn only να(Z)+1(Z) remains
to be found, and Geramita, Gregory and Roberts [GGR] proved for such subschemes of
general points of P2 with multiplicity 1 that µα(Z) has maximal rank (i.e., µα(Z) is either
surjective or injective, and hence να(Z)+1(Z) = max{hZ(α(Z)+1)−3hZ (α(Z)), 0}). Using
different methods Idà [Id] has extended this to the case that Z = 2(p1 + · · ·+ pn) with pi

general and n > 9.

Results have also been obtained for large m if n is small. The first such I am aware of
is that of Catalisano [Cat2], who determines νt(Z) for all t and any Z = m1p1 + · · ·+mnpn

as long as the points pi lie on a smooth plane conic; in particular, this handles the case of
any Z involving n ≤ 5 general points.

To discuss Catalisano’s result in more detail, let n be any positive integer (not nec-
essarily 5 or less) and consider Z = m1p1 + · · · + mnpn for any n distinct points pi. If
t ≥ α(Z), let ft be a common factor of greatest degree for the elements of I(Z)t (i.e.,
ft = 0 defines the fixed divisor of the linear system of curves given by I(Z)t). Now let
Z ′t be

∑

i(max{mi,multpi
(ft)})pi; thus ft spans I(Z ′t)d, where d = α(Z ′t) is the degree

of ft. In fact, d and Z ′t can be found without finding ft: d = α(Z ′t) where among all
Z ′′ = m′′

1p1 + · · ·+ m′′
npn with 0 ≤ m′′

i ≤ mi and hZ(t) = hZ−Z′′ (t− α(Z ′′)) we choose Z ′t
to be that Z ′′ for which

∑

i(mi −m′′
i ) is least.

In Catalisano’s situation, the points pi are assumed to lie on a smooth conic. By
[H1], hZ and Z ′t were already known and easy to compute for points on a conic, and, as
noted above, it is enough to determine νt(Z) for t > α(Z). Catalisano’s result, although
expressed in her paper [Cat2] rather differently, can now be stated:

Theorem II.2.1: Let p1, . . . , pn be distinct points on a smooth plane conic, let Z =
m1p1 + · · ·+mnpn be a fat points subscheme of P2 and let d = α(Z ′t), where Z ′t is defined
as above. Then for each t ≥ α(Z) we have νt+1(Z) = hZ(t + 1)− hZ−Z′

t
(t + 1− d).

For a proof in a slightly more general case (the conic need not be smooth, for example,
and the points can be infinitely near), see [H6]. As an aside, note that Theorem II.2.1 shows
that νt+1(Z) > 0 only if α(Z)− 1 ≤ t < β(Z), since for t ≥ β(Z) we have ft = 1, so d = 0
and Z ′t = 0.

Since n > 5 general points do not lie on a conic, Theorem II.2.1 does not apply for
n > 5 general points. Nonetheless, the inequality νt+1(Z) ≥ hZ(t + 1) − hZ−Z′

t
(t + 1− d)

always holds (see Lemma 2.10(c), [H6]), although equality can fail for n > 5 general points
since νt+1 can be positive even if t ≥ β(Z). A complete solution for the case of any
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Z = m1p1 + · · · + mnpn for n general points pi was given for n = 6 by Fitchett [F2], for
n = 7 by me [H8] and finally for n = 8 by Fitchett, me and Holay [FHH].

Given Z = m1p1 + · · ·+mnpn with pi general, the main result of [F2] is that µ(Ft(Z))
has maximal rank as long as Ft(Z) is nef and n ≤ 6. (A divisor D is nef if [D] · [H] ≥ 0
for every effective divisor H.) Given a divisor on the blow up X of P2 at n general points,
the main results of [H8] give an algorithmic reduction of the problem of determining the
rank of µ(F ) to the case that F is ample, and shows if n ≤ 7 that µ(F ) is surjective as
long as F is ample, thereby solving the problem of resolving I(Z) for n ≤ 7. (A divisor D
is ample if [D] · [H] > 0 for every effective divisor H.)

However, if n = 8, reduction to the ample case is not enough, since examples show that
µ(Ft(Z)) can fail to have maximal rank even if Ft(Z) is ample; take Z = 4(p1+· · ·+p7)+p8

with t = 11, for instance (case (c.ii) of Theorem II.2.2). The main result of [FHH] boils
down to giving a formula in nice cases together with an explicit algorithmic reduction to
the nice cases. We now give a slightly simplified statement of the main result of [HHF].

Recall that an exceptional curve on a smooth projective surface S is a smooth curve
C isomorphic to P1 such that [C]2 = −1 in Cl(S). Assuming n = 8, let ΞX denote the set
of classes of exceptional curves on X and for each exceptional curve C define quantities
λC and ΛC as follows: For C = Ei for any i, let λC = ΛC = 0. Otherwise, let mC be the
maximum of C ·E1, . . . , C ·En, define ΛC to be the maximum of mC and of (C ·L)−mC

and define λC to be the minimum of mC and of (C · L)−mC. We then have:

Theorem II.2.2: Let X be obtained by blowing up 8 general points of P2 and let
[E0], [E1], . . . , [E8] be the associated basis of the divisor class group of X. Consider the
class F = t[E0]−m1[E1]− · · · −m8[E8], where m1 ≥ · · · ≥ m8.

(a) If F · C ≥ ΛC for all C ∈ ΞX , then µ(F ) has maximal rank.

(b) If F ·C < λC for some C ∈ ΞX , then ker(µ(F )) and ker(µ(F −C)) have the same
dimension.

(c) If neither case (a) nor case (b) obtains, then either

(i) F · (E0−E1−E2) = 0, in which case cok(µF ) has dimension h1(X,OX(F −
(E0 −E1))) + h1(X,OX (F − (E0 −E2))), or

(ii) [F ] is [3E0 −E1 − · · · −E7] + r[8E0 − 3E1 − · · · − 3E7 −E8] for some r ≥ 1
(in which case dim cok(µ(F )) = r and dim ker(µ(F )) = r + 1), or

(iii) µ(F ) has maximal rank.

This theorem leads directly to an algorithm for computing resolutions for fat point
subschemes Z involving n ≤ 8 general points of P2. The MACAULAY 2 script findres

included at the end of this paper implements this algorithm to compute the values of
νt(Z) and hZ(t) for all α(Z) ≤ t ≤ τ (Z) + 2. Since it does not rely on Gröbner basis
computations, it is in comparison quite fast.

II.3. The Quasi-uniform Resolution Conjecture

What to expect for n > 8 remains mysterious. Whereas (as discussed below) by taking
into account effects due to exceptional curves there results a reasonable conjecture for hZ

for any Z involving general points, doing the same for resolutions is harder. (For a partial
result in this direction, see [F1], which at least sharpens the bounds Campanella has given
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on νt(Z). Also see Theorem 5.3 of [H7], which shows in a certain sense that behavior
in the n > 8 case is simple asymptotically, and that it is the case of relatively uniform
multiplicities that is not understood.) In fact, the results of [FHH] for n = 8 suggest that
taking into account the exceptional curves may not be enough. Thus it is still unclear how
νt(Z) should be expected to behave in general.

If one puts a mild condition on the coefficients mi, however, there is reason to hope
that behavior may be quite simple. In particular, say that Z = m1p1 + · · · + mnpn is
quasi-uniform if: the points pi are general; n ≥ 9 and m1 = m9; and the coefficients
m1 ≥ m2 ≥ · · · ≥ mn ≥ 0 are nonincreasing. We then have the following Quasi-uniform
Resolution Conjecture ([HHF]):

Conjecture II.3.1: If Z is quasi-uniform, then hZ(t) = max{PZ(t), 0} and νt(Z) =
max{hZ(t) − 3hZ(t− 1), 0} (or, equivalently, νt(Z) = max{0,∆3hZ(t)}) for all t ≥ 0.

Assuming this conjecture, we can write down an explicit expression for the resolution
of I(Z) for a quasi-uniform Z, as follows (see [HHF]):

0 → R[−α− 2]d ⊕R[−α− 1]c → R[−α− 1]b ⊕R[−α]a → I(Z) → 0,

where α = α(Z), a = hZ(α), b = max{hZ(α + 1) − 3hZ(α), 0}, c = max{−hZ(α + 1) +
3hZ(α), 0}, and d = a + b − c− 1.

Most of the evidence for this conjecture currently is for the uniform case (i.e., Z is
quasi-uniform with all multiplicities mi equal to some single m). See Figure 1 for a graph
showing all m and n up to about 450 such that the resolution of I(m(p1+· · ·+pn)) is known
and by whom; in all cases with n ≥ 9, the resolution is that given by Conjecture II.3.1.
(Figure 1 is a color postscript graphic but your copy may have printed out in grayscale;
a color version can be viewed at http://www.math.unl.edu/∼bharbour/ResAll.jpg .)
For example, the conjecture is true whenever m ≤ 2 (see [GGR] and [Id]), and easy for
n = 9 (see [H6]).

In addition, there are two situations in which the conjecture is known for unbounded
multiplicities. For example, it is always true that νt(Z) = 0 unless α(Z) ≤ t ≤ τ (Z) + 1,
so whenever it can be shown that α(Z) > τ (Z) (such as is the case in characteristic 0
when Z = m(p1 + · · ·+ pn) for n = d2 + 2k general points pi with m = d(d ± 1)/(2k), for
any integers d > 2 and k such that m is an integer; see [HR], which applies the modified
unloading method due to Roé and me, discussed below in Section IV.1.3 and at the end of
Section IV.2), it follows that I(Z) is generated in degree α(Z) and the resolution is as in
the preceding paragraph; explicitly,

0 → R[−α− 1]α → R[−α]α+1 → I(Z) → 0.

The only other cases known (see [HR], and Corollary 1.1 of [HHF]) are obtained by applying
the results of [HHF]. For example, if n is an even square and m ≥ (

√
n−2)/4, [HHF] shows

that Conjecture II.3.1 is true for Z = m(p1 + · · · + pn) whenever α(Z) = τ (Z). But (in
characteristic 0) [Ev2] shows that α(Z) = τ (Z) whenever n is a square divisible by no
primes greater than 5 (although full proof is given only for the case that n is a power of 4),
and [HR] shows (in characteristic 0) that α(Z) = τ (Z) for infinitely many m for any even
square n. Additional cases in which the resolution is determined by applying the results
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of [HHF] but for which n is not a square are given by [HR]. Further evidence of various
kinds for the conjecture is also given in [HHF].

In order to facilitate checking this conjecture and exploring the problem of under-
standing resolutions when Z need not be quasi-uniform, it is helpful to be able to compute
resolutions directly. Although we are interested in general points, it is easiest instead to use
random choices of points, with the expectation that this will usually give points that are
general enough. It is possible to implement such a calculation very simply in MACAULAY.
Here is an example of such a MACAULAY 2 script, provided to me by Hal Schenck, for
computing resolutions of ideals I(

∑

i mipi) for random choices of points pi ∈ P2:

R=ZZ/31991[x_0..x_2]

mixer = (l)->(i:=0;

b:=ideal (matrix {{1}}**R);

scan(#l, i->(

f:=random(R^1,R^{-1});

g:=random(R^1,R^{-1});

I:=(ideal (f | g))^(l#i);

b=intersect(b,I)));

print betti res coker gens b;

b)

--Return the ideal of mixed multiplicity random fatpoints. Input is a list

--with the multiplicities; e.g. mixer({1,2,3}) returns the ideal of

--I(p1)^1 \cap I(p2)^2 \cap I(p3)^3, where pj is a (random) point in P^2,

--and prints the betti numbers of the resolution

--HKS 4/28

By a slight modification, below, this script can be made to handle the uniform case
(i.e., n random points each taken with the same multiplicity m):

R=ZZ/31991[x_0..x_2]

unif = (n,m)->(<< n << " points of multiplicity " << m << ":" << endl;

i:=0;

b:=ideal (matrix {{1}}**R);

while i < n do (

f:=random(R^1,R^{-1});

g:=random(R^1,R^{-1});

I:=(ideal (f | g))^(m);

b=intersect(b,I);

i=i+1);

print betti res coker gens b;

b)

--Example: unif({3,2}) returns the ideal of
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--I(p1)^2 \cap I(p2)^2 \cap I(p3)^2, where pj is a (random) point in P^2,

--and prints the betti numbers of the resolution

III. Hilbert functions
Nagata, in connection with his work on Hilbert’s 14th problem, began an investigation

of the Hilbert function hZ for fat points subschemes Z = m1p1+· · ·+mnpn with pi general,
although his work was written up from the point of view of divisors on blow ups of P2 (see
[N2]).

III.1. Nagata’s Work

In brief, Nagata in [N2] determines hZ(t) (and thus α(Z)) for all t for any Z =
m1p1 + · · · + mnpn with pi general as long as n ≤ 9. In [N1], he poses the following
conjecture, which remains open unless n is a square, in which case Nagata verified it:

Conjecture III.1.1: Let Z = m1p1 + · · ·+ mnpn for n > 9 general points pi ∈ P2. Then
α(Z) > (m1 + · · ·+ mn)/

√
n.

As Nagata points out, it is enough to conider the uniform case. Keeping in mind
that Nagata proved α(Z) > m

√
n in the case that n is a square, Conjecture III.1.1 is thus

equivalent to:

Conjecture III.1.2: Let Z = m(p1 + · · · + pn) for n > 9 general points pi ∈ P2. Then
α(Z) ≥ m

√
n.

Restated in terms of n > 9 generic points, this is equivalent to:

Conjecture III.1.3: Let Z = p1 + · · · + pn for n > 9 generic points pi ∈ P2. Then
ε(Z) = 1/

√
n.

Also implicit in [N2] is a lower bound (see (∗), Section III.2) for the values of the Hilbert
function hZ of I(Z). An easier lower bound comes from the fact, as discussed above, that
hZ(t) = PZ(t) +h1(X,OX(Ft(Z))). Since h1(X,OX(Ft(Z))) ≥ 0, it of course follows that
hZ(t) ≥ max{PZ(t), 0}. However, easy examples show that hZ(t) > max{PZ(t), 0} can
sometimes occur; in all such examples for which hZ(t) is known, the difference hZ(t) −
max{PZ(t), 0} has a geometric origin, being always precisely what one gets by taking into
account exceptional curves. Taking the exceptional curves into account gives the more
refined bound (∗).

To explain this, let X be obtained by blowing up n distinct points pi of P2. We
have, as discussed above, the basis [E0], . . . , [En] of the divisor class group Cl(X) of X.
Because we are mostly interested in the case of n general points, technical issues force us
to use the following definition. Let us say that an element v =

∑

i ai[Ei] of Cl(X) is an
exceptional class if for general points pi there is an exceptional curve C ⊂ X with v = [C].
(The problem is that there may be no nonempty open set U of points (p1, . . . , pn) ∈ (P2)n

for which all exceptional classes are simultaneously classes of exceptional curves, even
though each exceptional class v is the class of an exceptional curve for some nonempty
open Uv ⊂ (P2)n.)
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Nagata [N2] determined the set E(n) of exceptional classes. It turns out that E(0) is
empty, E(1) = {[E1]}, and E(2) = {[E1], [E2], [E0−E1−E2]}, while for n ≥ 3 the set E(n)
is the orbit Wn[En] with respect to the action of the group Wn of linear transformations
on Cl(X) generated by all permutations of {[E1], . . . , [En]} and (if n ≥ 3) by the map γ
for which γ : [Ei] 7→ [Ei] for i > 3, γ : [Ei] 7→ [E0]− [E1]− [E2]− [E3] + [Ei] for 0 < i ≤ 3
and γ : [E0] 7→ 2[E0] − [E1] − [E2] − [E3]. (The map γ can be regarded as a reflection
corresponding in an appropriate sense to a quadratic Cremona transformation centered at
p1, p2 and p3. The fact that Wn is a reflection group was recognized by Du Val [DuV2],
and extended and exploited by Looijenga [L].)

III.2. A Decomposition and Lower Bound

For simplicity, assume n ≥ 3. This will not be a serious restriction, since cases n < 3
are easy to handle ad hoc, and in any case there are natural inclusions E(n) ⊂ E(n+1) for all
n, so a given value of n subsumes smaller values. Now Let Ψ be the subsemigroup of Cl(X)
generated by E(n) and by the anticanonical class −KX = [3E0−E1−· · ·−En] of X. (With
respect to the action of Wn on Cl(X), Ψ is essentially Tits’ cone [Ka]; thus there exists a
fundamental domain for the action of Wn on Ψ.) For any F ∈ Ψ, it turns out that there is
a unique decomposition F = HF +NF with (dropping the subscripts) H,N ∈ Ψ such that
H ·v ≥ 0 for every exceptional class v, H ·N = 0, and either N = 0 or N = a1v1+· · ·+arvr

for some exceptional classes vi and integers ai ≥ 0, such that vi · vj = 0 for all i 6= j. (It
is easy to compute this decomposition. By recursively applying γ and permutations in a
straightforward way, for any F ∈ Cl(X) one can find an element w ∈ Wn such that either
wF · [E0] < 0, or wF · [E0−E1] < 0, or such that wF = a0[E0] +

∑

i>0 ai[Ei] with a0 ≥ 0,
a0 + a1 + a2 + a3 ≥ 0 and a1 ≤ · · · ≤ an. But if either wF · [E0] < 0 or wF · [E0−E1] < 0,
then F 6∈ Ψ, while otherwise there are two cases. Either 0 > wF · [E0 − E1 − E2] =
a0 + a1 + a2, in which case H = w−1[(2a0 + a1 + a2)E0 − (a0 + a2)E1 − (a0 + a1)E2] and
N = w−1((−a1−a2−a0)[E0−E1−E2]+

∑

ai>0 ai[Ei]), or wF · [E0−E1−E2] ≥ 0 and we

have H = w−1(a0[E0] +
∑

ai<0 ai[Ei]) and N = w−1(
∑

ai>0 ai[Ei]). An implementation
of this procedure is given by the script decomp provided in this paper.)

It is true (and more or less apparent from [N2]) for general points pi that if
h0(X,OX(F )) > 0 then F ∈ Ψ, hence F = H + N as above, and h0(X,OX(F )) =
h0(X,OX(H)) ≥ (H2 − K · H)/2 + 1. For any F ∈ Cl(X), define e(F ) to be 0 unless
F ∈ Ψ, in which case set e(F ) to be the maximum of 1+(H2

F −K ·HF )/2 and 0. We then
get the lower bound

h0(X,OX(F )) ≥ e(F ). (∗)

(The script homcompdim included at the end of this paper computes e(F ). For F =
d[E0]−m1[E1]− · · · −mn[En], we have e(F ) = homcompdim({d, {m1, ...,mn}}), which, if
the multiplicities mi are nonnegative, is also thus a lower bound for the dimension of the
homogeneous component of I(Z) of degree d for Z = m1p1 + · · ·+ mnpn.)

III.3. The SHGH Conjectures

It follows from Nagata’s work (see Theorem 9, [N2]) that in fact h0(X,OX(F )) = e(F )
for n ≤ 9 general points. What occurs for n > 9 is not known, but I [H1] (also see [H3]),
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Gimigliano [Gi1] (also see [Gi2]) and Hirschowitz [Hi2] independently gave conjectures for
explicitly computing h0(X,OX(F )) for any n. These conjectures are all equivalent to the
following conjecture, which states that e(F ) is the expected value of h0(X,OX(F )):

Conjecture III.3.1: Let X be the blow up of n general points of P2 and let F ∈ Cl(X).
Then h0(X,OX(F )) = e(F ).

It is interesting to compare Conjecture III.3.1 with an earlier conjecture posed by Segre
[Seg], giving a conjectural characterization of those classes F such that h0(X,OX(F )) >
max{0, (F 2 −K · F )/2 + 1}:
Conjecture III.3.2: Let X be the blow up of n general points of P2 and let F ∈ Cl(X).
If h0(X,OX(F )) > max{0, (F 2 − K · F )/2 + 1}, then the fixed locus of |F | has a double
component.

It is easy to show that Conjecture III.3.1 implies Conjecture III.3.2; the fact that
Conjecture III.3.2 implies Conjecture III.3.1 is essentially Theorem 8 of [N2]. Thus I will
refer to these conjectures (in any of their forms) as the SHGH Conjecture. Since Nagata’s
paper is hard to read, the equivalence of Conjecture III.3.1 and Conjecture III.3.2 was only
recently recognized and proved by Ciliberto and Miranda. Here is a sketch of a proof.

Theorem III.3.3: Conjecture III.3.1 is equivalent to Conjecture III.3.2.

Sketch of proof: To see that Conjecture III.3.1 implies Conjecture III.3.2, assume that
h0(X,OX(F )) > max{0, (F 2 − K · F )/2 + 1} for some F . Thus h0(X,OX(F )) > 0,
so F ∈ Ψ and hence we have a decomposition F = H + N , as described above, with
N = a1v1 + · · · + arvr for some exceptional classes vi and ai ≥ 0. By Conjecture III.3.1,
we have 0 < h0(X,OX(F )) = e(F ) = (H2 −K · H)/2 + 1, and by substituting H + N in
for F we see that (F 2 −K · F )/2 + 1 = (H2 − K · H)/2 + 1 unless ai > 1 for some i, in
which case vi is the class of a curve occurring (at least) doubly in the base locus of |F |,
proving Conjecture III.3.2.

Conversely, assume Conjecture III.3.2. Among all F for which h0(X,OX(F )) = e(F )
fails, choose one having as few fixed components as possible (i.e., for which the sum of
the multiplicities of the fixed components is minimal). As before we have F = H + N ,
but N = 0 by minimality (since h0(X,OX(H)) = h0(X,OX(F )) > e(F ) = e(H)). Since
F = H, by construction of H we have F ·E ≥ 0 for every exceptional class E.

Now say some reduced irreducible curve C occurs as a fixed component of |F | with
multiplicity at least 2. Thus h0(X,OX(2C)) = 1, hence h0(X,OX(C)) = 1 and by
Conjecture III.3.2 we have (C2 − C · K)/2 + 1 = 1 so C2 = C · K. Therefore the
genus gC of C is (C2 + C · K)/2 + 1 = C2 + 1; i.e., C2 ≥ −1. On the other hand
1 = h0(X,OX(2C)) ≥ (4C2 − 2C ·K)/2 + 1 = C2 + 1 so C2 ≤ 0.

If C2 = −1, then gC = 0, so C is an exceptional curve. From 0 → OX(F − C) →
OX(F ) → OC(C · F ) → 0 it follows that h1(X,OX(F )) = 0 (since C · F ≥ 0 implies
h1(X,OC(C · F )) = 0, while h1(X,OX(F − C)) = 0 by minimality), which contradicts
failure of h0(X,OX(F )) = e(F ).

If C2 = 0, then gC = 1, so C is an elliptic curve. From 0 → OX(F −C) → OX(F ) →
OC ⊗ OX(F ) → 0 it follows that h1(X,OX(F )) = 0 (as long as we see h1(X,OC ⊗
OX(F )) = 0, since h1(X,OX(F −C)) = 0 by minimality), which again contradicts failure
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of h0(X,OX(F )) = e(F ). But C (being irreducible of nonnegative selfintersection) is
obviously nef, so C ·F ≥ 0. Since C is elliptic, C ·F ≥ 0 guarantees h1(X,OC⊗OX(F )) = 0
unless the restriction OC ⊗ OX(F )) of OX(F ) to C is trivial. But because the points
blown up to obtain X are general, OC ⊗OX(F ) cannot be trivial. (In fact, up to Cremona
transformations, which is to say up to the action of Wn, we can assume that [C] = [3E0]−
[E1 + · · ·+E9]. For OC ⊗OX(F ) to be trivial we would need F ·C = 0 and, writing [F ] as
[dE0−m1E1− · · · −mnEn], we would have 3d− (m1 + · · ·+m9) = 0; i.e., [dE0−m1E1−
· · ·−m9E9] is the class of an effective divisor perpendicular to [3E0]− [E1 + · · ·+E9], but
for general points p1, . . . , p9 the only such classes are multiples of [3E0]− [E1 + · · · + E9]
itself, for which it is easy to check the restrictions to C are not, in general, trivial.) ♦

III.4. Evidence

It is worth mentioning that it is not hard to show (see [HHF]) that the SHGH Conjec-
ture implies that hZ(t) = max{PZ(t), 0} if Z is quasi-uniform, which is part of Conjecture
II.3.1 posed above. In particular, if F = d[E0] − m[E1 + · · · + En] where the Ei are ob-
tained by blowing up n > 9 general points of P2, then Conjecture III.3.1 predicts that
h0(X,OX(F )) equals the maximum of 0 and (F 2 − K · F )/2 + 1. Proving this equality
is trivial if m = 1, and was proved for m ≤ 3 by Hirschowitz [Hi1]. (It is worth not-
ing that in a series of papers culminating in [AH1], Alexander and Hirschowitz handle
the case of m = 2 for PN for all N .) More generally, given any positive integer M and
M ≥ mi > 0 for all i, [AH2] shows for any Z = m1p1+ · · ·+mnpn (in any projective space)
that hZ(t) = max{PZ(t), 0} for all t as long as n is sufficiently large compared with M .
More explicitly, Ciliberto and Miranda [CM1], [CM2] have verified the SHGH Conjecture
in characteristic 0 for all m ≤ 12 for any n > 9 (see also [Sei]), and Mignon [Mi] has now
verified the SHGH Conjecture for all n > 9 for any F = d[E0]−m1[E1]− · · · −mn[En] as
long as mi ≤ 4 for all i.

Whereas all of the explicit verifications of the SHGH conjecture described above as-
sume multiplicities at most 12, two methods now exist that work for multiplicities which
in some cases can be arbitrarily large; both assume that the characteristic is 0. The first
is the recent result of Evain [Ev2], which, for example, shows that h0(X,OX(F )) equals
the maximum of 0 and (F 2 −K · F )/2 + 1 for any F = d[E0]−m[E1 + · · ·+ En] as long
as X is obtained by blowing up n general points with n being a power of 4. The second is
the modified unloading method [HR] jointly due to me and J. Roé (see Section IV.1.3 and
the end of Section IV.2), which gives very tight bounds on α and τ . With good enough
bounds, one can sometimes show α(Z) ≥ τ (Z), but anytime one knows α(Z) ≥ τ (Z) it
immediately follows that the SHGH Conjecture holds for Z. In fact, there are numerous
examples for which the bounds from [HR] are good enough to show α(Z) ≥ τ (Z) and
hence that the SHGH Conjecture holds, including certain infinite families of examples
Z = m(p1 + · · · + pn) such as for infinitely many m when n is any square (see [HR]),
or n = d(d + 1), m = d + 1 for any even integer d > 2 (mentioned in Section II.3)
or n = d2 + 2 and m = d(d2 + 1) + d(d + 1)/2 for any d > 2 (see [HR] for these and
other examples). See Figure 2 for a graph showing all m and n up to about 400 such
that the Hilbert function of I(m(p1 + · · · + pn)) is known and by whom; in all cases the
Hilbert function is that given by the SHGH conjecture. (Figure 2 is a color postscript
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graphic but your copy may have printed out in grayscale; a color version can be viewed at
http://www.math.unl.edu/∼bharbour/HilbAll2.jpg .)

We close this section with the comment that the script findhilb computes the SHGH
conjectural values of the Hilbert function of I(m1p1 + · · · + mnpn) for general points pi.
For n < 10, these values are the actual values. No separate script for the case of uniform
multiplicities is included since for Z = m(p1 + · · · + pn) for n > 9 general points pi, the
conjecture is simply that hZ(t) is the maximum of 0 and (t2 + 3t + 2− nm(m + 1))/2.

IV. Bounds
Rather than trying to prove the SHGH Conjecture directly, a good deal of work has

been directed toward obtaining better bounds on α and τ . The values of α and τ predicted
by the SHGH Conjecture give upper and lower bounds, respectively; in particular, α(Z)
is less than or equal to the least t such that e(Ft(Z)) > 0, and τ (Z) is greater than or
equal to the least t ≥ 0 such that e(Ft(Z)) = PZ(t). Thus what is of most interest are
lower bounds on α and upper bounds on τ . Bounds on α are especially of interest, since
a sufficiently good lower bound on α may equal the upper bound (and presumed actual
value) of α given by the SHGH Conjecture, and, as discussed above, if α always has its
conjectured value then the full SHGH Conjecture is true.

Unfortunately, such tight bounds are so far fairly rare, but there are some cases, as
discussed above, for which (by precisely this method of tight bounds) the Hilbert function
and resolution are known. For two additional examples, consider F = d[E0] − m[E1 +
· · · + En] where X is obtained by blowing up n general points of P2 with n being either
16 or 25. Although Evain’s method handles these cases, at least in characteristic 0, an
alternate approach is to notice that the inequality h0(X,OX(F )) ≥ (F 2 − K · F )/2 + 1
with F = d[E0]−m[E1 + · · ·+ En] guarantees that α ≤ dm√

n + (
√

n− 3)/2e. For n = 16
general points this gives α ≤ 4m+1 while for n = 25 this gives α ≤ 5m+1. But Nagata’s
result [N1] that α > m

√
n when n is a square bigger than 9 now shows that α = 4m + 1

for n = 16 and α = 5m + 1 for n = 25. By [HHF], τ = α in these cases, which for all m
and t determines hZ (and even the resolution of I(Z) when n = 16).

Some of the bounds discussed below are algorithmic in nature, and hard to give simple
explicit formulas or estimates for. Thus, to compute them, I have included at the end of
this paper two MACAULAY 2 scripts, bounds(l) and unifbounds(l); in the former case
l = {m1, . . . ,mn} (corresponding to taking n general points with multiplicities m1, . . . ,mn)
while in the latter case l = {n,m} (corresponding to taking n general points each with
multiplicity m).

IV.1. Bounds on α

By Nagata’s work [N2], the exact value of α(Z) is known for any Z = m1p1+· · ·+mnpn

with pi general and n ≤ 9, and in such cases can be computed by running the script
findalpha or uniffindalpha. For Z = m(p1 + · · ·+ pn), n ≤ 9, it is easy to be explicit:
α(Z) = dcnme, where c1 = c2 = 1, c3 = 3/2, c4 = c5 = 2, c6 = 12/5, c7 = 21/8, c8 = 48/17
and c9 = 3.

For n > 9, findalpha or uniffindalpha only give upper bounds for α, although
the upper bounds given should be, according to the SHGH Conjecture, the actual values.
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Thus most interest is in finding lower bounds on α, and a number of such have been given.
Let n ≥ n′ > 9 and consider Z = m(p1 + · · · + pn) and Z ′ = m(p1 + · · · + pn′), where
the points pi are general. It is easy to see that α(Z) ≥ α(Z ′). Since Nagata [N1] proves
that α(Z ′) > m

√
n′ if n′ is a square, it follows (taking n′ = b√nc2 when n is 16 or more)

that α(Z) > mb√nc. A complete proof is somewhat tricky; we treat the slightly weaker
inequality α(Z) ≥ mb√nc in the next section.

IV.1.1. Bounds by testing against nef divisors

The inequality α(Z) ≥ mb√nc follows easily (for any n) by specializing b√nc2 of the
points pi to a smooth plane curve C ′ of degree b√nc. The class C of the proper transform
of C ′ to the blow up X of P2 at the points pi is b√nc[E0]− ([E1 + · · ·+ Eb√nc2 ]), which
is nef, but α(Z)[E0]−m[E1 + · · ·+ En] is (by definition of α(Z)) the class of an effective
divisor, so the intersection C · (α(Z)[E0] − m[E1 + · · · + En]) = α(Z)b√nc − mb√nc2 is
nonnegative, which gives α(Z) ≥ mb√nc. More generally, the same argument works for
Z = m1p1 + · · · + mnpn, giving α(Z) ≥ (m1 + · · ·+ mb√nc2 )/b

√
nc.

Alternatively, by specializing all n points to a curve of degree d√ne, the same argument
(using the fact that now d√ne[E0] − [E1 + · · · + En] is nef) gives the inequality α(Z) ≥
mn/d√ne for Z = m(p1 + · · · + pn), and α(Z) ≥ (m1 + · · · + mn)/d√ne for Z = m1p1 +
· · ·+mnpn. More generally, we have the following extension of the main result of [H9] (for
a further generalization, see [H10]):

Theorem IV.1.1.1: Let Z = m1p1 + · · · + mnpn for general points pi ∈ P2 with n ≥ 1
and m1 ≥ · · · ≥ mn, and let r ≤ n and d be positive integers. Given nonnegative
rational numbers (not all 0) a0 ≥ a1 ≥ · · · ≥ an ≥ 0 such that a0d

2 ≥ a1 + · · · + ar and
ra0 ≥ a1 + · · ·+ an, then α(Z) ≥ (

∑

i aimi)/(a0d).

Sketch of proof: Note that by multiplying by a common denominator, we may assume
that each ai is a nonnegative integer. Consider the class F = [a0dE0− a1E1− · · ·− anEn]
on the surface X obtained by blowing up the points pi. First, specialize (as in the proof of
the main result of [H9]) to certain infinitely near points; in particular, such that [Ei−Ei+1]
for each 0 < i < n is the class of an effective, irreducible divisor on the specialization X ′

of X, and such that d[E0] − [E1 + · · · + Er] is the class C of the proper transform of a
smooth plane curve. Now F is nef on X ′ and hence on X. To see this, note that: F ·C ≥ 0
since a0d

2 ≥ a1 + · · · + ar ; F · (Ei − Ei+1) ≥ 0 for all i > 0 since ai ≥ ai+1; F · En ≥ 0
since an ≥ 0; and F is a nonnegative integer sum of the classes C, [Ei − Ei+1], i > 0,
and [En] since a0 ≥ a1 and ra0 ≥ a1 + · · · + an. Thus F is a sum of effective classes (in
particular, of a0C and various multiples of the [Ei−Ei+1] and En), each of which it meets
nonnegatively; thus F is nef and so F meets α(Z)E0−m1E1− · · · −mnEn nonnegatively,
from which our result follows. ♦

Finding an optimal bound for a given Z using Theorem IV.1.1.1 involves solving a
linear programming problem (note that we may normalize so that a0 = 1), not to mention
the problem of identifying the best choices of r and d. In case the multiplicities mi are
all equal, it is not hard to show that optimal solutions (for given r and d) to this linear
programming problem are given in parts (a) and (b) of the following corollary. These need
not always be optimal if the coefficients are not all equal, so we consider in parts (c) and
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(d) some additional possibilities.

Corollary IV.1.1.2: Let Z = m1p1 + · · · + mnpn for general points pi ∈ P2 with n ≥ 1
and m1 ≥ · · · ≥ mn ≥ 0, let r ≤ n and d be positive integers and let m be the mean of
m1, · · · ,mn.

(a) If r2 ≥ nd2, then α(Z) ≥ mnd/r.
(b) If r2 ≤ nd2, then α(Z) ≥ mr/d.
(c) If d2 ≥ r, then α(Z) ≥ (m1 + · · ·+ mr)/d.
(d) Assume d2 < r and let j be an integer, 0 ≤ j ≤ d2.

(i) If j = 0, then α(Z) ≥ (m1 + · · · + md2)/d.
(ii) If j > 0, let t = min{r + (r− d2)(r− d2 + j)/j, n} and set mt+1 = 0 if t = n;

then

α(Z) ≥ (1/d)
( (t− btc)jmt+1

(r − d2 + j)
+

∑

1≤i≤d2−j

mi +
∑

d2−j<i≤t

jmi

(r − d2 + j)

)

.

Sketch of proof: Each part of the corollary applies Theorem IV.1.1.1 for various values
of the ai. For (a), take a0 = r and a1 = · · · = an = d2. For (b), take a0 = n and ai = r,
i > 0. For (c), take ai = 1 for i ≤ r and ai = 0 for i > r. For (d)(i), take ai = 1 for
i ≤ d2 and ai = 0 for i > d2. For (d)(ii), take ai = 1 for i ≤ d2 − j and ai = j/(r− d2 + j)
for d2 − j < i ≤ btc. If t = n, then mt+1 = 0 (and so is t − btc), but if t < n, then take
at+1 = (t− btc)j/(r − d2 + 1).

One can formally verify that the values of the ai given in (d)(ii) satisfy the necessary
conditions to apply Theorem IV.1.1.1, but it may be helpful to briefly discuss how these
values come about. The idea giving rise to the values of ai in (d)(ii) is to find extremal
sets (one set for each j) of values of the ai, with the hope that for any given Z one set will
be close to an optimal solution that might be found by linear programming. By setting a0

equal to 1 (a normalization we clearly can always do), we bound the values of the other ai

above by 1. Since the multiplicities mi are nonincreasing, any optimal solution for the ai

must also be nonincreasing. Intuitively, we would want to keep as many of the ai equal to
1 as possible. But in order to satisfy d2 ≥ a1 + · · · + ar we can keep at most the first d2

of the ai equal to 1, in which case all of the other ai would have to be 0. Depending on
the values of the mi, however, we may be better off if we can make enough of the other
ai positive. So, given j, we leave a1, . . . , ad2−j alone, and spread ad2−j+1, · · · , ad2 , which
are each 1 to start with, evenly over ad2−j+1 to ar, which reduces ad2−j+1, . . . , ad2 from
1 to j/(r − d2 + j), and raises ad2+1, . . . , ar from 0 to j/(r − d2 + j), while keeping the
condition d2 ≥ a1 + · · · + ar satisfied at equality. Now, although this may have worsened
things (since we may well have reduced a1m1 + · · · + armr), we can hope to more than
make up for this since we can now increase some of the remaining ai from 0 (which they
were before) to j/(r− d2 + j). How many of the ai which we can increase is limited by the
condition r ≥ a1 + · · ·+ an = d2 + ar+1 + · · ·+ an; moreover, because of fractional effects,
the last ai which we can manage to increase from 0 might be limited to being increased
only by a fraction of j/(r− d2 + j), which accounts for the anomalous behavior of at+1. ♦

The bounds given in Corollary IV.1.1.2 can be computed by running the scripts unif-
bounds or bounds. The script ezbhalphaD, which is called by bounds, checks all possible
r, d and j from Corollary IV.1.1.2(d).
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Additional constructions of nef divisors are given in [Bi] and [H10], with applications
to multipoint Seshadri constants, which we now briefly discuss.

If Z = p1 + · · · + pn for n generic points pi, let us denote ε(Z) by ε(n). Since it is
always true that ε(n) ≤ 1/

√
n, one is interested in obtaining lower bounds on ε(n). For

example, Xu obtains ε(n) ≥ (1/
√

n)
√

1− 1/n (see Theorem 1(a), [Xu1]). Using the same
basic method pushed a bit harder, Szemberg and Tutaj-Gasińska improve this for n > 9
to ε(n) ≥ (1/

√
n)

√

1− 1/(n + 1) [ST], and by using in addition a monodromy argument,
Szemberg obtains an even better result [Sz], a simplified version of which obtained by
applying [Mi] is that ε(n) ≥ (1/

√
n)

√

1− 1/(5n) for n > 9.

However, [H10] takes a different approach, using constructions of nef divisors to obtain
bounds. If dE0 −m(E1 + · · ·+ En) is a nef divisor on the blow up X of the points pi, it
follows from the definition that ε(n) ≥ m/d. Thus, for example, it follows from the proof
of Corollary IV.1.1.2(a,b) that ε(n) ≥ max({d/r|nd2 ≤ r2 ≤ n2} ∪ {r/(nd)|r ≤ n, r2 ≤
nd2}). By studying max({d/r|nd2 ≤ r2 ≤ n2} ∪ {r/(nd)|r ≤ n, r2 ≤ nd2}) it follows
for any a ≥ 1 that ε(n) ≥ (1/

√
n)

√

1− 1/(an) for almost all n (in the following precise

sense: if T (a, n) = {k ≤ n|ε(k) ≥ (1/
√

k)
√

1− 1/(ak)}, then limn→∞|T (a, n)|/n = 1; see
Proposition I.2(b)(iii) of [H10]).

Similarly but by a different method, [Bi] also obtains bounds by constructing nef
divisors involving rational approximations to

√
n (but only for certain values of n over the

complex numbers); it may be of interest to mention that the methods of [H10] generalize
to arbitrary characteristic and to arbitrary algebraic surfaces.

However, exact values of ε(n) are known, all by work of Nagata, only for n ≤ 9 (in
which case ε(n) = cn/n for cn as given in the first paragraph of Section IV.1) and when n
is a square (in which case ε(n) = 1/

√
n).

IV.1.2. Bounds by unloading

As an alternative to Theorem IV.1.1.1, we can use a process that can conveniently be
referred to as unloading. The idea is based on the fact that given a divisor class D on a
surface X and some finite set S of classes of effective, irreducible divisors, if for some F ∈ S
we have F ·D < 0, then clearly D is the class of an effective divisor if and only if D−F is.
Unloading (in a sense that is slightly more general than its use in the literature) consists
of checking D · F for each F ∈ S, and replacing D by D − F whenever D · F < 0 and
continuing with the new D. (For the classical notion of unloading, see pp. 425–438 of vol.
2 of [EC], where it is referred to as scaricamento, or see [DuV1].) Eventually, D reduces
to a class D′ such that either D′ is obviously not effective (because, perhaps, D′ ·E0 < 0
or D′ · (E0 −E1) < 0) or such that D′ · F ≥ 0 for all F ∈ S.

With respect to the specialization used in the proof of Theorem IV.1.1.1, we can take
S to consist of the classes [Ei −Ei+1] for 0 < i < n, [En] and d[E0]− [E1 + · · ·+ Er], and
we look for the largest t such that D = [tE0− (m1E1 + · · ·+mnEn)] unloads to a class D′

with D′ · (E0−E1) < 0, in which case t+1 is a lower bound for α(Z). I have included the
script bhalpha to compute the bound obtained via unloading with respect to any chosen
r and d.

In the special case that r ≤ d2, then d[E0] − [E1 + · · · + Er] is nef. It is not hard to
then see that the result of the unloading process is the same as just testing against this nef
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divisor, hence, assuming that m1 ≥ · · · ≥ mn, we get the bound α(m1p1 + · · ·+ mnpn) ≥
(m1 + · · · + mr)/d. One can also give a formula for the result of this unloading process
in another extremal case, 2r ≥ n + d2. In this case, for Z = m(p1 + · · · + pn), we have
α(Z) ≥ 1 + ud + min{d − 1, dρ/de − 1}, where u ≥ 0 and ρ are defined by mn = ur + ρ,
with 0 < ρ ≤ r.

The idea of bounding α using unloadings and specializations to infinitely near points
is due to Roé [R1], who actually uses a sequence of increasingly special specializations of
infinitely near points, applying unloading after each specialization. Roé uses a sequence of
n− 2 specializations, corresponding to sets Si, 3 ≤ i ≤ n, of classes of reduced irreducible
divisors, where Si = {[En]} ∪ {[Ej −Ej+1] : 1 < j < n} ∪ {[E1 −E2 − · · · −Ei]}. Starting
with Ft = tE0 − m1E1 − m2E2 − · · · − mnEn, Roé’s algorithm consists of unloading Ft

with respect to S3 to get F
(3)
t , then unloading F

(3)
t with respect to S4 to get F

(4)
t , etc.,

eventually ending up with F
(n)
t = tE0 − m

(n)
1 E1 − m

(n)
2 E2 − · · · − m

(n)
n En. Roé’s bound

is then α(Z) ≥ m
(n)
1 , which comes from the fact that [F

(n)
t ] and hence [Ft] cannot be

classes of effective divisors unless t ≥ m
(n)
1 . This bound can be computed with the scripts

unifroealpha and roealpha.

Although it is hard to give a simple formula for the exact value of the result of this
method, an asymptotic analysis by Roé [R1] shows that his unloading procedure gives a
lower bound for α(Z) which is always better than m(

√
n− 1−π/8), for Z = m(p1+· · ·+pn)

with n > 2 general points. It should be noted however that this formula often substantially
understates the result of the full algorithm.

IV.1.3. Bounds by a modified unloading

Assume a specialization as in the second paragraph of Section IV.1.2; we may assume
d[E0] − [E1 + · · · + Er] is the class of a smooth curve C. Unloading F = [tE0 − m1E1 −
· · ·−mnEn] with respect to the set S of Section IV.1.2 uses the fact that, if C ·F < 0, then
F − [C] is the class of an effective divisor if and only if F is. However, the requirement
C · F < 0 can be relaxed, since all we really need is h0(C,OC(F )) = 0 in order to ensure
that F − [C] is the class of an effective divisor if and only if F is. By joint work with J.
Roé [HR], using the notion of a flex of a linear series on C, one can show (in characteristic
0) that h0(C,OC(F )) = 0 if either t < d and (t+ 1)(t +2)/2 ≤ m1 + · · ·+mr, or t > d− 3
and F ·C ≤ g− 1, where g = (d− 1)(d− 2)/2. (Recall that C is the proper transform of a
plane curve C ′. The idea is to choose p1 ∈ C ′ so that it is not a flex for the complete linear
series associated to the restrictions to C of the divisors occurring during the unloading
process. This is automatic in characteristic 0 as long as p1 is a general point of C ′, but in
positive characteristics every point of C ′ may be a flex for a given, even complete, linear
series [Ho].) Using this test in place of the more stringent test C · F < 0 discussed at the
beginning of Section IV.1.2 gives what may be called the modified unloading procedure.
Since this modified procedure uses a less stringent test, a larger (or at least as large)
degree is needed to pass the test, so it gives bounds on α which are at least as good as the
original unloading procedure. These new bounds can be computed by running HRalpha or
unifHRalpha.

Although this modified unloading procedure is somewhat difficult to analyze in
general, in two extremal cases Roé and I [HR] derive the following simple bounds for
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Z = m(p1 + · · · + pn), for which define u ≥ 0, ρ and s by requiring mn = ur + ρ, with
0 < ρ ≤ r, where s is the largest integer such that (s + 1)(s + 2) ≤ 2ρ and s < d:

• if 2n ≥ 2r ≥ n + d2 (and hence r2 ≥ nd2), then α(Z) ≥ s + ud + 1. (The bound
given by this formula can be computed by running ezunifHRalpha.)

• if rd(d+1)/2 ≤ r2 ≤ min{n2, nd2}, then α(n;m) ≥ 1+min{b(mr+g−1)/dc, s+
ud}. (The bound given by this formula can be computed by running ezunifHRal-
phaB.)

To apply these bounds, one must choose r and d. For d = b√nc and r = b(n + d2)/2c
(in which case the first bound applies when n + d2 is even and the second when n + d2 is
odd), Figure 3 shows the values 10 ≤ n ≤ 480 and 1 ≤ m ≤ 400 that these bounds imply
Nagata’s conjectural bound α(Z) ≥ m

√
n; there are 131261 such points (n,m), or 69.8%.

It is also worth considering d = b√nc and r = bd√nc, in which case the second bound
above easily leads to:

Corollary IV.1.3.1: Let Z = m(p1 + · · · + pn) with 1 ≤ m ≤ (n − 5
√

n)/2 for n ≥ 10
general points pi of P2; then α(Z) ≥ m

√
n.

This is a substantial improvement on previous such results (see [Ev1] and [HR]).

IV.1.4. Bounds using Ψ

The subsemigroup Ψ ⊂ Cl(X), introduced in Section III.2, contains the subsemigroup
of classes of effective divisors. Thus, given Z, the least t such that Ft(Z) ∈ Ψ is a
lower bound for α(Z). This sometimes gives an optimal bound. For example, if Z =
90p1 +80p2 +70p3 +60p4 +50p5 +40(p6 + p7 + p8)+30p9 +20p10 +10p11, then the least t
such that Ft(Z) is in Ψ is 179, hence in fact α(Z) = 179, since e(F179(Z)) > 0. Finding the
least t such that Ft(Z) ∈ Ψ is somewhat tedious, so I have provided the script Psibound
for doing so.

IV.1.5. Comparisons

For subschemes Z whose multiplicities are not too uniform, the lower bound on α(Z)
given by testing against Ψ can be the best, as it is for Z = 90p1 + 80p2 + 70p3 + 60p4 +
50p5 + 40(p6 + p7 + p8) + 30p9 + 20p10 + 10p11 (see Section IV.1.4). For example, Roé’s
method [R1] of unloading gives α(Z) ≥ 162, and the best result achievable using Corollary
IV.1.1.2 turns out to be α(Z) ≥ 173, whereas testing against Ψ gives α(Z) ≥ 179 (and
hence α(Z) = 179 as discussed above).

However, if the multiplicities are fairly uniform, testing against Ψ does not give a very
good bound. For example, for Z = m(p1 + · · · + pn) with n > 9, it is easy to see that
Ft(Z) ∈ Ψ for all t ≥ 3m, so testing against Ψ gives the bound α(Z) ≥ 3m. This compares
poorly with bounds via the other methods, which are typically very close to, but usually
less than, m

√
n. (Except when n is a square, currently only the unloading method of

[R1] and the modified unloading method, discussed in Section IV.1.2 and Section IV.1.3,
resp., ever are substantially better than m

√
n, and even these only when m is not too large

compared to n.)
Thus for uniform subschemes Z = m(p1 + · · · + pn) one is better off using some

method other than testing against Ψ, such as testing against nef divisors, as discussed in
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Section IV.1.1. In this case one has, for any d and r, easy to implement tests, as given
in Corollary IV.1.1.2. By comparison, the result of unloading with respect to the divisor
C = dE0 − (E1 + · · · + Er), as discussed in Section IV.1.2, is, except in certain special
cases, harder to compute since there is not always a simple formula for the result. Since
one rarely gets something for free, it is not surprising, for given r and d, that the bounds
given by testing against a nef divisor are never better than those given by unloading.

To see this, let Z = m(p1 + · · · + pn), and assume α(Z) ≥ t is the bound given by
unloading with respect to C. Also, with respect to the same r and d, let F = a0E0 −
(a1E1 + · · ·+ anEn) be the nef test class in the proof of Theorem IV.1.1.1. The unloading
method unloads a divisor D = tE0 − m(E1 + · · · + En) to a divisor D′ which meets C,
En and Ei − Ei+1, for all i, nonnegatively. But D − D′ is a sum of multiples of these
same divisors, which are all (linearly equivalent to) effective divisors, so each meets F
nonnegatively. In addition, F is a sum of these same divisors, each of which D′ meets
nonnegatively, so D′ ·F ≥ 0 too. Thus D ·F ≥ 0, which shows that testing against the nef
divisor can never rule out the candidate obtained by unloading.

Moreover, if r2 > nd2, unloading can definitely be better. For example, take n = 22
and m = 3. Then the best choice of r and d with r2 ≥ nd2 is r = 19 and d = 4, while the
best choice of r and d with r2 ≤ nd2 is r = 14 and d = 3. Using Corollary IV.1.1.2(a,b)
with either choice of r and d gives α ≥ 14, but unloading with respect to r = 19 and d = 4
gives α ≥ 15. Since Corollary IV.1.1.2 is optimal in this case, we see unloading sometimes
gives a better result than can be obtained by any use of Theorem IV.1.1.1.

On the other hand, for Z = m(p1 + · · · + pn) with r2 ≤ nd2 and r ≤ n, the bound
α(Z) ≥ mr/d obtained by testing against a nef divisor, cannot be improved by unloading
with respect to dE0−(E1+ · · ·+Er), and hence unloading and testing against a nef divisor
give the same result in these circumstances. (This is because for unloading to give a better
bound, the class D = [dmr/deE0 −m(E1 + · · ·+ En)] would have to unload to something
obviously not effective, but unloading cannot get started unless D meets dE0−E1−· · ·−Er

negatively, which it does not.) But as the example of the preceding paragraph shows, if
r2 ≤ nd2, although one cannot do better than mr/d by unloading with respect to r and
d, one can still hope to do better than mr/d by unloading using some choices r′ and d′ in
place of r and d.

Since the modified unloading procedure of Section IV.1.3 uses a less stringent test
than does unloading, as in Section IV.1.2, with respect to C = dE0 − (E1 + · · · + Er) (in
the sense that in order to be allowed to subtract C and continue the unloading process, for
the former the intersection with C can in most cases be as much as g − 1, where g is the
genus of C, whereas for the latter the intersection must be negative), we see that bounds
obtained via the latter method can never be better than those obtained by the former. The
advantage of the latter method is that no hypotheses are required on the characteristic.

There is also Roé’s unloading method [R1], discussed in Section IV.1.2. As shown in
[H9], for m sufficiently large compared to n, the results of Corollary IV.1.1.2 are always
better than Roé’s unloading method. However, when m is not too large compared with n,
examples indicate that Roé’s method gives the best bounds currently known. Consider,
for instance, two examples using modified unloading (Section IV.1.3). For n = 1000 and
m = 13, Roé’s method gives α ≥ 421, whereas modified unloading, using r = 981 and
d = 31, gives α ≥ 424, and the SHGH conjectural value of α is 426. For n = 9000 and
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m = 13, things become reversed: Roé’s method gives α ≥ 1274, while modified unloading
using r = 8918 and d = 94 gives only α ≥ 1267; the SHGH conjectural value of α in this
case is 1279.

An interesting feature of these examples is that in both cases the bounds are better
than bm√

nc + 1, conjectured by Nagata (Conjecture III.1.1): For m = 13 and n = 1000,
we have bm√

nc + 1 = 412, while for m = 13 and n = 9000, we have bm√
nc + 1 = 1234.

Indeed, whereas most known lower bounds for α(Z) for Z = m(p1 + · · ·+ pn) are less than
m
√

n (since after all Nagata’s conjecture is still open), the method of [R1] and that of
modified unloading are among the few that in certain situations gives bounds that can be
substantially better than m

√
n. In particular, if m is no bigger than about

√
n, the method

of [R1] consistently (and probably always, although this looks hard to prove) gives a lower
bound that is at least as big as m

√
n, and gets better as m decreases until, for m = 1

it is easy to show that it gives the actual value of α(Z). If one chooses r and d carefully
(depending on n), examples indicate that the modified unloading procedure does nearly as
well as the method of [R1] when m is small compared to n, and is substantially better for
larger m. The method of [R1], of course, has the advantage of being characteristic free and
does not depend on careful choices of other parameters. The modified unloading method,
on the other hand, sometimes gives a lower bound which is equal to the SHGH conjectural
value (which is known to be an upper bound), and thus determines α exactly (as happens,
for example, when n = d(d+ 1) and m = d+1 for d > 2 even, as discussed in Section II.3,
or n = 38 with m = 200, as mentioned in Section III.4).

Thus, in terms of getting the best bound for a given Z, the modified unloading method
(at least in characteristic 0) is often the best. It has, compared with methods (such as
Corollary IV.1.1.2) which test against nef divisors, the disadvantage of being harder to
compute, unless special values for r and d are chosen for which a formula applies. But
since Corollary IV.1.1.2 works for essentially any r and d, sometimes one can do better by
applying Corollary IV.1.1.2 than one can by applying the formula of Section IV.1.3 where
one’s choices of r and d are more restricted.

This raises the question of which r and d give the best result when applying Corollary
IV.1.1.2(a, b). In case (a), n ≥ r and r2 ≥ nd2 imply n ≥ d2 (and even r ≥ d2), while in
case (b), having r2 ≤ nd2 and r ≤ n but trying to maximize r/d shows that it is enough
to consider values of d with d ≤ d√ne. In short, in cases (a) and (b), we may as well
only consider d with d ≤ d√ne. Moreover, given such a d, the best choice of r is evidently
dd√ne for case (a) and bd√nc for case (b). It is still (as far as I can see) not easy to tell
which d is best without checking each d from 1 to d√ne, hence I have included the script
bestrda for case (a), and bestrdb for case (b), to do just that. Alternatively, d = b√nc
often seems to be a good choice. For this choice of d and the corresponding optimal choices
of r, (a) ends up giving a better bound than (b) if n − d2 is even, while (b) is better if
n− d2 is odd.

IV.2. Bounds on τ

In some ways, τ is easier to compute than α. For example, given Z = m(p1 + · · ·+pn)
for n ≥ 9 general points, [HHF] proves by an easy specialization argument that

τ (Z) ≤ md
√

ne+ d(d
√

ne − 3)/2e.
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If n ≥ 9 is a square and m > (
√

n− 2)/4, it follows (see [HHF]) in fact that

τ (Z) = m
√

n + d(
√

n− 3)/2e.

Thus τ is known in some situations where α is only conjectured.
Moreover, via an observation of Z. Ran, bounds on α give rise to bounds on τ . In

particular, given Z = m(p1 + · · · + pn) with pi general, if α(Z) ≥ cnm for all m (where
cn > 0 depends only on n), then

τ (Z) ≤ −3 + d(m + 1)max{
√

n, n/c}e

(see Remark 5.2 of [H9]). Thus, for example, the bounds of Corollary IV.1.1.2(a, b) lead
to bounds on τ .

It should not be surprising that τ might be easier to handle than α. Being always able
to compute α(Z) is equivalent to being always able to compute hZ and hence τ (Z), while
the reverse does not seem to be true. Moreover, arguments typically involve specializations.
One can hope to compute τ exactly using a specialization that drops α (and thereby gives
us something to work with) while leaving τ unchanged, but this of course will not work to
compute α, only to give a lower bound.

The scripts findtau and uniffindtau give lower bounds for τ which via the SHGH
Conjecture are expected to be the actual values. Thus most interest is in finding upper
bounds on τ , and indeed, quite a few upper bounds have been given, both on P2 and in
higher dimensions (see, for example, [FL], for various results and additional references).

Given Z = m1p1 + · · · + mnpn, bounding τ (Z) is mostly of interest for n > 9 since
for n ≤ 9, for any disposition of the points, the Hilbert function of I(Z) (and hence τ (Z))
is known (see [H4] for n ≤ 8 or [H5]). For n > 9, the results of [H5] also allow one to
compute τ (Z) exactly, if the points pi lie on a plane cubic. If the points pi are general,
and t is the value of τ (Z ′) (computed via [H5]) for some specialization Z ′ of the points pi

to a plane cubic, then by semicontinuity τ (Z) ≤ t. For Z = m(p1 + · · · + pn) with n > 9,
this gives the bound

τ (Z) ≤ mn/3.

This bound is similar in concept to but better than a bound given by Segre [Seg], obtained
by specializing to a conic, which for Z = m(p1 + · · · + pn) with n > 9 gives only

τ (Z) ≤ mn/2.

Improved bounds for τ (Z) for Z = m1p1 + · · · + mnpn with pi general are given by
Catalisano [Cat1], Gimigliano [Gi3] and Hirschowitz [Hi2]. For Z = m1p1 + · · · + mnpn

with general points pi and m1 ≥ · · · ≥ mn ≥ 0, Gimigliano’s result is that

τ (Z) ≤ m1 + · · ·+ md

as long as d(d + 3)/2 ≥ n, while Hirschowitz’s result is that τ (Z) ≤ d if

d(d + 3)/2ed(d + 2)/2e >
∑

i

mi(mi + 1)/2.
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Catalisano’s result is somewhat complicated, but generalizes and often improves
Gimigliano’s. For Z = m(p1 + · · · + pn) with n > 9 these all show that τ (Z) is at most
approximately m

√
2n. For n sufficiently large, this clearly is better than τ (Z) ≤ mn/3.

The bound τ (Z) ≤ md√ne+ d(d√ne − 3)/2e, mentioned above ([HHF]), results from
specializing n > 9 points to a smooth curve of degree d√ne. Two other bounds which are
also on the order of m

√
n are Ballico’s [B] for which τ (Z) ≤ d if

d(d + 3)− nm(m + 1) ≥ 2d(m− 1) − 2

(but note that τ (Z) ≤ md√ne + d(d√ne − 3)/2e is better for any given n if m is large
enough) and Xu’s for which τ (Z) ≤ d if

3(d + 3) > (m + 1)
√

10n

(although τ (Z) ≤ md√ne + d(d√ne − 3)/2e is better if n is sufficiently large).
By employing a sequence of specializations to infinitely near points similar to what

he did for bounding α, Roé [R2] obtains an upper bound on τ . The method applies for
any Z = m1p1 + · · · + mnpn, with pi general and n ≥ 2. For Z = m(p1 + · · · + pn), [R2]
denotes this upper bound by d1(m,n) and proves

d1(m,n)+1 ≤ m(n/(n−1))(Πn−1
i=2 ((n−1+i2)/(n−1+i2−i))) ≤ (m+1)(

√
n + 1.9+π/8).

The bound τ (Z) ≤ (m + 1)(
√

n + 1.9 + π/8) − 1 compares very well with the bound
τ (Z) ≤ md√ne+ d(√n − 3)/2e: the former is better for approximately 60% of the values
of n between any two successive squares.

Given a curve C, the idea of Roé’s algorithm is that for any F , by taking cohomology
of 0 → OX(F − C) → OX(F ) → OC ⊗ OX(F ) → 0, we have h1(X,OX(F )) = 0 if
h1(X,OX(F −C)) = 0 and h1(X,OC⊗OX(F )) = 0. In Roé’s case, C is always rational so
h1(X,OC⊗OX(F )) = 0 is guaranteed if F ·C > −2, and he handles h1(X,OX(F−C)) = 0
by induction.

In somewhat more detail, start with Z = m1p1 + · · · + mnpn with pi general, and
so we may assume mi ≥ mi+1 ≥ 0 for all i. We have the corresponding divisor class
F = [tE0 − m1E1 − · · · − mnEn] where t is as yet undetermined. Now specialize so that
each element of S = {[Ei − Ei+1] : 1 < i < n} ∪ {[En]} and [E1 − E2] is the class of a
reduced, irreducible divisor. Now, F · [E1 − E2] ≥ −1 is certainly true to start with (in
fact, we have F · [E1 − E2] ≥ 0). If F · [E1 − E2 − E3] ≥ −1, then fine, but otherwise
replace F by F − [E1−E2] and unload the result with respect to S, and continue replacing
and unloading in the same way until F · [E1 − E2 − E3] ≥ −1. Note that throughout
this sequence of operations we have F · [E1 − E2] ≥ −1, so (taking [C] = [E1 − E2]) we
have h1(X,OC ⊗OX(F )) = 0. Also, unloading involves a succession of replacements of F
by F − [E], where [E] is always either [Ei − Ei+1] for some i or [En], and can always be
carried out in such a way that at each step we have F · [E] > −2. Thus we always have
h1(E,OE ⊗OX(F )) = 0, where E is a curve whose class is, at various times, [Ei −Ei+1]
for some i or [En].

So eventually F turns into a class for which F · [E1−E2−E3] ≥ −1, F · [Ei−Ei+1] ≥ 0
for all i and F ·En ≥ 0. We now further specialize so that [E1−E2−E3] is the class of an
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irreducible divisor, and keep replacing F by F − [E1−E2−E3], unloading with respect to
S after each replacement, as long as F · [E1−E2−E3−E4] < −1. We continue in this way,
specializing successively so that each [E1 −E2 − · · · −Ei] in turn becomes the class of an
irreducible divisor, and replacing F by F − [E1−· · ·−Ei] and unloading with respect to S
after each replacement, as long as F · [E1 −E2 − · · · −Ei+1] < −1. Eventually we end up
with a class F ′ = [tE0−m′

1E1− · · ·−m′
nEn] with F ′ · [Ei −Ei+1] ≥ 0 for all i, F ·E′

n ≥ 0
and F ′ · [E1 − E2 − · · · −En] ≥ −1. By construction, h1(X,OX(F )) = 0 for our original
class F if h1(X,OX(F ′)) = 0, but it turns out in the specialization we end up with that
h1(X,OX(F ′)) = 0 if t ≥ m′

1 + m′
2 − 1. Thus Roé’s bound is τ (Z) ≤ m′

1 + m′
2 − 1.

By combining (in characteristic 0) the approaches of [R2], [H9] and [HHF], similar to
what is done in Section IV.1.3, Roé and I [HR] obtain another bound on τ . The method
uses a single specialization in which the same set S as above consists of classes of irreducible
divisors, but instead of [E1 −E2 − · · · −Ei+1] being the class of an irreducible divisor D,
[dE0 − (E1 + · · · + Er)] is, for some d and r ≤ n. The idea is to start with some class
F = [tE0 − m1E1 − · · · − mnEn] with mi ≥ mi+1 ≥ 0 for all i. We want to choose t
to be large enough to start with so that we can keep subtracting [dE0 − (E1 + · · · + Er)]
and unloading with respect to S until we eventually obtain a class F ′ = t′[E0] for some t′,
while along the way always keeping h1(D,OD ⊗OX(F )) = 0. The latter is guaranteed (in
characteristic 0) if both F · E0 ≥ d − 2 and F ·D ≥ g − 1, where g = (d − 1)(d − 2)/2 is
the genus of D.

The output of the algorithm of the previous paragraph is easy but tedious to compute
in any given case; to get a nice formula we seem to need to choose r and d carefully. For
example, let Z = m(p1 + · · · + pn) with pi general in characteristic 0. Assume r ≤ n and
define u ≥ 0 and 0 < ρ ≤ r via mn = ur + ρ. If 2r ≥ n + d2 (such as is the case for
d = b√nc and r = dd√ne), the algorithm gives

τ (Z) ≤ max{d(mr + g − 1)/de, (u + 1)d− 2},

while if r ≤ d2, then the algorithm gives

τ (Z) ≤ max{d(ρ + g − 1)/de+ ud, (u + 1)d− 2}.

Using d = d√ne and r = n, the latter formula gives a bound which is always at least as good
as that mentioned above from [HHF]. And when m is sufficiently large, the former formula
becomes τ (Z) ≤ dmr/d + (d− 3)/2e, which for a given n with m sufficiently large, gives a
better bound than the bound d1(m,n) given in [R2]. (To justify this claim, note that by a
method similar to how [R2] shows that d1(m,n) ≤ −1+m(n/(n−1))(Πn−1

i=2 ((n−1+i2)/(n−
1+i2−i))) one can show that m(n/(n−1))(Πn−1

i=2 ((n−1+i2)/(n−1+i2−i)))−∑n

i=3 n/(i(n−
1) + i(i − 1)(i − 2)) ≤ d1(m,n). But (n/(n − 1))(Πn−1

i=2 ((n − 1 + i2)/(n − 1 + i2 − i))) ≥
n/(

√
n− 1 − π/8 + 1/

√
n− 1); see the proof of Proposition 4.2 of [H9]. The claim now

follows for m large enough from the fact that n/(
√

n− 1 − π/8 + 1/
√

n− 1) > r/d for
d = b√nc and r = dd√ne when n ≥ 10.)

The formulas
τ (Z) ≤ max{d(mr + g − 1)/de, (u + 1)d− 2}

and
τ (Z) ≤ max{d(ρ + g − 1)/de+ ud, (u + 1)d − 2}
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can be evaluated by running ezunifHRtau and ezunifHRtauB, respectively. Since the
algorithm works for any r ≤ n and d, it can sometimes do better than the formulas, which
only work for certain values of r and d. Thus I have provided scripts unifHRtau and HRtau

to compute the output of the full algorithm with respect to any specified choice of r ≤ n
and d.

V. Scripts
We close this survey with a collection of MACAULAY 2 scripts for computing some

of the quantities and bounds discussed above. This is a verbatim listing: There are no
TEX control sequences interspersed in the text of the scripts in the TEXfile for this paper,
so one can simply copy the text of the scripts from the TEXfile directly into a file called
(say) BHscripts. To run a script, such as findres (which computes a resolution of I(Z)
for Z = m1p1 + · · · + m8p8, where the pi are assumed to be general and each mi is an
integer), start MACAULAY 2 and enter the command load "BHscripts". Then enter
the command findres({m1,m2,m3,m4,m5,m6,m6,m7,m8}).

The required format for each script’s input parameters are described below, just before
the listing for each script. Individual scripts can be run without loading the entire file, but
many scripts defined below call one or more of the others, so be sure to load all scripts
called by the one you wish to run.

-- These routines have been debugged on MACAULAY 2, version 0.8.52
-- Brian Harbourne, October 12, 2000
-- (July 30, 2001: revised scripts unifbounds, ezunifHRalpha and ezunifHRalphaB)

-- findres: This computes the syzygy modules in any resolution
-- of the saturated homogeneous ideal defining any eight or fewer general
-- fat points of P2. The hilbert function of the ideal is also found.
-- Call it as findres({m_1,...,m_n}) for n <= eight integers m_i.
-- Note that findres does not rely on Grobner bases, so it is fast by comparison.

findres = (l) -> (
if #l>8 then (

<< "This script works only for up to 8 points." << endl;
<< "Please try again with an input list of at most 8 integers." << endl)

else (
i:=0;
myflag2:=0;
w2:={};
dd1:=0;
myker:=0;
www:={};
ww:=l;

-- the list l of multiplicities is, for simplicity, extended if need be
-- so that it has 8 elements.

while(#ww < 8) do ww=join(ww,{0});
n:=#ww;
n=n-1;
ww=zr(ww); -- zero out negative elements of the list
a1:=findalpha(ww); -- find alpha, the least degree t such that I_t \ne 0
d1:=a1-2;
tau:=findtau(ww);
v4:={}; -- list of number of syzygies in each degree t listed in v0
v3:={}; -- list of dim of coker of \mu_t in each degree t listed in v0
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v2:={}; -- list of dim of ker of \mu_t in each degree t listed in v0
v1:={}; -- list of Hilbert function values for each degree listed in v0
v0:={}; -- list of degrees from alpha-2 to tau+2, where tau is the least

-- degree such that the fat points impose independent conditions
while (d1 <= tau+2) do ( -- loop from alpha-2 to tau+2, computing v0, v1 and v2

-- append the current degree d1 to the list of degrees
v0=join(v0,{d1});

-- append the value of the hilbert function in degree d1
-- to the list of values of the hilbert function

v1=join(v1,{homcompdim(fundom({d1,ww}))});
-- now compute and append to the list v2 the dimension myker of the
-- kernel of the map \mu_t : I_t\otimes k[P2]_1 \to I_{t+1} where t=d1
-- and I is the ideal of the fat points subscheme

if d1<a1 then (v2=join(v2,{0})); -- d1<a1 means I_{d1}=0 so myker=0
if d1>=a1 then ( -- for d1>=a1, compute myker

myflag2=0;
w2=ww;
dd1=d1;
while(myflag2==0) do ( -- this loop implements the main theorem of [FHH]

-- which gives an algorithm for computing myker
w2=zr(w2);
w2=prmt(w2);
if homcompdim({dd1,w2})==0 then myflag2=1 else (
if dd1*6 - (dot(w2,{3,2,2,2,2,2,2,2})) <= 2 then (

dd1=dd1-6;
w2 = {(w2#0)-3,(w2#1)-2,(w2#2)-2,(w2#3)-2,(w2#4)-2,
(w2#5)-2,(w2#6)-2,(w2#7)-2}) else (
if dd1*5 - (dot(w2,{2,2,2,2,2,2,1,1})) <= 1 then (

dd1=dd1-5;
w2 = {(w2#0)-2,(w2#1)-2,(w2#2)-2,(w2#3)-2,(w2#4)-2,
(w2#5)-2,(w2#6)-1,(w2#7)-1}) else (
if dd1*4 - (dot(w2,{2,2,2,1,1,1,1,1})) <= 1 then (

dd1=dd1-4;
w2 = {(w2#0)-2,(w2#1)-2,(w2#2)-2,(w2#3)-1,(w2#4)-1,
(w2#5)-1,(w2#6)-1,(w2#7)-1}) else (
if dd1*3 - (dot(w2,{2,1,1,1,1,1,1,0})) <= 0 then (

dd1=dd1-3;
w2 = {(w2#0)-2,(w2#1)-1,(w2#2)-1,(w2#3)-1,(w2#4)-1,
(w2#5)-1,(w2#6)-1,(w2#7)}) else (
if dd1*2 - (dot(w2,{1,1,1,1,1,0,0,0})) <= 0 then (

dd1=dd1-2;
w2 = {(w2#0)-1,(w2#1)-1,(w2#2)-1,(w2#3)-1,(w2#4)-1,
(w2#5),(w2#6),(w2#7)}) else (
if dd1 - (dot(w2,{1,1,0,0,0,0,0,0}))< 0 then (

dd1=dd1-1;
w2 = {(w2#0)-1,(w2#1)-1,(w2#2),(w2#3),(w2#4),
(w2#5),(w2#6),(w2#7)}) else (
myflag2=2))))))));

if myflag2==1 then myker=0 else (
if dd1 - (dot(w2,{1,1,0,0,0,0,0,0})) == 0 then
myker=homcompdim({dd1-1,{(w2#0)-1,(w2#1),(w2#2),(w2#3),

(w2#4),(w2#5),(w2#6),(w2#7)}})+
homcompdim({dd1-1,{(w2#0),(w2#1)-1,(w2#2),(w2#3),(w2#4),(w2#5),

(w2#6),(w2#7)}}) else (
www={3*(w2#7)+1,3*(w2#7)+1,3*(w2#7)+1,3*(w2#7)+1,
3*(w2#7)+1,3*(w2#7)+1,3*(w2#7)+1,(w2#7)};
if {8*(w2#7)+3,www}=={dd1,w2} then myker=(w2#7)+1 else (

if homcompdim({dd1+1,w2})>3*(homcompdim({dd1,w2})) then
myker=0 else myker=3*(homcompdim({dd1,w2}))-homcompdim({dd1+1,w2}))));

v2=join(v2,{myker}));
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d1=d1+1);
scan(#v0, i->( -- this scan computes v3 from v2 and v1

if i<2 then v3=join(v3,{0}) else (
if v2#(i-1)>-1 then v3=join(v3,{v1#i-3*(v1#(i-1))+v2#(i-1)}) else (

if v1#i-3*(v1#(i-1))>=0 then
v3=join(v3,{v1#i-3*(v1#(i-1))}) else v3=join(v3,{0})))));

scan(#v0, i->( -- this scan computes v4 from v3 and v1
if i<3 then v4=join(v4,{0}) else
v4=join(v4,{v3#i-v1#i+3*(v1#(i-1))-3*(v1#(i-2))+v1#(i-3)})));

<< "The output matrix has four columns. Column 1 indicates" << endl;
<< "each degree from alpha-2 (where alpha is the least" << endl;
<< "degree t such that I_t > 0 for the fat points ideal I)" << endl;
<< "to tau+2 (where tau is the least degree t such that the points" << endl;
<< "impose independent conditions in all degrees t or bigger)." << endl;
<< "Column 2 gives the value dim I_t of the Hilbert function" << endl;
<< "in each degree t listed in column 1. The resolution of I" << endl;
<< "is of the form 0 -> F_1 -> F_0 -> I -> 0, where F_1 and" << endl;
<< "F_0 are free S=k[P2] modules. Thus F_0=oplus_t S[-t]^{n_t}" << endl;
<< "and F_1=oplus_t S[-t]^{s_t} for integers s_t and n_t." << endl;
<< "Columns 3 and 4 give the values of n_t and s_t in each degree t" << endl;
<< "listed in column 1 (n_t and s_t are 0 in all other degrees)." << endl;
transpose(matrix({v0,v1,v3,v4}))))

-- findhilb: computes e(F_t(Z)) for alpha-1<= t <=tau+1, which gives
-- a lower bound for the SHGH conjectural hilbert function
-- for a fat points subscheme involving general points of P2.
-- Call it as findhilb({m_1,...,m_n}) for integers m_i
-- specifying the multiplicities of the fat points in Z.
-- The conjecture is known to be correct for n<=9.

findhilb = (l) -> (
ww:=l;
if #l<3 then ww=join(l,{0,0,0});
n:=#ww;
n=n-1;
ww=zr(ww);
a1:=findalpha(ww);
tau:=findtau(ww);
d1:=a1-1;
<< "The output gives dim I_t, computed in degrees t from alpha(I)-1 to " << endl;
<< "reg(I), where tau = reg(I)-1 is least degree such that" << endl;
<< "hilbert function of I equals hilbert polynomial of I." << endl;
if n>9 then (

<< "When more than 9 multiplicities are input," << endl;
<< "the output is a lower bound for dim I_t, which by the" << endl;
<< "SHGH conjecture should equal dim I_t." << endl);

<< endl;
<< " t dim I_t" << " (tau = " << tau << ")" << endl;
while (d1 <= tau+1) do (

<< " " << d1 << " " << homcompdim(fundom({d1,ww})) << endl;
d1=d1+1))

--input: l={n,m}, n = number of points, m = uniform multiplicity
--output: various bounds on alpha and tau

unifbounds = (l) -> (
n:=l#0;
m:=l#1;
ba:=bestrda(n);
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bb:=bestrdb(n);
ea:=uniffindalpha(l);
t:=0;
<< "number of general points n of P2: " << n << endl;
<< "multiplicity m of each point: " << m << endl;
<< endl;
if n<= 9 then (<< "Value of alpha: " << ea << endl)
else (

<< "Expected value of alpha (via SHGH conjecture): " << ea << endl;
<< " Note: The SHGH conjectural value of alpha is an upper bound." << endl);

<< "Lower Bounds on alpha:" << endl;
<< " Roe’s, via unloading: " << unifroealpha(l) << endl;
tmp:=unifezbhalpha(l);
<< " Harbourne’s, via Cor IV.i.2(a, b), using r="<<tmp#1<<" and d=";
<<tmp#2<<": "<< tmp#0 << endl;
t=ea;
while(t==unifbhalpha(l,ba#0,ba#1,t)) do t=t-1;
<< " Harbourne’s, via unloading, using r="<<ba#0<<" and d=";
<<ba#1<<": "<< t+1 << endl;
d:=0;
while(d*d < n) do d=d+1;
d=d-1;
r:=ceiling((n+d*d)/2);
<< " Harbourne/Roe’s first formula, using r="<<r<<" and d="<<
d<<": "<< ezunifHRalpha(l,r,d) << endl;
r=d*d;
while(r*r < n*d*d) do r=r+1;
r=r-1;
<< " Harbourne/Roe’s second formula, using r="<<r<<" and d="<<
d<<": "<<ezunifHRalphaB(l,r,d) << endl;
r=ba#0;
d=ba#1;
t=ea;
while(t==unifHRalpha(l,r,d,t)) do t=t-1;
t=t+1;
<<" Harbourne/Roe’s (via modified unloading), using r="<<r<<" and d="<<d;
<< ": "<<t<<endl;
r=bb#0;
d=bb#1;
t=ea;
while(t==unifHRalpha(l,r,d,t)) do t=t-1;
t=t+1;
<<" Harbourne/Roe’s (via modified unloading), using r="<<r<<" and d="<<d;
<< ": "<<t<<endl;
d=0;
while(d*d<=n) do d=d+1;
d=d-2;
r=d*(d+1);
t=ea;
while(t==unifHRalpha(l,r,d,t)) do t=t-1;
t=t+1;
<<" Harbourne/Roe’s (via modified unloading), using r="<<r<<" and d="<<d;
<< ": "<<t<<endl<<endl;
tt:=uniffindtau(l);
if n<= 9 then ( << "Value of tau: " << tt << endl)
else (

<< "Expected value of tau (via SHGH conjecture): " << tt << endl;
<< " Note: The SHGH conjectural value of tau is a lower bound." << endl);

<< "Upper Bounds on tau:" << endl;
<< " Hirschowitz’s: " << Hiuniftau(l) << endl;
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<< " Gimigliano’s: " << Guniftau(l) << endl;
if n>4 then ( << " Catalisano’s: " << Cuniftau(l) << endl);
t=0;
while(t*(t+3)-n*m*(m+1) < 2*t*(m-1)-2) do t=t+1;
<< " Ballico’s: " << t << endl;
t=0;
while(9*(t+3)*(t+3) <= 10*n*(m+1)*(m+1)) do t=t+1;
<< " Xu’s: " << t << endl;
t=0;
tmp=0;
while(tmp*tmp < n) do tmp=tmp+1;
while(2*t < 2*m*tmp + tmp - 3) do t=t+1;
<< " Harbourne/Holay/Fitchett’s: " << t << endl;
<< " Roe’s, via unloading: " << unifroetau(l) << endl;
tmp=ezunifHRtau(l);
<< " Harbourne/Roe’s first formula, using r="<<tmp#1<<" and d="<<
tmp#2<<": "<< tmp#0 << endl;
<< " Harbourne/Roe’s second formula, using r="<<(tmp#2)*(tmp#2)<<" and d="<<
tmp#2<<": "<<ezunifHRtauB(l,(tmp#2)*(tmp#2),tmp#2) << endl;
r=ba#0;
d=ba#1;
t=unifHRtau(l,r,d,tt);
tmp=unifHRtau(l,bb#0,bb#1,tt);
if tmp<t then (

t=tmp;
r=bb#0;
d=bb#1);

<<" Harbourne/Roe’s (via unloading), using r="<<r<<" and d="<<d<< ": "<<t<<endl;
if (ba#0)*(bb#0)<(ba#1)*(bb#1)*n then (

t = -3 + ceiling((m+1)*(bb#1)*n/(bb#0));
r=bb#0;
d=bb#1) else (
t = -3 + ceiling((m+1)*(ba#0)/(ba#1));
r=ba#0;
d=ba#1);

<< " Via Ran’s observation, and Harbourne’s bound on alpha," << endl;
<< " using r="<<r<<" and d="<<d<< ": "<<t<<endl)

-- input: l={m1,...,mn}, n >=1 (number of points), m1, ... >=1 (the multiplicities)
-- output: various bounds on alpha and tau

bounds = (l) -> (
n:=#l;
ba:=bestrda(n);
bb:=bestrdb(n);
ea:=findalpha(zr(l));
t:=0;
tmp:=0;
<< "number of general points n of P2: " << n << endl;
<< "multiplicities of the points: " << l << endl;
<< endl;
if n<= 9 then ( << "Value of alpha: " << ea << endl)
else (

<< "Expected value of alpha (via SHGH conjecture): " << ea << endl;
<< " Note: The SHGH conjectural value of alpha is an upper bound." << endl);

<< "Lower bounds on alpha:" << endl;
<< " Via Checking Psi: " << Psibound(l) << endl;
<< " Roe’s, via unloading: " << roealpha(l) << endl;
w:=ezbhalphaA(l);
<< " Harbourne’s, via Cor IV.i.2(a), using r="<<w#1<<", d=";
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<<w#2<<": "<<w#0<<endl;
w=ezbhalphaB(l);
<< " Harbourne’s, via Cor IV.i.2(b), using r="<<w#1<<", d=";
<<w#2<<": "<<w#0<<endl;
w=ezbhalphaD(l);
<< " Harbourne’s, via Cor IV.i.2(d), using r="<<w#1<<", d="<<w#2;
<<", and j="<<w#3<<": "<<w#0<<endl;
r:=ba#0;
d:=ba#1;
t=ea;
while(t==HRalpha(l,r,d,t)) do t=t-1;
t=t+1;
tmp=ea;
while(tmp==HRalpha(l,bb#0,bb#1,tmp)) do tmp=tmp-1;
tmp=tmp+1;
if tmp>t then (

t=tmp;
r=bb#0;
d=bb#1);

<<" Harbourne/Roe’s (via modified unloading), using r="<<r<<" and d="<<d;
<< ": "<<t<< endl << endl;
tt:=findtau(l);
if n<= 9 then ( << "Value of tau: " << tt << endl)
else (

<< "Expected value of tau (via SHGH conjecture): " << tt << endl;
<< " Note: The SHGH conjectural value of tau is a lower bound." << endl);

<< "Upper bounds on tau:" << endl;
<< " Hirschowitz’s: " << Hitau(l) << endl;
<< " Gimigliano’s: " << Gtau(l) << endl;
nn:=0;
i:=0;
w=prmt(zr(l));
scan(#l, i->(if w#i >0 then nn=nn+1));
if nn>4 then ( << " Catalisano’s: " << Ctau(l) << endl);
<< " Roe’s, via unloading: " << roetau(l) << endl;
r=ba#0;
d=ba#1;
t=HRtau(l,r,d,tt);
tmp=HRtau(l,bb#0,bb#1,tt);
if tmp<t then (

t=tmp;
r=bb#0;
d=bb#1);

<< " Harbourne/Roe’s (via unloading), using r="<<r<<" and d="<<d<<": "<<t<<endl<<endl;
<<"One more bound on alpha; this one can be slow since it tries all r and d." << endl;
w=bestbhalpha(l,ea);
<< " Harbourne’s alpha lower bound (via unloading), using r=" << w#1 << " and d=";
<< w#2 << ": " << w#0 << endl)

--decomp: prints a decomposition F=H+N for any divisor class F in Psi
--as described in the print statements of the script.
--input: decomp(l), where l={d,{m1,...,mn}}, signifying the divisor
--class F = dE_0-(m_1E_1+...+m_nE_n).

decomp = (l) -> (
<< "Let Psi be the subsemigroup of divisor classes generated by " << endl;
<< "exceptional classes and by -K. For any divisor class F, this " << endl;
<< "script determines if F is in Psi, and if so gives a decomposition" << endl;
<< "F=H+N, where N is a sum of exceptionals orthogonal to each other and to H" << endl;
<< "and H is in Psi but H.E >= 0 for all exceptionals E. The point of this" << endl;



34 Brian Harbourne

<< "is that dim |F| = dim |H|, and conjecturally dim |H| = (H^2-H.K)/2." << endl << endl;
i:=0;
j:=0;
w:=l;
v:={};
ww:={};
ex:={};
mult:=0;
tmp:=fundom(l);
if tmp#0<tmp#1#0 or tmp#0<0 then (<< "Your class is not in Psi." << endl) else (

if #l#1<3 then w={l#0,join(l#1,{0,0,0})};
d:=3*(#(w#1)); --define an element {d,v} in fundamental domain
scan(#(w#1), i->(v=join(v,{(#(w#1)) - i})));
ww=fundomboth(w,{d,v});
if ww#0#1 == zr(ww#0#1) then (<< "N = 0" << endl ) else (
<< "N is a sum of the following fixed exceptional classes:" << endl;
if (ww#0#0) - (ww#0#1#0) - (ww#0#1#1) < 0 then (

scan(#(w#1), j->(if j<=1 then ex=join(ex,{1}) else ex=join(ex,{0})));
ex={1,ex};
ex=(fundomboth(ww#1,ex))#1;
<<ex<<" is a fixed component of multiplicity ";
<<(ww#0#1#0)+(ww#0#1#1)-(ww#0#0)<<endl;
ex={(ww#0#0)-(ww#0#1#1),(ww#0#0)-(ww#0#1#0)};
scan(#(w#1), j->(if j>1 then ex=join(ex,{ww#0#1#j})));
ww={{2*(ww#0#0)-(ww#0#1#0)-(ww#0#1#1),ex},ww#1});

scan(#(w#1), i->(
if (ww#0#1)#i<0 then (

ex={};
mult=-(ww#0#1)#i;
scan(#(w#1), j->(if j==i then ex=join(ex,{-1}) else ex=join(ex,{0})));
ex={0,ex};
ex=(fundomboth(ww#1,ex))#1;
<< ex << " is a fixed component of multiplicity " << mult << endl))));

<< endl << "and H = " << (fundomboth(ww#1,{ww#0#0,zr(ww#0#1)}))#1 << endl))

-- input: list l of multiplicities for fat points Z
-- output: least t such that F_t(Z) is in Psi

Psibound = (l) -> (
t:=findalpha(l);
tmp:=fundom({t,l});
while(tmp#0>=tmp#1#0 and tmp#0>=0) do (t=t-1;

tmp=fundom({t,l}));
t+1)

-- prmt: arranges the elements of the list l={m_1,...,m_n} in descending order
-- Call it as prmt(l) where l is a list of integers.

prmt = (l) -> (
(prmtboth(l,l))#0)

-- prmtboth: arranges the elements of the list l1 in descending order,
-- and applies the same permutation to l2
-- Call it as prmt(l1,l2) where l1 and l2 are lists of integers.

prmtboth = (l1,l2) -> (
tmpv1:=l1;
tmpv2:=l2;
v1:=l1;
v2:=l2;
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i:=0;
j:=0;
k:=0;
scan(#l1, i->(scan(#l1, j->(

if tmpv1#i < tmpv1#j then (
if i < j then (

k=-1;
v1={};
v2={};
while(k<#l1-1) do (k=k+1;

if k==i then (v1=join(v1,{tmpv1#j});
v2=join(v2,{tmpv2#j})) else (
if k==j then (v1=join(v1,{tmpv1#i});

v2=join(v2,{tmpv2#i})) else (v1=join(v1,{tmpv1#k});
v2=join(v2,{tmpv2#k}))));

tmpv1=v1;
tmpv2=v2))))));

{v1,v2})

-- zr: replaces negative values in a list l by zeroes.
-- Call it as zr(l) where l is a list of integers.

zr = (l) -> (
v:={};
i:=0;
scan(#l, i->(

if l#i<0 then v=join(v,{0}) else v=join(v,{l#i})));
v)

-- quad: performs a quadratic transform on a divisor class dE_0-(m_1E_1+...+m_nE_n).
-- Call it as quad({d,{m1,...,mn}}). The output is
-- {2d-m1-m2-m3,{d-m2-m3,d-m1-m3,d-m1-m2,m4,...,mn}}.

quad = (l) -> (
i:=0;
w:=l;
if #l#1<3 then w={l#0,join(l#1,{0,0,0})};
v:={w#0 - w#1#1 - w#1#2,w#0 - w#1#0 - w#1#2,w#0 - w#1#0 - w#1#1};
scan(#w#1, i->(if i>2 then v=join(v,{w#1#i})));
v={2*(w#0) - w#1#0 - w#1#1 - w#1#2,v};
v)

-- fundom: Call it as fundom({d,{m1,...,mn}}). The output is a new
-- list {d’,{m1’,...,mn’}}; the class dE_0-(m_1E_1+...+m_nE_n) is
-- equivalent via Cremona transformations to d’E_0-(m_1’E_1+...+m_n’E_n),
-- where d’ is either negative or as small as possible.

fundom = (l) -> (
(fundomboth(l,l))#0)

-- fundomboth: applies fundom to l1 to reduce l1 to fundamental
-- domain of a certain group operation, and applies the same
-- group operation g to l2. If l2 starts out in the fundamental domain,
-- and {l1’,l2’}=fundomboth(l1,l2), then {l2,g^{-1}l}=fundomboth(l2’,l).
-- This allows one to compute the action of g^{-1}.

fundomboth = (l1,l2) -> (
w1:=l1;
w2:=l2;
v:={};
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if #l1#1<3 then w1={l1#0,join(l1#1,{0,0,0})};
if #l2#1<3 then w2={l2#0,join(l2#1,{0,0,0})};
v=prmtboth(w1#1,w2#1);
w1={w1#0,v#0};
w2={w2#0,v#1};
while ((w1#0 < w1#1#0 + w1#1#1 + w1#1#2) and (w1#0 >= 0)) do (

w1=quad(w1);
w2=quad(w2);
v=prmtboth(w1#1,w2#1);
w1={w1#0,v#0};
w2={w2#0,v#1});

{w1,w2})

-- homcompdim: computes e(F_t(Z)), the expected dimension of a component I_d
-- of a fat points ideal I corresponding to a fat point subscheme Z of general
-- points taken with multiplicities m_1, ..., m_n. Call it as
-- homcompdim({d,{m_1,...,m_n}}); the output is the SHGH conjectural
-- dimension of I_d, which is the actual dimension if n < 10.

homcompdim = (l) -> (
h:=0;
i:=0;
w:=l;
if #l#1<3 then w={l#0,join(l#1,{0,0,0})};
w=fundom(w);
d:=w#0;
w=fundom({d,zr(w#1)});
d=w#0;
v:=zr(w#1);
if d<0 then h=0 else (

tmp:=0;
scan(#v, i->(tmp = v#i*v#i+v#i+tmp));
h=floor((d*d+3*d+2-tmp)/2);
if h < 0 then h=0);

h)

-- findalpha: find alpha, the least degree t such that
-- I_t \ne 0, where I is the ideal corresponding to n general
-- points taken with multiplicities m_1, ...,m_n. Call it as
-- findalpha({m_1,...,m_n}). The output is the SHGH conjectural value
-- of alpha, which is the actual value if n < 10 and an upper bound otherwise.

findalpha = (l) -> (
i:=1;
w:=prmt(zr(l));
if #l<3 then w=join(l,{0,0,0});
d:=w#0; -- alpha is at least the max mult
if (#w)<9 then ( -- if n<=8, to speed things, make an estimate

while(i < (#w)) do (d=d+w#i;
i=i+1);

d=ceiling(d/3);
if d < w#0 then d = w#0);

while (homcompdim({d,w}) < 1) do d=d+1;
d)

-- dot: computes a dot product of two lists l1 and l2 (of equal length)
-- of integers. Call it as dot(l1,l2).

dot = (l1,l2) -> (
i:=0;
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dottot:=0;
scan(#l1, i->(dottot = dottot + (l1#i)*(l2#i)));
dottot)

-- input: l={m1,...,mn}, n >=1 (number of points), m1,... (the multiplicities)
-- output: the SHGH conjectured value of tau; this is the actual value if
-- n < 10, and a lower bound otherwise.

findtau = (l) -> (
t:=findalpha(l);
if t > 0 then t = t-1; -- tau is at least alpha - 1
n:=#l;
v:=l;
p:=dot(v,v);
K:={};
j:=0;
q:=0;
scan(#l, j->(q=q+l#j));
while(2*(homcompdim(join({t},{v}))) > t*t-p+3*t-q+2) do t=t+1;
t)

-- input: positive integer n
-- output: {r,d}, where r^2>=d^2n, n>=r, and nd/r is as big as possible

bestrda = (n) -> (
rootn:=0;
while(rootn*rootn<=n) do rootn=rootn+1;
rootn=rootn-1;
d:=1;
r:=0;
if rootn*rootn==n then r=rootn else r=rootn+1;
tmpr:=1;
tmpd:=1;
while(tmpd<=rootn) do (

tmpr=tmpd*rootn;
while(tmpr*tmpr<tmpd*tmpd*n) do tmpr=tmpr+1;
if tmpr*d < tmpd*r then (

r=tmpr;
d=tmpd);

tmpd=tmpd+1);
{r,d})

-- input: positive integer n
-- output: {r,d}, where r^2<=d^2n, n>=r, and r/d is as big as possible

bestrdb = (n) -> (
rootn:=0;
while(rootn*rootn<n) do rootn=rootn+1;
d:=1;
r:=0;
if rootn*rootn==n then r=rootn else r=rootn-1;
tmpr:=1;
tmpd:=1;
while(tmpd<=rootn) do (

tmpr=tmpd*rootn;
while(tmpr*tmpr>tmpd*tmpd*n) do tmpr=tmpr-1;
if tmpr>n then tmpr=n;
if tmpr*d > tmpd*r then (

r=tmpr;
d=tmpd);
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tmpd=tmpd+1);
{r,d})

-- input: l={m1,...,mn}, n= number of points, mi = multiplicity of ith point
-- output: Roe’s algorithmic lower bound on alpha

roealpha = (l) -> (
i:=0;
v={};
w2:={};
w:=l;
i1:=2;
if #l<3 then w=join(w,{0,0,0});
while(i1<#w) do (

v={1};
scan(#w, i->(if i>0 then (if i<=i1 then v=join(v,{-1}) else v=join(v,{0}))));
w=zr(prmt(w));
while(dot(w,v)<0) do (

w2={};
scan(#w, i->(w2 = join(w2,{w#i+v#i})));
w=zr(prmt(w2)));

i1=i1+1);
w#0)

-- input: l={n,m}, n >=1 (number of points), m >=1 (uniform multiplicity)
-- output: Roe’s algorithmic lower bound on alpha

unifroealpha = (l) -> (
i1:=0;
intchk:=0;
n:=l#0;
m:=l#1;
roebnd:=m;
q:=n-1; -- q keeps track during unloading of number of

-- points after the first with maximum multiplicity
if n>2 then (

i1=2;
while(i1<n) do (

if q<i1 then intchk=i1*m-(i1-q) else intchk=i1*m;
while(roebnd<intchk) do (

roebnd=roebnd+1;
if q<i1 then (q=n-i1+q-1;

m=m-1) else (q=q-i1;
if q==0 then (m=m-1;

q=n-1));
if q<i1 then intchk=i1*m-(i1-q) else intchk=i1*m);

i1=i1+1)) else roebnd = m;
roebnd)

-- input: l={m1,...,mn}, n= number of points, mi = multiplicity of ith point
-- output: Roe’s algorithmic upper bound on tau

roetau = (l) -> (
i:=0;
vv={};
vv1:={};
w2:={};
ww:=l;
i1:=1;
while(i1<#ww-1) do (
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vv={1};
scan(#ww, i->(if i>0 then (if i-1<=i1 then vv=join(vv,{-1}) else vv=join(vv,{0}))));
vv1={1};
scan(#ww, i->(if i>0 then (if i<=i1 then vv1=join(vv1,{-1}) else vv1=join(vv1,{0}))));
ww=zr(prmt(ww));
while((dot(ww,vv)) < -1) do (

w2={};
scan(#ww, i->(w2 = join(w2,{ww#i+vv1#i})));
ww=zr(prmt(w2)));

i1=i1+1);
ww#0+ww#1-1)

-- input: l={n,m}, n >=1 (number of points), m >=1 (uniform multiplicity)
-- output: Roe’s algorithmic upper bound on tau

unifroetau = (l) -> (
i:=1;
s:=0;
n:=l#0;
m1:=l#1;
m2:=0;
if n>1 then m2=m1;
n2:=n-1; -- n2 keeps track during unloading of number of

-- points with multiplicity m2
while(i < (n-1)) do (

if (i+1) <= n2 then s=(i+1)*m2 else s=(i+1)*m2+n2-i-1;
while((m1-s) < -1) do (

m1=m1+1;
if i < n2 then n2=n2-i else (

n2=n-i+n2-1;
m2=m2-1);

if (i+1) <= n2 then s=(i+1)*m2 else s=(i+1)*m2+n2-i-1);
i=i+1);

m1+m2-1)

-- input: l={n,m}, n >=1 (number of points), m >=1 (uniform multiplicity)
-- output: list {i,r,d}, with i being Harbourne’s easy lower bound on
-- alpha (via Cor IV.i.2 (a), (b)) computed using the best r and d

unifezbhalpha = (l) -> (
w:=bestrda(l#0);
i:=ceiling((l#1)*(l#0)*(w#1)/(w#0)); -- compute mnd/r rounded up
r:=w#0;
d:=w#1;
w=bestrdb(l#0);
j:=ceiling((l#1)*(w#0)/(w#1)); -- compute mr/d rounded up
if i<j then (i=j;

r=w#0;
d=w#1);

{i,r,d})

-- input: ({n,m},r,d), n >=1 (number of points), m >=1 (uniform multiplicity)
-- where r <= n, and 2r >= n+d^2
-- output: lower bound on alpha via formula of [HR]

ezunifHRalpha = (l,r,d) -> (
n:=l#0;
m:=l#1;
t:=0;
q:=ceiling(n*m/r)-1;
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while(((t+2)*(t+1)<=2*(m*n-r*q)) and t<d) do t=t+1;
t+q*d)

-- input: ({n,m},r,d), n >=1 (number of points), m >=1 (uniform multiplicity)
-- where r <= n, d(d+1)/2 <= r, and r^2 <= nd^2
-- output: lower bound on alpha via formula of [HR2].

ezunifHRalphaB = (l,r,d) -> (
n:=l#0;
m:=l#1;
g:=(d-1)*(d-2)/2;
tmp:=floor((m*r+g-1)/d);
t:=ceiling(n*m/r)-1;
rr:=m*n-r*t;
s:=0;
while(((s+1)*(s+2) <= 2*rr) and s<d) do s=s+1;
s=s-1;
t=s+t*d;
if tmp<t then t=tmp;
t+1)

-- input: ({n,m},r,d), n >=1 (number of points), m >=1 (uniform multiplicity)
-- where r <= n, and r <= d^2
-- output: upper bound on tau via formula of [HR].

ezunifHRtauB = (l,r,d) -> (
n:=l#0;
m:=l#1;
g:=(d-1)*(d-2)/2;
q:=ceiling(n*m/r)-1;
rr:=m*n-r*q;
t:=q*d+ceiling((rr+g-1)/d);
tmp:=q*d+d-2;
if t<tmp then t=tmp;
t)

-- input: ({n,m},r,d,ea), n >=1 (number of points), m >=1 (uniform multiplicity)
-- ea is an estimate for alpha (for speed); it must be set equal to
-- a value no bigger than the eventual value of unifHRalpha (0, for example)
-- output: lower bound on alpha via modified unloading method of [HR],
-- computed using given r and d

unifHRalpha = (l,r,d,ea) -> (
i:=ea-1;
n2:=0; -- n2 keeps track of the number of points with maximum multiplicity
s:=0;
tmpi:=-1;
tmpm:=0;
g:=(d-1)*(d-2)/2;
while(tmpi<tmpm) do (

i=i+1;
tmpi=i;
tmpm=l#1;
n2=l#0;
if r <= n2 then s=r*tmpm else s=r*tmpm-r+n2;
while(((tmpi*d-s < g) and (tmpi >= d-2)) or (((tmpi+1)*(tmpi+2)<=2*s) and

(tmpi<d) and (tmpi>=0))) do (
tmpi=tmpi-d;
if r<n2 then n2=n2-r else (

n2=l#0-r+n2;
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tmpm=tmpm-1;
if tmpm <= 0 then (

tmpm=0;
n2=l#0));

if r<=n2 then s=r*tmpm else s=r*tmpm-r+n2));
i)

-- input: ({m_1,...,m_n},r,d,ea), n >=1 (number of points), m_i >=1 (multiplicities)
-- ea is an estimate for alpha (for speed); it must be set equal to
-- a value no bigger than the eventual value of HRalpha (0, for example)
-- output: lower bound on alpha via modified unloading method of [HR],
-- computed using given r and d

HRalpha = (l,r,d,ea) -> (
i:=ea-1;
j:=0;
n:=0;
g:=(d-1)*(d-2)/2;
v:=prmt(zr(l));
tmpv:=v;
ttmpv:={};
scan(#l, j->(if v#j>0 then n=n+1));
if n>0 then (

ww:={};
scan(#l, j->(if j<r then ww=join(ww,{1}) else ww=join(ww,{0})));
tmpi:=-1;
while(tmpi < tmpv#0) do (

i=i+1;
tmpi=i;
tmpv=v;
while(((tmpi*d-(dot(ww,tmpv))<g) and (tmpi >= d-2)) or

(((tmpi+1)*(tmpi+2)<=2*(dot(ww,tmpv))) and (tmpi<d) and (tmpi>=0))) do (
tmpi=tmpi-d;
ttmpv={};
scan(#l, j->(ttmpv=join(ttmpv,{(tmpv#j)-(ww#j)})));
tmpv=prmt(zr(ttmpv)))));

i)

-- input: ({n,m},r,d,ea), n >=1 (number of points), m >=1 (uniform multiplicity)
-- ea is an estimate for alpha (for speed); it must be set equal to
-- a value no bigger than the eventual value of unifbhalpha (0, for example)
-- output: Harbourne’s algorithmic lower bound on alpha via unloading,
-- using the given r and d.

unifbhalpha = (l,r,d,ea) -> (
i:=ea-1;
n2:=0; -- n2 keeps track of the number of points with maximum multiplicity
s:=0;
tmpi:=-1;
tmpm:=0;
while(tmpi<0) do (

i=i+1;
tmpi=i;
tmpm=l#1;
n2=l#0;
if r <= n2 then s=r*tmpm else s=r*tmpm-r+n2;
while((tmpi*d-s < 0) and (tmpi >= 0)) do (

tmpi=tmpi-d;
if r<n2 then n2=n2-r else (

n2=l#0-r+n2;
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tmpm=tmpm-1;
if tmpm <= 0 then (

tmpm=0;
n2=l#0));

if r<=n2 then s=r*tmpm else s=r*tmpm-r+n2));
i)

-- input: ({n,m},r,d), n >=1 (number of points), m >=1 (uniform multiplicity)
-- where r <= n, and 2r >= n+d^2
-- output: lower bound on alpha via formula which agrees with that via unloading.

ezunifBHalphaB = (l,r,d) -> (
n:=l#0;
m:=l#1;
q:=floor(n*m/r);
rr:=m*n-r*q;
t:=q-1+ceiling(rr/d);
tmp:=d*ceiling(n*m/r);
if tmp<t then t=tmp;
t+1)

-- input: l={m1,...,mn}, n >=1 (number of points), m1, ... >=1 (the multiplicities)
-- output: list (aa,r,d), with aa being Harbourne’s lower bound on
-- alpha (via Cor IV.i.2(a)), computed using the best r and d

ezbhalphaA = (l) -> (
i:=0;
s:=0;
n:=0;
v:=prmt(zr(l));
scan(#l, i->(if v#i>0 then n=n+1));
w:=bestrda(n);
i=0;
while(i<n) do (

s=s+v#i;
i=i+1);

best:=ceiling(s*(w#1)/(w#0));
{best, w#0, w#1})

-- input: l={m1,...,mn}, n >=1 (number of points), m1, ... >=1 (the multiplicities)
-- output: list (aa,r,d), with aa being Harbourne’s lower bound on
-- alpha (via Cor IV.i.2(b)), computed using the best r and d

ezbhalphaB = (l) -> (
i:=0;
s:=0;
n:=0;
v:=prmt(zr(l));
scan(#l, i->(if v#i>0 then n=n+1));
w:=bestrdb(n);
i=0;
while(i<n) do (

s=s+v#i;
i=i+1);

best:=ceiling(s*(w#0)/(n*(w#1)));
{best, w#0, w#1})

-- input: l={m1,...,mn}, n >=1 (number of points), m1, ... >=1 (the multiplicities)
-- output: list (aa,r,d,j), with aa being Harbourne’s lower bound on
-- alpha (via Cor IV.i.2(d)), computed using the best r, d and j
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ezbhalphaD = (l) -> (
w:={};
i:=0;
scan(#l, i->(if l#i>0 then w=join(w,{l#i})));
w=prmt(w);
n:=#w;
bnd:=0;
tmpbnd:=0;
r:=0;
d:=0;
j:=0;
tmpr:=0;
tmpd:=0;
tmpj:=0;
if n>0 then (

while(tmpr<n) do (tmpr=tmpr+1;
tmpd=0;
while(tmpd*tmpd<tmpr) do (tmpd=tmpd+1;

tmpj=0;
while(tmpj<tmpd*tmpd) do (tmpj=tmpj+1;

tmpbnd=lpa(w,tmpr,tmpd,tmpj);
if tmpbnd>bnd then (

bnd=tmpbnd;
r=tmpr;
d=tmpd;
j=tmpj)))));

{bnd,r,d,j})

-- lpa computes the bound given in Cor IV.i.2(d); attempts
-- various solutions with the hope of approximating the optimal
-- solution to the linear programming problem indicated by Thm IV.i.1.
-- lpa is called by ezbhalphaD

lpa = (l,r,d,j) -> (
i:=0;
n:=#l;
sum:=0;
sumb:=0;
bnd:=0;
if d*d >= r then (

scan(#l, i->(if i<r then sum=sum+l#i));
bnd=ceiling(sum/d)) else (
if j==0 then (

scan(#l, i->(if i<d*d then sum=sum+l#i));
bnd=ceiling(sum/d)) else (
M:=floor((r-d*d)*(r-d*d+j)/j);
scan(#l, i->(if i<d*d-j then sum=sum+l#i else (if i<M+r then sumb=sumb+l#i)));
sumb=sumb*j/(r-d*d+j);
if M<n-r then sumb=sumb+(l#(M+r))*(r-d*d-j*M/(r-d*d+j));
bnd=ceiling((sumb+sum)/d)));

bnd)

-- input: ({m1,...,mn},r,d,ea), n >=1 (number of points), m1, ... >=1
-- (the multiplicities), r and d positive integers, ea any value
-- not bigger than the eventual value of bhalpha; can be set to 0
-- output: Harbourne’s unloading lower bound on alpha, using given r and d

bhalpha = (l,r,d,ea) -> (
i:=ea-1;
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j:=0;
n:=0;
v:=prmt(zr(l));
tmpv:=v;
ttmpv:={};
scan(#l, j->(if v#j>0 then n=n+1));
if n>0 then (

ww:={};
scan(#l, j->(if j<r then ww=join(ww,{1}) else ww=join(ww,{0})));
tmpi:=-1;
while(tmpi < tmpv#0) do (

i=i+1;
tmpi=i;
tmpv=v;
while((tmpi*d-(dot(ww,tmpv))<0) and (tmpi >= tmpv#0)) do (

tmpi=tmpi-d;
ttmpv={};
scan(#l, j->(ttmpv=join(ttmpv,{(tmpv#j)-(ww#j)})));
tmpv=prmt(zr(ttmpv)))));

i)

-- Find bhalpha using best possible r and d;
-- ea is an a priori estimate for alpha (for speed)
-- it must be set to a value >= than the actual value
-- of alpha (e.g., ea=findalpha(l))

bestbhalpha = (l,ea) -> (
w:={};
i:=0;
scan(#l, i->(if l#i>0 then w=join(w,{l#i})));
w=prmt(w);
n:=#w;
bnd:=0;
tmpbnd:=0;
r:=0;
d:=0;
tmpr:=0;
tmpd:=0;
if n>0 then (

while(tmpr<n) do (tmpr=tmpr+1;
tmpd=0;
while(tmpd*tmpd<tmpr) do (tmpd=tmpd+1;

tmpbnd=ea;
while(tmpbnd==bhalpha(w,tmpr,tmpd,tmpbnd)) do tmpbnd=tmpbnd-1;
tmpbnd=tmpbnd+1;
if tmpbnd>bnd then (

bnd=tmpbnd;
r=tmpr;
d=tmpd))));

{bnd,r,d})

-- input: ({m1,...,mn},r,d,et), n >=1 (number of points), m1, ... >=1 (the multiplicities),
-- r and d positive integers, et any lower bound for tau (used for speed; can be set to 0).
-- output: Harbourne/Roe’s algorithmic upper bound on tau,
-- with given r and d (assumes char = 0).

HRtau = (l,r,d,et) -> (
i:=et-1;
j:=0;
n:=0;
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v:=prmt(zr(l));
tmpv:=v;
ttmpv:={};
scan(#l, j->(if v#j>0 then n=n+1));
if n>0 then (

ww:={};
g:=(d-1)*(d-2)/2; -- genus of plane curve of degree d
scan(#l, j->(if j<r then ww=join(ww,{1}) else ww=join(ww,{0})));
tmpi:=0;
while(tmpv#0 > 0) do (

i=i+1;
tmpi=i;
tmpv=v;
while((tmpi*d-(dot(ww,tmpv))>=g-1) and (tmpi>=d-2) and (tmpv#0 >0)) do (

tmpi=tmpi-d;
ttmpv={};
scan(#l, j->(ttmpv=join(ttmpv,{(tmpv#j)-(ww#j)})));
tmpv=prmt(zr(ttmpv)))));

i)

-- input: ({n,m},r,d,et), n >=1 (number of points), m >=1 (the uniform multiplicity),
-- r and d positive integers, et any lower bound for tau (used for speed; can be set to 0)
-- output: Harbourne/Roe’s algorithmic upper bound on tau, using given r and d
-- (assumes char = 0).

unifHRtau = (l,r,d,et) -> (
i:=et-1;
n2:=0; -- n2 is the number of points with maximum multiplicity
s:=0;
tmpm:=1;
tmpi:=0;
g:=(d-1)*(d-2)/2; -- genus of plane curve of degree d
while(tmpm > 0) do (

i=i+1;
tmpi=i;
tmpm=l#1;
n2= l#0;
if r<=n2 then s=r*tmpm else s=r*tmpm-r+n2;
while((tmpi*d-s>=g-1) and (tmpi>=d-2) and (tmpm >0)) do (

tmpi=tmpi-d;
if r<n2 then n2=n2-r else (

n2=l#0-r+n2;
tmpm=tmpm-1;
if tmpm<0 then (

tmpm=0;
n2= l#0));

if r<=n2 then s=r*tmpm else s=r*tmpm-r+n2));
i)

-- input: l={n,m}, n >=1 (number of points), m >=1 (the uniform multiplicity)
-- output: list {a,r,d}, where a is Harbourne/Roe’s formulaic upper
-- bound on tau (char 0) computed using r and d

ezunifHRtau = (l) -> (
n:=l#0;
m:=l#1;
d:=0;
while (d*d <= n) do d=d+1;
d=d-1;
r:=d;
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while (r*r < d*d*n) do r=r+1;
g:=(d-2)*(d-1)/2;
a:= ceiling((m*r+g-1)/d);
b:=-2+d*ceiling(m*n/r);
if a<b then a=b;
{a,r,d})

-- input: l={n,m}, n >=1 (number of points), m >=1 (the uniform multiplicity)
-- output: the SHGH conjectured value of alpha; this is the actual value if
-- n < 10, and an upper bound otherwise.

uniffindalpha = (l) -> (
n:=l#0;
m:=l#1;
a:=-1;
if n==1 then a=m;
if n==2 then a=m;
if n==3 then a=ceiling(3*m/2);
if n==4 then a=2*m;
if n==5 then a=2*m;
if n==6 then a=ceiling(12*m/5);
if n==7 then a=ceiling(21*m/8);
if n==8 then a=ceiling(48*m/17);
if n==9 then a=3*m;
if n>9 then (

while(a*a-n*m*m+3*a-n*m+2 <0) do a=a+m;
a=a-m;
while(a*a-n*m*m+3*a-n*m+2 <=0) do a=a+1);

a)

-- input: l={n,m}, n >=1 (number of points), m >=1 (the uniform multiplicity)
-- output: the SHGH conjectured value of tau; this is the actual value if
-- n < 10, and a lower bound otherwise.

uniffindtau = (l) -> (
n:=l#0;
m:=l#1;
t:=-1;
if n==1 then t=m-1;
if n==2 then t=2*m-1;
if n==3 then t=2*m-1;
if n==4 then t=2*m;
if n==5 then t=ceiling((5*m-1)/2);
if n==6 then t=ceiling((5*m-1)/2);
if n==7 then t=ceiling((8*m-1)/3);
if n==8 then t=ceiling((17*m-1)/6);
if n==9 then t=3*m;
if n>9 then (

while(t*t-n*m*m+3*t-n*m+2 <0) do t=t+m;
t=t-m;
while(t*t-n*m*m+3*t-n*m+2 <0) do t=t+1);

if t<0 then t=0;
t)

-- input: l={n,m}, n >=1 (number of points), m (the multiplicity of each point)
-- output: Hirschowitz’s lower bound for tau

Hiuniftau = (l) -> (
n:=l#0;
m:=l#1;
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t:=m;
s:=n*m*(m+1);
a:=ceiling((t+3)/2);
b:=ceiling((t+2)/2);
while(a*b*2 <= s) do (

t=t+1;
a=ceiling((t+3)/2);
b=ceiling((t+2)/2));

t)

-- input: l={m1,...,mn}, n >=1 (number of points), m1, ... >=1 (the multiplicities)
-- output: Hirschowitz’s lower bound for tau

Hitau = (l) -> (
n:=#l;
i:=0;
w:=prmt(zr(l));
t:=w#0;
s:=0;
scan(#l, i->(s=s+(w#i)*((w#i)+1)));
a:=ceiling((t+3)/2);
b:=ceiling((t+2)/2);
while(a*b*2 <= s) do (

t=t+1;
a=ceiling((t+3)/2);
b=ceiling((t+2)/2));

t)

-- input: l={n,m}, n >=1 (number of points), m (the multiplicity of each point)
-- output: Gimigliano’s lower bound for tau

Guniftau = (l) -> (
n:=l#0;
m:=l#1;
t:=0;
while(t*(t+3)<2*n) do t=t+1;
m*t)

-- input: l={m1,...,mn}, n >=1 (number of points), m1, ... >=1 (the multiplicities)
-- output: Gimigliano’s lower bound for tau

Gtau = (l) -> (
n:=0;
w:=prmt(zr(l));
scan(#l, i->(if w#i >0 then n=n+1));
t:=0;
s:=0;
i:=0;
while(t*(t+3)<2*n) do t=t+1;
scan(#l, i->(if i<t then s=s+w#i));
s)

-- input: l={n,m}, n >=5 (number of points), m>0 (the multiplicity of each point)
-- output: Catalisano’s lower bound for tau

Cuniftau = (l) -> (
s:=l#0;
m:=l#1;
r:=0;
t:=0;
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f:=0;
while(f*(f+1) <= 2*s) do f=f+1;
f=f-1;
while(2*r<2*s-f*(f+1)) do r=r+1;
d1:=0;
d:=f;
if r==0 then d1=f-1 else d1=f;
t=d1+(m-1)*d;
if 2*t+1 < 5*m then t=ceiling((5*m-1)/2);
if t<2*m-1 then t=2*m-1;
if r == f then (if s >= 9 then t=m*d1+1);
t)

-- input: l={m1,...,mn}, n >=5 (number of points), m1, ... >=1 (the multiplicities)
-- output: Catalisano’s lower bound for tau

Ctau = (l) -> (
n:=0;
i:=0;
w:=prmt(zr(l));
scan(#l, i->(if w#i >0 then n=n+1));
vm:={};
vs:={};
i=0;
while(i < n-1) do (

if w#i > w#(i+1) then (
vs=join(vs,{i+1});
vm=join(vm,{w#i}));
i=i+1);

vs=join(vs,{n});
vm=join(vm,{w#(n-1)});
i=#vm - 1;
v:={vm#i};
while(i > 0) do (

v=join({vm#(i-1) - vm#i},v);
i=i-1);

vf:={};
vr:={};
scan(#vs, i->(

f:=0;
r:=0;
while(f*(f+1) <= 2*(vs#i)) do f=f+1;
f=f-1;
while(2*r<2*(vs#i)-f*(f+1)) do r=r+1;
vf=join(vf,{f});
vr=join(vr,{r})));

t:=0;
if (vr#(#vr-1)) == 0 then t = - 1;
d1:=t+vf#(#vf-1);
scan(#vs, i->(

t=t+(vf#i)*(v#i)));
if 2*t+1 < (w#0)+(w#1)+(w#2)+(w#3)+(w#4) then
t=ceiling(((w#0)+(w#1)+(w#2)+(w#3)+(w#4)-1)/2);
if t<(w#0)+(w#1)-1 then t=(w#0)+(w#1)-1;
if (vr#0) == (vf#0) then (if s >= 9 then (if (w#0)==(w#(n-1))

then (if (w#0)>1 then t=(w#0)*d1+1)));
if (vr#0) == 0 then (if s > 9 then (if (w#0)==(w#(n-2))

then (if (w#(n-1)) == 1 then t=(w#0)*d1+1)));
t)
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[Id] Idà, M. The minimal free resolution for the first infinitesimal neighborhoods of n
general points in the plane, J. Alg. 216 (1999), 741–753.

[Ka] Kac, V. G. Infinite dimensional Lie algebras, Progress in Math. 44, Birkhauser,
Boston (1983).

[L] Looijenga, E. Rational surfaces with effective anticanonical divisor, Ann. of Math.
114 (1981), 267-322.



Survey of Fat Points on P2 51

[MAC] Grayson, D., and Stillman, M. MACAULAY 2, Version 0.8.52; archival site
www.math.uiuc.edu/Macaulay2.
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