
MATH 953: ALGEBRAIC GEOMETRY

BRIAN HARBOURNE

Abstract. These are notes for an introductory course on Algebraic Geometry taught at the Uni-
versity of Nebraska-Lincoln, Spring 2011.

Lecture 1. January 12, 2011

Fundamentally, Algebraic Geometry is the study of the solution sets of systems of polynomial
equations. So it seems appropriate to start at the beginning, as it is now known.

1.1. In the beginning (of recorded history). The British Museum has a cuneiform table [see
http://www.malhatlantica.pt/mathis/Babilonia/BM13901.htm for a photo], BM 13901 (ca.
1700 BC) which has a problem and solution which reads:

Problem 1.1.1. I totalled the area and (the side of) my square: it is 0;45. You put down 1, the
unit. You break in half 1. You multiply 0;30 and 0;30. You add 0;15 to 0;45. The square root of
1 is 1. Subtract 0;30 that you multiplied (with itself) from 1 and 0;30 is (the side of) the square.
[see http: // www. maa. org/ reviews/ lsahoyrup. html ]

In the sexagesimal (i.e., base 60) number system used by the Babylonians, 0;45 means 45/60.
Thus, in more familiar terms, the problem is to find x, given x2 + 1x = 3/4. To find x, the tablet
says to take half the coefficient of x, i.e., half of 1 which is 1/2 = 0; 30, square it and add to both
sides to get x2 + x + (1/2)2 = 3/4 + 1/4, or (x + 1/2)2 = 1. We have thus completed the square;
taking square roots gives x+ 1/2 = 1, and subtracting 1/2 = 0; 30 from both sides gives x = 1/2;
i.e., x = 0; 30. Never mind about the other solution x = −3/2; since it’s negative, it was regarded
as being fictitious to the Babylonians.

In any case, 4700 years ago, the Babylonians knew how to solve a quadratic equation by com-
pleting the square. In modern terms, if

x2 + ax = b,

then (x+ a/2)2 = b+ (a/2)2 so
x = −a/2±

√
b+ (a/2)2.

1.2. Some time later in Medieval Italy. In Italy in the Middle Ages, academicians put on
public scholarly competitions. (This lives on today in the system of concorsi in modern Italy; to
earn a university position in Italy, one must win a concorso, a competition among the various
candidates, except today the problems are posed by a panel of professors, not by the candidates
to each other. However, recent reforms may result in this system finally being abandoned. These
competitions typically involved two people who each would propose problems for the other to solve.
The one who could better solve the other’s problems won the competition. You could make your
reputation and establish your livelihood by doing well in these competitions. Thus if you made a
discovery, such as how to solve certain equations, you had a strong incentive to keep it a secret, so
you could pose problems to opponents that perhaps only you knew how to do.

An important such competition occurred in 1535. A certain Antonio Maria Fior challenged a
certain self-taught Niccolo Fontana (who, due to a saber wound to his jaw suffered as a child when
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French soldiers attacked his town, was nicknamed Tartaglia, pronounced Tartalya and meaning
Stutterer) [see p. 99 of The Ellipse: A Historical and Mathematical Journey, by Arthur Mazer,
Wiley, 2010]. Fior posed thirty problems to Fontana, each of which involved solving a cubic equation
of the form ax3 + cx+ d = 0. One of the problems, for example, was the following:

Problem 1.2.1. Two men together gain 1000 ducats. The gain of the first is the cube root of the
gain of the second. What is the gain of each?

I.e., if x is the gain of the first, then x3 is the gain of the second so x3 + x = 1000 and we must
solve for x.

The source of the solution of the cubic is uncertain. Somehow Fior’s teacher, Scipione del Ferro,
a professor in Bologna, came to know how to solve certain cases of cubic equations, and he shared
his method with Fior. Fior’s challenge motivated Fontana to figure out those cases and possibly
others also, with the result that Fontana prevailed in the competition. This attracted the attention
of one Gerolamo Cardano, who pestered Fontana to reveal the secret. Eventually, under an oath of
secrecy, Fontana shared his solution with Cardano, who (possibly after tracking down del Ferro’s
solution, thereby no longer being bound by the oath) then published it anyway in his 1545 work
Ars Magnus, but giving credit to del Ferro, Fior and Fontana. (Cardano seems to have been at the
forefront of the tradition of making one’s reputation by publishing what one knows, rather than
keeping it secret.)

Note that one can always reduce a cubic equation ax3+bx2+cx+d = 0 to the form u3+eu+f = 0:
first divide by a, then substitute u− b/(3a) in for x to eliminate the term of degree 3− 1 = 2 (this
is analogous to completing the square, which eliminates the term of degree 2− 1 = 1).

Now use the identity (s+ t)3 = s3 + 3s2t+ 3st2 + t3, rewritten as:

(s+ t)3 − 3st(s+ t) = s3 + t3.

This means u = s + t is a solution of u3 + eu + f = 0 if we choose s and t to solve the following
system of equations:

−3st = e

and
s3 + t3 = −f.

But this is easy: substitute s = −e/(3t) into the second equation and clear denominators to get

(t3)2 + ft3 − e3/27 = 0.

The Babylonians showed us how to solve this for t3; then take cube roots to get t. Knowing t gives
us s, since s = −e/(3t), and from this we get u = s+ t and finally x = u− b/(3a).

Cardano’s student and former servant, Lodovico Ferrari, found the solution to a quartic equation.
As usual, it is enough to solve x4 + cx2 +dx+e = 0. His solution is to rewrite it as x4 +2cx2 + c2 =
cx2 − dx+ c2 − e, or

(x2 + c)2 = cx2 − dx+ c2 − e.

Now insert a supplementary variable y:

(x2 + c+ y)2 = (c+ 2y)x2 − dx+ (c2 + 2cy + y2 − e).

Note that the RHS is a quadratic polynomial in x. It would be nice if it were of the form (αx+β)2,
a perfect square. The idea is to choose a value of y to make this happen. So choose y so that
the RHS is a perfect square in x; i.e., choose y so that (c + 2y)x2 − dx + (c2 + 2cy + y2 − e) has
discriminant d2−4(c+2y)(c2−e+2cy+y2) equal to 0. This involves solving a cubic, which thanks
to del Ferro/Fontana/Cardano we know how to do. Thus we get an equation of the form

(x2 + c+ y)2 = (αx+ β)2

hence x = ±
√
−(c+ y)± (αx+ β).
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Exercises:

Exercise 1.1. Find an exact solution for x3 + x = 1000.

Solution by Ashley Weatherwax (also presented by her in class). Using the identity (r+s)3−3rs(r+
s) = r3 + s3, we get that x = r + s is a solution to x3 + x = 1000 whenever

1 = −3rs and r3 + s3 = 1000

Solving for r in the first equation, we get r = −1
3s . Plugging this into the second equation, we get

(
−1
3s

)3 + s3 = 1000

Multiplying through by s3 and then substituting v = s3, we get the above equation is quadratic in
v:

−1
27

+ v2 = 1000v ⇒ v2 − 1000v − 1
27

= 0

Using the quadratic equation to solve for v, we get

v =
1000±

√
(1000)2 − 4(1)(−1

27 )

2
=

4500±
√

20250003
9

But recall that v = s3, so in fact we have

s =
3

√
4500±

√
20250003
9

Finally, recall that r = −1
3s , and so

r + s =
−1

3 3

√
4500±

√
20250003
9

+
3

√
4500±

√
20250003
9

As a final note, both solutions (one with both + and one with both −) are equal, and are approx-
imately 9.96666679053. �

Exercise 1.2. Find an exact solution for x3 + 3x2 − 3x− 11 = 0.

Solution by Nora Youngs. To use the method given in class:
First we must remove the quadratic term, so we perform a variable change: Let x = u− 1.

x3 + 3x2 − 3x− 11 = (u− 1)3 + 3(u− 1)2 − 3(u− 1)− 11
= u3 − 3u2 + 3u− 1 + 3u2 − 6u+ 3− 3u+ 3− 11
= u3 − 6u− 6

The new equation is of the form u3 + cx+ d = 0 where c = −6, d = −6.
Thus, following again from the method u = r + s is a solution if s is a solution to (s3)2 − 6x−

(−6)3

27 = 0 and r = 6
3(s) .



4 BRIAN HARBOURNE

Solving the quadratic:

(s3)2 − 6x+ 8 = 0

(s3)2 − 6x+ 9 = 1

(s3 − 3)2 = 1

s3 − 3 = 1

s3 = 4

s = 3
√

4

Then r = 6
3 3√4

= 6 3√16
12 =

3√16
2 = 3

√
2.

So u = 3
√

4 + 3
√

2 is a solution to u3 − 6u− 6 = 0.

And therefore, x = u− 1 = 3
√

4 + 3
√

2− 1 is a solution to the original equation.

Note also that if we take the other option,
√

1 to be −1 instead of 1, we have s = 3
√

2, r = 3
√

4,
and the solution is x = 3

√
2 + 3

√
4− 1, the same as before.

�

Exercise 1.3. Find an exact solution for x4 + 4x3 + 10x2 − 76x− 104 = 0.

Solution presented in class by Zheng Yang but typed up by BH. Making the substitution u = x+ 1
converts x4 +4x3 +10x2−76x−104 = 0 to u4 +4u2−88u−21 = 0. Rewriting gives u4 +8u2 +16 =
4u2 + 88u+ 21 + 16 or (u2 + 4)2 = 4u2 + 88u+ 37. Now introduce a new variable y as follows:

(u2 + 4 + y)2 = (4 + 2y)u2 + 88u+ 37 + 8y + y2

We pick y so that (4+2y)u2 +88u+(37+8y+y2) is a perfect square; i.e., we need the discriminant
882 − 4(37 + 8y + y2)(4 + 2y) to vanish. This is a cubic (known as the resolvent cubic), which we
now know how to solve. One solution is y = 6. Using this value of y the equation (u2 + 4 + y)2 =
(4 + 2y)u2 + 88u+ 37 + 8y + y2 becomes (u2 + 10)2 = 16u2 + 88u+ 121 or

(u2 + 10)2 = (4u+ 11)2.

Thus u2 + 10 = ±(4u+ 11). Taking the plus sign gives u2− 4u− 1 = 0 which has root u = 2±
√

5,
and thus x = 1±

√
5 is a root of the original polynomial. �

Lecture 2. January 14, 2011

The scene expands to northern Europe. In 1824, Niels Henrik Abel and Paolo Ruffini inde-
pendently prove that there is no general formula for solutions of quintic equations just in terms of
the usual field operations (addition, subtraction, multiplication and division) and taking radicals.
However, early in the 1800s it was proved that any non-constant polynomial with complex coeffi-
cients has a root (this is usually attributed to C. F. Gauss, but it is not clear that he actually had
the first correct proof):

Theorem 2.1 (Fundamental Theorem of Algebra). If f ∈ C[x] is not a constant, then it has a
root (i.e., the field of complex numbers C is algebraically closed).

Corollary 2.2. If f ∈ C[x] has degree deg(f) = d > 0, then f(x) = a(x − c1) · · · (x − cd) for
constants a, c1, . . . , cd ∈ C; i.e., f has d roots, counted with multiplicity.



MATH 953: ALGEBRAIC GEOMETRY 5

Proof. Let f(c) = 0, so c is a root. Using polynomial division, we have f(x) = q(x)(x − c) + r(x)
where r is a constant (since the remainder term can always be taken to have degree less than the
divisor, x−c). Since f(c) = 0, we have r = 0, so f(x) = q(x)(x−c), but deg(q(x)) = deg(f(x))−1.
The result follows by induction. �

Thus a polynomial of degree d determines a choice (unique up to reindexing) of d constants
c1, . . . , cd (repeats allowed), and any such d choices of constants determines a unique monic poly-
nomial (x − c1) · · · (x − cd) of degree d. The following definition formalizes this interplay between
algebra and geometry:

Definition 2.3. Given a subset S ⊆ C[x], let Z(S) be the set of simultaneous solutions to f(x) = 0
for all f ∈ S; i.e., Z(S) = {c ∈ C : f(c) = 0 for all f ∈ S} ⊆ C is the zero set of S. And given any
subset V ⊂ C, let I(V ) ⊆ C[x] be the set of all f ∈ C[x] such that f(c) = 0 for all c ∈ V .

Note that if S ⊆ C[x], there is a unique smallest ideal, denoted I(S), that contains S, called
the ideal generated by S. The intersection of any collection of ideals is itself an ideal; I(S) is the
intersection of all ideals that contain S. Alternatively, I(S) is the set of all finite sums of the form∑

i gifi where gi ∈ C[x] and fi ∈ S.
When n > 1, note that C[x1, . . . , xn] is a UFD but not a PID. Nevertheless, we can define

Z(S) and I(S) for S ⊆ C[x1, . . . , xn] as before, and likewise also I(V ) for V ⊆ Cn, and we have
Z(S) = Z(I(S)) exactly as before.

Definition 2.4. We say a subset V ⊆ Cn is an algebraic subset of Cn if V = Z(S) for some subset
S ⊆ C[x1, . . . , xn].

Exercises:

Exercise 2.1. Let V ⊆ Cn. Show that I(V ) is an ideal.

Solution by Philip Gipson. Certainly 0 ∈ I(V ) and if f ∈ I(V ) then −f(v) = −0 = 0 for all v ∈ V
and so −f ∈ I(V ). If f, g ∈ I(V ) then for all v ∈ V we have f(v) + g(v) = 0 + 0 = 0 and so
f + g ∈ I(V ). Thus I(V ) is a group under addition.

If f ∈ I(V ) and h ∈ C[x1, . . . , xn], then for all v ∈ V we have that h(v)f(v) = 0 · 0 = 0 and so
hf ∈ I(V ). Therefore I(V ) is an ideal. �

Exercise 2.2. If S ⊆ C[x], show that Z(S) = Z(I(S)).

Solution by Jason Hardin. Suppose that α ∈ Z(S), so that f(α) = 0 for all f ∈ S. Since

we know that I(S) =

{
n∑

i=1

gifi | gi ∈ C[x], fi ∈ S, n ∈ N

}
, given any

n∑
i=1

gifi ∈ I(S), we have(
n∑

i=1

gifi

)
(α) =

n∑
i=1

gi(α)fi(α) = 0, as fi ∈ S and thus fi(α) = 0 for i = 1, . . . , n. So α ∈ Z(I(S))

and Z(S) ⊆ Z(I(S)).
Conversely, if f(α) = 0 for all f ∈ I(S), then of course f(α) = 0 for all f ∈ S, as S ⊆ I(S). So

Z(I(S)) ⊆ Z(S), and equality follows. �

Exercise 2.3. Show that the algebraic subsets of C are precisely the finite subsets together with
∅ and C; in particular, no infinite proper subset of C is an algebraic subset of C.

Solution by Kat Shultis. It is clear that ∅ = Z(1) and C = Z(0). Let A ⊆ C be a finite set and
write A = {c1, . . . , cn}. Let f(x) = (x− c1) · · · (x− cn) so that Z(f) = A. Thus we know that ∅,
C, and any finite subset of C are algebraic subsets of C. Now, let A = Z(I) for some ideal I of
C[x] and assume that A is an infinite set. Choose any f ∈ I. Then for every p ∈ A, we have that
f(p) = 0. However, any non-zero polynomial f , has exactly the same number of zeros as its degree,
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and since the degree of a non-zero polynomial is finite, we cannot have that f vanishes at infinitely
many points. Thus, if A is an infinite but proper subset of C, we cannot have A as an algebraic
subset of C. �

Exercise 2.4. Give an example of an infinite proper subset of C2 which is an algebraic subset.

Solution by Doug Heltibridle. Let S = {x+ y}, then Z(S) has infinitely many elements, but it is a
proper subset of C2 as (1, 1) and (−1,−1) are not solutions of x+ y. Thus V = Z(S) is an infinite
proper subset of C2, which is algebraic by construction. �

Exercise 2.5. Show that (x1, x2) ⊂ C[x1, x2] is not a principal ideal.

Solution. Say (x1, x2) = (f) for some f ∈ C[x1, x2]. Clearly f is not 0, and f divides x1. Thus
deg(f) ≤ deg(x1) = 1. I.e., f = ax+ b for constants a, b ∈ C, so either f = ax1 and a is non-zero,
or f = b and b is non-zero. In the latter case (f) = C[x1, x2] hence (x1, x2) ( (f), while in the
former case (f) = (x1), but x1 does not divide x2, so x2 6∈ (f), hence again (f) 6= (x1, x2). �

Exercise 2.6. Let I ⊆ J ⊆ C[x1, . . . , xn] be ideals and let V ⊆ W ⊆ Cn. Show that Z(J) ⊆ Z(I)
and that I(W ) ⊆ I(V ) ⊆ C[x1, . . . , xn].

Solution. If p ∈ Z(J), then f(p) = 0 for all f ∈ J , and since I ⊆ J it follows that f(p) = 0 for all
f ∈ I, hence p ∈ Z(I), so Z(J) ⊆ Z(I).

If f ∈ I(W ), then f(p) = 0 for all p ∈ W , and since V ⊆ W it follows that f(p) = 0 for all
p ∈ V , hence f ∈ I(V ), so I(W ) ⊆ I(V ). �

Exercise 2.7. Let I1, . . . , Ir ⊆ C[x1, . . . , xn] be ideals. Define ΠjIj = I1 · · · Ir to be the ideal
generated by all elements of the form f1 · · · fr, where fj ∈ Ij for 1 ≤ j ≤ r. Show that Z(∩jIj) =
Z(ΠjIj) = ∪jZ(Ij).

Solution by Becky Egg. Let p ∈ Z(∩r
j=1Ij), but suppose that p /∈ ∪r

j=1Z(Ij). So in particular,
p /∈ Z(Ij) for 1 ≤ j ≤ r. So for each j, 1 ≤ j ≤ r, there exists fj ∈ Ij such that fj(p) 6= 0. Note
that f1 · · · fr ∈ ∩r

j=1I(J), and so we have

(f1 · · · fr)(p) = f1(p) · · · fr(p) = 0,

a contradiction, as each fi(p) 6= 0. Thus p ∈ ∪r
j=1Z(Ij), and we have Z(∩r

j=1Ij) ⊆ ∪n
i=1Z(Ir).

Now let p ∈ ∪r
j=1Z(Ij), and suppose that p ∈ Z(Ik) for some k with 1 ≤ k ≤ r. Choose fj ∈ Ij

for 1 ≤ j ≤ r, and note that

(f1 · · · fk · · · fr)(p) = f1(p) · · · fk(p) · · · fr(p) = 0,

as fk(p) = 0. Since
∏r

j=1 Ij is generated by elements of the form f1 · · · fr, we have that f(p) = 0
for all f ∈

∏r
j=1 Ij , and hence p ∈ Z(

∏r
j=1 Ij), so ∪r

j=1Z(Ij) ⊆ Z(
∏r

j=1 Ij).
Finally, let p ∈ Z(

∏r
j=1 Ij), and let f ∈ ∩r

j=1Ij . Then f r ∈
∏r

j=1 Ij , and so f r(p) = 0, i.e.,
(f(p))r = 0. So f(p) = 0, and hence p ∈ Z(∩r

j=1Ij). Therefore we have

Z(∩r
j=1Ij) ⊆ ∪n

i=1Z(Ir) ⊆ Z(
r∏

j=1

Ij) ⊆ Z(∩r
j=1Ij)

and thus
Z(∩jIj) = Z(ΠjIj) = ∪jZ(Ij).

�

Exercise 2.8. If Ij ⊆ C[x1, . . . , xn] is a family of ideals, show that ∩jZ(Ij) = Z(∪jIj) and that
∪jZ(Ij) ⊆ Z(∩jIj), with equality if the family is a finite family. Conclude that set T of all algebraic
subsets of Cn comprise the closed sets of a topology on Cn; i.e., conclude that ∅,Cn ∈ T , that T
is closed under arbitrary intersections and that T is closed under finite unions. This topology is
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called the Zariski topology on Cn. Given any algebraic subset V ⊆ Cn, we thus have the subspace
topology on V (in which a closed subset of V is a set of the form V ∩C, where C is a closed subset
of Cn), called the Zariski topology on V . [Note: this is named after Oscar Zariski. His son, the
late Raphael Zariski, was a long-time professor of political science here at UNL.]

Solution. By Exercise 2.2, we have Z(∪jIj) = Z(I(∪jIj)). Since Ij ⊆ ∪jIj ⊆ I(∪jIj), it follows
from Exercise 2.6 that Z(∪jIj) = Z(I(∪jIj)) ⊆ Z(Ij) for every j, and hence that Z(∪jIj) ⊆
∩jZ(Ij). If p ∈ ∩jZ(Ij), then f(p) = 0 for all f ∈ Ij for every j; i.e., f(p) = 0 for all f ∈ ∪jIj ,
hence p ∈ Z(∪jIj), so ∩jZ(Ij) ⊆ Z(∪jIj) and thus ∩jZ(Ij) = Z(∪jIj).

If p ∈ ∪jZ(Ij), then p ∈ Z(Ij) for some j, but ∩jIj ⊆ Ij so by Exercise 2.2 we have p ∈ Z(Ij) ⊆
Z(∩jIj) and hence ∪jZ(Ij) ⊆ Z(∩jIj). Exercise 2.7 shows equality holds when j runs over a finite
index set.

Clearly, ∅,Cn ∈ T since ∅ = Z(1) and Cn = Z(0). And if Cj is a family of closed subsets, then
for each j there is an ideal Ij such that Z(Ij) = Cj , so ∩jCj = ∩jZ(Ij) = Z(I(∪jIj)) ∈ T , while
∪jCj = ∪jZ(Ij) = Z(∩jIj) ∈ T if j runs over a finite index set. Thus T satisfies the axioms for a
topology. �

Exercise 2.9. Given any subset V ⊆ Cn, show that Z(I(V )) is the Zariski closure V of V (i.e.,
that Z(I(V )) is the intersection of all algebraic subsets that contain V ).

Solution by Katie Morrison. It is clear by definition that V ⊆ Z(I(V )) and Z(I(V )) is closed in the
Zariski topology; thus, V ⊆ Z(I(V )). Thus it suffices to show for any ideal J such that V ⊆ Z(J),
that Z(I(V )) ⊆ Z(J) since then Z(I(V )) will be in the intersection of all such sets. Let J be such
an ideal, then V ⊆ Z(J) implies that for all f ∈ J , f(v) = 0 for all v ∈ V . Each such f lies
in I(V ) by definition of I(V ). Thus, J ⊆ I(V ), and so by Exercise 2.6, Z(I(V )) ⊆ Z(J). Thus
Z(I(V )) ⊆ V , and so Z(I(V )) = V . �

Lecture 3. January 19, 2011

Hilbert’s Nullstellensatz and the Basis Theorem. We start by restating the Fundamental
Theorem of Algebra:

Theorem 3.1 (Fundamental Theorem of Algebra). Let I ( C[x] be an ideal. Then Z(I) 6= ∅.

Proof. Since C[x] is a PID we know I = (f) for some f ∈ C[x]. Since I ( C[x], we know f is not a
nonzero constant. By Exercise 2.2, Z(I) = Z(f). If f = 0, then Z(I) = Z(f) = C 6= ∅. If f 6= 0,
then f is not a constant, so deg(f) > 0, so f has a root by the FTA, so Z(I) = Z(f) 6= ∅. �

There are various equivalent versions of the Nullstellensatz. The FTA can be thought of as a
special case of one of them.

Theorem 3.2 (Hilbert’s Nullstellensatz, version 1). Let I ( C[x1, . . . , xn] be an ideal. Then
Z(I) 6= ∅.

Example 3.3. Given a subset V ⊆ Cn, Exercise 2.9 shows that Z(I(V )) = V . This raises the
question of what happens when we start with an ideal J ⊆ C[x1, . . . , xn] and consider I(Z(J)). In
the special case that J = I(V ), this is now easy. Clearly V ⊆ Z(I(V )), hence I(Z(I(V ))) ⊆ I(V ).
To show I(V ) ⊆ I(Z(I(V ))), let f ∈ I(V ). Then Z(I(V )) ⊆ Z(f), so f ∈ I(Z(f)) ⊆ I(Z(I(V ))),
hence I(V ) ⊆ I(Z(I(V ))).

Example 3.3 answers what I(Z(J)) is when J is an ideal of the form J = I(V ). Another version
of the Nullstellensatz answers the question of how I(Z(J)) is related to J in general.

Aside: The Nullstellensatz (or zero points theorem) was only one of the results
Hilbert proved around 1890 related to his work on invariant theory. Another possibly



8 BRIAN HARBOURNE

more amazing result in this string is the Hilbert Basis Theorem, which says that
ideals of C[x1, . . . , xn] are finitely generated.

Theorem 3.4 (Hilbert’s Basis Theorem). Let I ⊆ C[x1, . . . , xn] be an ideal. Then
I = I(S) for some finite set S ⊂ C[x1, . . . , xn].

Note: this result holds if we replace C by any field.

The problem Hilbert was working on was to show that certain rings of invariants
were finitely generated. For example, consider the multiplicative group G = {−1, 1}.
This acts on C[x1, · · · , xn] = R via (c∗f)(x1, . . . , xn) = f(cx1, . . . , cxn), where c ∈ G
and f ∈ R. The ring of invariants is the subset RG ⊆ R of all f ∈ R such that
c∗f = f for all c ∈ G. It’s easy to see that C ⊆ RG and that xixj ∈ RG. It’s not too
hard to see that in fact every element of RG is a polynomial in the expressions xixj

with coefficients in C; i.e., {xixj} generate RG over C, so RG is finitely generated.
Hilbert was mainly interested in an action where G = SLn(C), the group of n×n

matrices of determinant 1 with entries in C. For example, in 1868 Paul Gordan
(Emmy Noether was later to become Gordan’s student) found a finite set of gen-
erators for RG when n = 2 and G = SL2(C). Hilbert used his Basis Theorem to
prove finite generation for all n, but without finding an actual generating set. Gor-
dan’s reaction to Hilbert’s proof is said to have been “Das ist nicht Mathematik,
das ist Theologie” (although there is some question as to whether Gordan actually
did say this). In any case, Hilbert recognized that it would be desirable to provide a
constructive proof, and this led him to a partial solution, based on his Nullstellen-
satz. At this point Gordan (according to Constance Reid’s biography on Hilbert)
responded “I have convinced myself that theology also has its merits.”

We need to recall some facts from commutative algebra in order to talk about additional versions
of the Nullstellensatz.

Definition 3.5. An ideal I in a ring R (we’ll always assume rings are commutative with 1 6= 0) is
a maximal ideal if I ( R and if J is an ideal with I ⊆ J ( R, then I = J .

The facts we need are: (1) every proper ideal is (by Zorn’s Lemma) contained in a maximal
ideal; and (2) an ideal I in a ring R is maximal if and only if I is maximal.

Last semester Tom Marley proved the following statement, whose proof is due to Artin and Tate
(see Atiyah-MacDonald, Corollary 5.24, for a proof):

Theorem 3.6. Let k be a field and let E be a finitely generated k-algebra which is a field; i.e.,
E = k[x1, . . . , xn]/I for some maximal ideal I ( k[x1, . . . , xn]. Then E is a finite algebraic extension
of k.

This is often regarded as another version of the Nullstellensatz, but one in which the field is
arbitrary. When k = C this is equivalent to version 1 above, as we shall see.

Exercises:

Exercise 3.1. Show that the Nullstellensatz is false if we replace C by R.

Solution by Melissa DeVries. Consider the ideal I = (x2 + 1) in R[x]. Note R[x]/I ∼= C by sending
R → R identically and x 7→ i, so I is a maximal ideal of R[x].

By Exercise 2.2 (the proof is the same for R in place of C), Z(I) = Z(x2 + 1). As x2 + 1 has no
real roots, Z(I) = Z(x2 + 1) = ∅.
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As R[x] has a proper ideal I with an empty zero set, we see the Nullstellensatz fails with R in
place of C. �

Lecture 4. January 21, 2011

Class started with Ashley and Zheng presenting solutions to homework problems. We then
looked at another version of the Nullstellensatz:

Theorem 4.1 (Hilbert’s Nullstellensatz, version 2). Let M ⊆ C[x1, . . . , xn] be a maximal ideal.
Then there are constants c1, . . . , cn ∈ C such that M = (x1 − c1, . . . , xn − cn).

Proof. By the Nullstellensatz, version 1, there is a point (c1, . . . , cn) ∈ Z(M). Thus xi − ci ∈ M
for all i, hence (x1 − c1, . . . , xn − cn) ⊆ M . But (x1 − c1, . . . , xn − cn) is a maximal ideal (since
C[x1, . . . , xn]/(x1 − c1, . . . , xn − cn) ∼= C), hence (x1 − c1, . . . , xn − cn) = M . �

Exercises:

Exercise 4.1. Show that versions 1 and 2 of the Nullstellensatz are equivalent.

Solution by Anisah Nu’Man. (1 ⇒ 2 :) Proof in notes page 9. (2 ⇒ 1 :) Let I ( C[x1, . . . , xn].
Since every proper ideal is contained in a maximal ideal, there exists an ideal M ⊆ C[x1, . . . xn]
such that I ⊆ M . By assumption we have I ⊆ M = (x1 − c1, . . . , xn − cn) for some ci ∈ C. Also
since I ⊆ M we have Z(M) ⊆ Z(I), from exercise 2.6. Since (c1, . . . , cn) ∈ Z(M) ⊆ Z(I) we have
Z(I) 6= ∅. �

Exercise 4.2. Show that version 2 of the Nullstellensatz is equivalent to the following: If M ⊂
C[x1, . . . , xn] is a maximal ideal, then there is an isomorphism h : C[x1, . . . , xn]/M → C such that
C ⊂ C[x1, . . . , xn] → C[x1, . . . , xn]/M → C is the identity on C. [Aside: Note that this is essentially
just Theorem 3.6 in case k = C.]

Solution. Assume M ⊂ C[x1, . . . , xn] is a maximal ideal, such that there is an isomorphism h :
C[x1, . . . , xn]/M → C inducing the identity on C. Then for each i we have h(xi) = ci ∈ C, so
xi − ci ∈M for all i. Thus (x1 − c1, . . . , xn − cn) ⊆M . Since (x1 − c1, . . . , xn − cn) is maximal, we
have (x1 − c1, . . . , xn − cn) = M .

Conversely, assume M = (x1 − c1, . . . , xn − cn) for some constants ci ∈ C. Define a ring homo-
morphism H : C[x1, . . . , xn] → C by setting H|C = idC and H(xi) = xi for all i. Then ker(H) = M ,
so H induces an isomorphism h : C[x1, . . . , xn]/M → C which is the identity on C. �

Lecture 5. January 24, 2011

5.1. More on the Nullstellensatz.

Definition 5.1.1. Let I ⊆ C[x1, . . . , xn] be an ideal. The radical
√
I of I is the ideal generated by

all f ∈ C[x1, . . . , xn] such that f r ∈ I for some r ≥ 1. If I =
√
I we say I is a radical ideal.

Theorem 5.1.2 (Hilbert’s Nullstellensatz, version 3). Let J ⊆ C[x1, . . . , xn] be an ideal and let
f ∈ C[x1, . . . , xn]. If Z(J) ⊆ Z(f), then f ∈

√
J .

Proof. We have an inclusion C[x1, . . . , xn] ⊂ C[x0, x1, . . . , xn]. Thus we can regard J and f as
being in C[x0, x1, . . . , xn]. Given Z(J) ⊆ Z(f), we thus have ∅ = Z(J ∪ {x0f − 1}) ⊂ Cn+1.
By the Nullstellensatz, version 1, this means that J together with x0f − 1 generates the unit
ideal; i.e., 1 ∈ I(J ∪ {x0f − 1}), so there exist a, h ∈ C[x0, . . . , xn] and g ∈ J such that 1 =
ag+(x0f −1)h. Substitute 1/y for x0 in 1 = ag+(x0f −1)h and multiply by a large enough power
yN to clear the denominator. We get a′g + (f − y)h′ = yN , where a′ = yNa(1/y, x1, . . . , xn), h′ =
yN−1h(1/y, x1, . . . , xn) ∈ C[x1, . . . , xn, y]. Now substitute f in for y to get a′′g = fN . Since g ∈ J ,
this shows that f ∈

√
J . �
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Theorem 5.1.3 (Hilbert’s Nullstellensatz, version 4). Let J ⊆ C[x1, . . . , xn] be an ideal. Then
I(Z(J)) =

√
J .

We leave the proof as an exercise (see Exercise 5.5).

5.2. The Basis Theorem. We now look at some consequences of Hilbert’s Basis Theorem.

Definition 5.2.1. A topological space X is said to be Noetherian if it satisfies the Descending
Chain Condition on closed subsets; i.e., every chain C of closed sets of X (i.e., every collection C
totally ordered by inclusion), has a minimal element (i.e., an element C ∈ C such that C ⊆ D for
all D ∈ C).

Example 5.2.2. The reals R with the standard topology is not Noetherian. For example, {[0, 1 +
1
n ] : n ≥ 1} is a chain of closed sets with no minimal element. However, the reals with the finite
complement topology (in which the closed sets, other than the empty set and the whole space,
are the finite subsets) is Noetherian, since then clearly every chain of closed sets has a minimal
element.

Lemma 5.2.3. The Zariski topology on an algebraic set V ⊆ Cn is Noetherian.

Proof. Since closed subsets of closed subsets are closed, it’s enough to prove that the Zariski topol-
ogy on Cn is Noetherian. Let {Cj} be a chain of closed subsets of Cn. Let Ij = I(Cj). Since {Cj}
is a chain, so is {Ij}, hence ∪jIj is an ideal. By the Basis Theorem, ∪jIj is finitely generated, so
∪jIj = It for some t. By Exercise 2.8, ∩jZ(Ij) = Z(∪jIj) = Z(It) = Ct, hence Ct is a minimal
element of {Cj}. �

Definition 5.2.4. A non-empty closed subset C of a topological space X is said to be irreducible
if C is not the union D1 ∪D2 of closed subsets Di ( C.

Exercises:

Exercise 5.1. Show that (x − 1) ⊂ C[x] is a radical ideal. Show that
√

((x− 1)2) = (x − 1), so
((x− 1)2) is not a radical ideal.

Solution presented in class by Nora Youngs. Recall that C[x] is a UFD. Let S = {f ∈ C[x] : f r ∈
(x − 1)for some r ≥ 1}. Suppose f ∈ S. By the Fundamental Theorem of Algebra, we can write
f = (x− c1) · · · (x− cn) for some complex numbers c1, . . . , cn. Then f r = (x− c1)r · · · (x− cn)r.

We know f r ∈ (x − 1), so f r ∈ (x − 1)g for some g ∈ C[x]. By our previous factorization
of f , we have ci = 1 for some i. Thus x − 1 divides f so f ∈ (x − 1). Hence S ⊆ (x − 1), so√

(x− 1) = I(S) ⊆ (x− 1) since (x− 1) is an ideal containing S.
However, if f ∈ (x − 1), then then f r ∈ (x − 1) for r = 1 so f ∈ S ⊆ I(S) =

√
(x− 1). Thus

(x− 1) ⊆
√

(x− 1). By the double containment we have
√

(x− 1) = (x− 1).
Now consider ((x−1)2). Let S = {f ∈ C[x] : f r ∈ ((x−1)2)for some r ≥ 1}. Note that x−1 ∈ S,

as (x− 1)2 ∈ ((x− 1)2). So (x− 1) = I((x− 1)) ⊆ I(S) =
√

((x− 1)2). However, if f r ∈ ((x− 1)2)
then again by the Fundamental Theorem of Algebra, 1 is a zero of f so x− 1 | f . Thus f ∈ (x− 1),
so S ⊆ (x−1) and

√
((x− 1)2) = I(S) ⊆ (x−1). Therefore

√
((x− 1)2) = (x−1) 6= ((x−1)2). �

Exercise 5.2. Let I ⊆ C[x1, . . . , xn] be an ideal. Let S = {f ∈ C[x1, . . . , xn] : f r ∈ I for some r ≥
1}, hence

√
I = I(S). Show that I(S) = S; i.e., not only does S generate I but S is itself an ideal.

Solution presented in class by Douglas Heltibridle. Note that if I is a non-empty ideal, then S 6= ∅
as I ⊆ S. First to show that S has the absorption property, let g ∈ C[x1, ..., xn] and f ∈ S such
that f r ∈ I. Then (gf)r = grf r ∈ I as f r ∈ I, which is an ideal.
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Next, we show that S is closed under addition and contains inverses. Let g ∈ C[x1, ..., xn] and let
f, h ∈ S with f r ∈ I and hk ∈ I. Then (g(f −h))2rk = a2rkf

2rk +a2rk−1f
2rk−1h+ ...+a1fh

2rk−1 +
a0h

2rk and as each term has either hk or f r in it we know that it is in I as I is closed under
addition. Thus g(f − h) ∈ S. which means that S is closed under addition and inverses. Thus S
is an ideal and it contains itself, which means that I(S) = S. �

Exercise 5.3. Let I, J ⊆ C[x1, . . . , xn] be ideals.
(a) Show that I ⊆

√
I.

(b) Show that Z(
√
I) = Z(I); conclude that Z(I) = Z(J) if

√
I =

√
J .

Solution by Kat Shultis. (a) This is clear as if f ∈ I, then the first power of f is in I, f = f1 ∈ I,
so that f ∈

√
I.

(b) We now have that I ⊆
√
I, and so by Exercise 2.6, we know that Z(

√
I) ⊆ Z(I). In order

to show the other inclusion, let p ∈ Z(I) and f ∈
√
I with fn ∈ I. Then as p ∈ Z(I) we have that

fn(p) = 0, which means that f(p) = 0 because Cn is an integral domain. Thus we have that for any
p ∈ Z(I) and f ∈

√
I, that f(p) = 0, meaning that Z(I) ⊆ Z(

√
I), and hence Z(I) = Z(

√
I). �

Exercise 5.4. Show that versions 1 and 3 of the Nullstellensatz are equivalent.

Solution. The class notes show that version 1 implies version 3, so assume version 3. Let I (
C[x1, . . . , xn] be an ideal. If Z(I) = ∅, then Z(I) ⊆ Z(1), hence 1 ∈

√
I so 1 = 1r ∈ I for some

r ≥ 1, contradicting I ( C[x1, . . . , xn]. �

Exercise 5.5. Show that versions 3 and 4 of the Nullstellensatz are equivalent.

Solution by Becky Egg. First suppose that version 3 holds. Let J ⊆ C[x1, . . . , xn] be an ideal, and
g ∈

√
J . Then gk ∈ J for some k. Given any c ∈ Z(J), we have

0 = (gk)(c) = (g(c))k.

So g(c) = 0, and thus g ∈ I(Z(J)). Let h ∈ I(Z(J)) and c ∈ Z(J). Then h(c) = 0 by definition,
so c ∈ Z((h)). So Z(J) ⊆ Z((h)), and hence by version 3 of the Nullstellensatz, h ∈

√
J . Thus

I(Z(J)) =
√
J .

Now suppose that version 4 holds. Let J ⊆ C[x1, . . . , xn], and f ∈ C[x1, . . . , xn] such that
Z(J) ⊆ Z((f)). By version 4, we have I(Z(J)) =

√
J . Since I(Z((f)) ⊆ I(Z(J))), we have

f ∈
√
J , and thus version 3 holds. �

Exercise 5.6. If J is a radical ideal in C[x1, . . . , xn], show that J = I(V ) for some algebraic subset
V ⊆ Cn.

Solution. Since I(Z(J)) =
√
J by the Nullstellensatz, and since J =

√
J by hypothesis, we have

I(V ) =
√
J = J for V = Z(J). �

Exercise 5.7. If J is an ideal in C[x1, . . . , xn], show that
√
J = ∩M∈SM , where S is the set of all

maximal ideals containing J .

Solution by Katie Morrison. Let M ⊆ C[x1, . . . , xn] be a maximal ideal. Then
√
M ( C[x1, . . . , xn]

because 1 6=
√
M since 1r = 1 6= M for all r ≥ 0. Thus, M ⊆

√
M ( C[x1, . . . , xn], and soM =

√
M

since M is maximal. Thus, every maximal ideal is a radical ideal.
(⊆) Observe that J ⊆ ∩M∈SM , and so

√
J ⊆

√
∩M∈SM . We stated in class (and will prove in

Exercise 6.3) that
√
∩M∈SM = ∩M∈S

√
M . Then by the earlier observation, ∩M∈S

√
M = ∩M∈SM .

Thus,
√
J ⊆ ∩M∈SM .

(⊇) For each z ∈ Z(
√
J), define Mz := (x1 − z1, . . . , xn − zn) so that Z(Mz) = z. Now

Mz is maximal since C[x1, . . . , xn]/Mz
∼= C, which is a field. Furthermore, since z ∈ Z(J) we

have that J ⊆ I(Z(J)) ⊆ I(z) = Mz, and so J ⊆ Mz. Thus, Mz ∈ S for all z ∈
√
J . Then
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Z(
√
J) = ∪z∈Z(

√
J)Z(Mz) ⊆ ∪M∈SZ(M). By Exercise 2.8, ∪M∈SZ(M) ⊆ Z(∩M∈SM), and so

Z(
√
J) ⊆ Z(∩M∈SM). Then by Exercise 2.6, I(Z(∩M∈SM)) ⊆ I(Z(

√
J)). Finally since ∩M∈SM ⊆

I(Z(∩M∈SM)) and
√
J = I(Z(

√
J)), we have that ∩M∈SM ⊆

√
J , and so equality holds. �

Exercise 5.8. Consider the subring Z[
√
−5] of C consisting of all complex numbers of the form

a + b
√
−5 where a and b are integers. Show that 2 and 3 are irreducible elements of Z[

√
−5] but

not prime. [Hint: use the norm, and then factor 6 in two different ways.]

Solution by Anisah Nu’Man. For sake of a contradiction suppose 2 is reducible. Then there exists
an x = a+b

√
−5 and y = c+d

√
−5 ∈ Z[

√
−5] such that x, y are not units andN(xy) = N(x)N(y) =

N(2). Thus we have N(x)N(y) = N(2) = 4 Since x, y are not units we know the N(x), N(y) 6= 1,
so we have the N(x) = N(y) = 2. Therefore we have N(x) = N(a+ b

√
−5) = a2 + 5b2 = 2. This

implies that b2 = 0 and a2 = 2. But there is no integer such that a2 = 2. Thus the N(x) 6= 2, and
so we must have, without loss of generality, that N(x) = 1 and the N(y) = 4. Thus x is a unit and
2 is irreducible. Using an identical argument we can show that 3 is also irreducible. Last we have
(2) is not prime since 6 = (1+

√
−5)(1−

√
−5) ∈ (2) but neither (1+

√
−5) or (1−

√
−5) are in (2).

Similarly, (3) is not prime since 6 ∈ (3), but using the same factorization 6 = (1 +
√
−5)(1 −

√
5)

we have (1 +
√
−5) and (1−

√
−5) are not in (3). �

Exercise 5.9. In an integral domain (i.e., a commutative ring with 1 6= 0 and with no zero divisors)
show that every prime element is irreducible, and in a UFD, show that every irreducible element
is prime.

Solution by Katie Morrison. Let D be an integral domain, and let a ∈ D be a prime element.
Suppose a = bc for some b, c ∈ D. Then a|bc, and so a|b or a|c since a is prime. Without loss of
generality, say a|b, then there exists k ∈ D such that b = ak. Observe that

b · 1 = ak = (bc)k = b(ck).

Since D is a domain, cancellation holds, and so we have that 1 = ck. Thus, c is a unit, and so a
cannot be written as the product of non-units.

Let R be a UFD, and let a be an irreducible. Suppose a|bc for some b, c ∈ R, i.e. ak = bc for some
k ∈ R. Since R is a UFD, there exist irreducibles p1, . . . , pl, q1, . . . , qm, r1, . . . , rn ∈ R such that b
can be uniquely written as p1 · · · pl, c can be uniquely written as q1, . . . , qm, and k can be uniquely
written as r1 · · · rn. Then bc = p1 · · · pl · q1 · · · qm, ak = a · r1 · · · rn, and these decompositions are
unique. Thus, the multiset {p1, . . . , pl, q1, . . . , qm} equals the multiset {a, r1, . . . , rn}, and so there
exists some pi or qj that equals a. Without loss of generality, say that a = pi for some 1 ≤ i ≤ l.
Then we have that b = a ·Πj 6=ipj , and so a|b. Thus, a is prime. �

Lecture 6. January 26, 2011

Note: An algebraic set which is not irreducible is said to be reducible.

Example 6.1. Consider the algebraic set V = Z(xy) ⊂ C2; here our polynomial ring is C[x, y].
Then in the Zariski topology, V = Z(x) ∪ Z(y) is the union of two proper closed subsets, so V is
reducible.

Example 6.2. Now consider the algebraic set V = Z(xy − 1) ⊂ C2. This time V is irreducible.
Every closed subset of V is of the form V ∩ C for some C = Z(J), where J ⊆ C[x, y] is an ideal.
But C[x, y] is Noetherian, so C is the intersection of a finitely many closed subsets of the form
Z(f), where f ∈ C[x, y]. But consider V ∩Z(f), where f is a non-zero element of C[x, y]. Then any
p = (a, b) ∈ V ∩ Z(f) satisfies b = 1/a and 0 = f(a, b) = f(a, 1/a). For some N � 0, xNf(x, 1/x)
is a polynomial in x, and any non-zero root of f(x, 1/x) is also a root of h and vice versa. But h
has only finitely many roots, hence the same is true of f(x, 1/x), and thus V ∩Z(f) is finite. Since
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any proper closed subset of V is finite yet V is infinite, we see that V is irreducible in the Zariski
topology (but not, it is easy to see, in the standard topology).

Lemma 6.3. Every non-empty closed subset C of a Noetherian topological space X is the union
C = C1 ∪ · · · ∪ Cr of finitely many irreducible closed subsets Cj. Moreover, the union can be
chosen to be irredundant (i.e., so that none of the Ci contains any of the others), in which case the
decomposition is unique up to order.

Proof. (The proof in class didn’t use Zorn’s lemma. For variety, here’s a different proof.) Let F
be the set of all non-empty closed subsets of X which are not finite unions of irreducible closed
subsets. If F is not empty, then by Zorn’s lemma (using the fact that X is Noetherian, so that we
know descending chains of closed sets are bounded below), F has a minimal element D, and clearly
D cannot be irreducible. Write D = D1 ∪ D2 for non-empty proper closed subsets Di. Since D
is minimal, neither Di is in F , hence each is the union of finitely many irreducible closed subsets,
and thus so is D, contradicting our assumption that D ∈ F . Thus F is empty and hence every
non-empty closed set is a finite union of irreducible closed subsets.

Therefore, given any closed subset C, we can write C = C1∪· · ·∪Cr for some choice of irreducible
closed subsets Ci. Whenever there is an i and j such that Ci ⊆ Cj , we can remove Ci from the
union. Thus we obtain a union where we can assume that no Cj contains any Ci.

Suppose we have two such unions, C1 ∪ · · · ∪ Cr = D1 ∪ · · · ∪Ds. Then Di = ∪j(Cj ∩Di) and
since Di is irreducible, Di = Cj ∩ Di for some j, hence Di ⊆ Cj . Likewise, Cj ⊆ Dt for some t,
hence Di ⊆ Dt, so j = t and Di = Cj . Thus each of the D’s equals one of the C’s and vice versa,
so r = s and after reordering we can assume Dl = Cl for l = 1, . . . , r. Thus the decomposition is
unique up to order. �

Note that the proof of the preceding lemma is similar to the proof of prime factorization in the
integers: given any positive integer n, we can write n = pm1

1 · · · pmr
r for primes pi in an essentially

unique way. If we rephrase this in terms of ideals, we have for any n that (n) = (p1)m1∩· · ·∩(pr)mr ;
i.e., every ideal is the intersection of powers of prime ideals in an essentially unique way (if we aren’t
silly, such as (0) = (0) ∩ (2)). This is an example of a primary decomposition. Nice ideals can be
written as intersections of prime ideals in a unique way (see Exercise 6.4; the preceding lemma is
the geometric manifestation of this (i.e., the geometric version of primary decompositions).

As we see already from the integers, ideals in general cannot be written as intersections of prime
ideals. We can however, in a Noetherian ring, write every ideal as a finite intersection of primary
ideals (but we lose uniqueness in general). We pause to recall the definitions.

A prime ideal P ⊂ R in a ring R (commutative with 1 6= 0 as usual) is a proper ideal such that
if fg ∈ P , then either f ∈ P or g ∈ P . A proper ideal Q ⊂ R is said to be primary if fg ∈ Q, then
either f ∈ Q or g ∈

√
Q. Note that prime ideals are primary, but the reverse is not usually true.

Writing an ideal J as a finite intersection of primary ideals is said to be a primary decomposition
of J .

Exercises:

Exercise 6.1. Let P ⊂ C[x1, . . . , xn] be a prime ideal. Show that P =
√
P .

Solution by Anisah Nu’Man. Clearly P ⊆
√
P since for f ∈ P we have f1 = f ∈ P . Now let

g ∈
√
P , thus gr ∈ P for some r ≥ 1. Then g · gr−1 ∈ P , and so either g ∈ P or gr−1 ∈ P . If g ∈ P

we are done. If not gr−1 = g · gr−1 ∈ P . Therefore either g ∈ P or gr−2 ∈ P . If g ∈ P we’re done.
If not, iteratively, this process must stop and so we have g ∈ P . By double containment we have
P =

√
P . �
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Exercise 6.2. Let C ⊂ Cn be an irreducible algebraic set and let P ⊂ C[x1, . . . , xn] be a prime
ideal. Show that I(C) is a prime ideal and show that Z(P ) is irreducible. Conclude that a closed
subset D is irreducible if and only if I(D) is prime.

Solution by Kat Shultis. First, we will show that I(C) is prime by proving that if I(C) is not
prime, then C is reducible. So assume that I(C) is not prime. This means that there exist
elements f, g ∈ C[x1, . . . , xn] \ I(C) such that fg ∈ I(C). Consider the two closed sets Z(f) and
Z(g) in Cn. We know by Exercise 2.2 that Z(f) = Z((f)) and Z(g) = Z((g)). We also know, by
Exercise 2.7 that Z(f) ∪ Z(g) = Z(fg). If p ∈ C, then f(p)g(p) = 0 as fg ∈ I(C), meaning that
C ⊆ Z(fg) = Z(f) ∪ Z(g). Notice that as neither f nor g is in I(C), that there exists some point
p ∈ C such that f(p) 6= 0, meaning that C ∩ Z(f) ( C, and similarly for g. Also, the intersection
of finitely many closed sets is closed, so that C = (C ∩Z(f))∪ (C ∩Z(g)) is a decomposition of C,
and C is reducible.

Next, we show that Z(P ) is irreducible by contradiction. So, assume that Z(P ) is reducible. In
other words there exist finitely many Zariski closed and irreducible sets {Aα}α∈I which are properly
contained in Z(P ) such that Z(P ) = ∪α∈IAα. This means that for each α ∈ I there exists an ideal
Jα ⊆ C[x1, . . . , xn], such that Aα = Z(Jα). By Exercise 2.7, this is equivalent to saying that

Z(P ) =
⋃
α∈I

Z(Jα) = Z

(⋂
α∈I

Jα

)
= Z

(∏
α∈I

Jα

)
.

As P is prime, we know that I(Z(P )) =
√
P = P by exercise 6.1 and the Nullstellensatz, version

4. Thus, by exercise 6.1 we have that

P = I(Z(P )) = I

(
Z

(∏
α∈I

Jα

))
⊇
∏
α∈I

Jα.

By definition of a prime ideal, we must have that Jα ⊆ P for some α. Then, by exercise 2.6, we have
that Z(P ) ⊆ Z(Jα) for some α ∈ I so that our original decomposition of Z(P ) was not actually a
decomposition, providing a contradiction, and showing that Z(P ) is irredicuble. �

Exercise 6.3. Let J = ∩r
i=1Ji for ideals Ji ⊆ C[x1, . . . , xn]. Show that

√
J = ∩r

i=1

√
Ji.

Solution by Ashley Weatherwax. We want to show that
√
∩r

i=1Ji = ∩r
i=1

√
Ji. Let f ∈

√
∩r

i=1Ji.
The for some n, fn ∈ ∩r

i=1Ji. But then fn ∈ Ji for all i, and so f
√
Ji for all i. Therefore, f ∈ ∩

√
Ji.

Now let f ∈ ∩
√
Ji. Then f ∈

√
Ji for all i, so there exists ni such that fni ∈ Ji for each i. Let

m = n1 · · ·nr. As Ji are ideals, fm ∈ Ji for all i, hence fm ∈ ∩Ji and thus f ∈
√
∩Ji. �

Exercise 6.4. Let J ⊂ C[x1, . . . , xn] be an ideal. Show that
√
J can be written as the intersection

of finitely many prime ideals, none of which contains another. [Aside: this is an analog of the
fact that a square-free non-zero integer is a product of distinct primes.] Conclude that

√
J is the

intersection of all prime ideals that contain J .

Solution. We have seen that Z(J) = Z(
√
J) is a finite union C1∪· · ·∪Cr of Zariski closed irreducible

subsets Ci. Thus I(Ci) is prime for each i, and I(C1∪· · ·∪Cr) = ∩iI(Ci), but by the Nullstellensatz
I(Z(J)) =

√
J , so

√
J = ∩iI(Ci), as claimed. Since

√
J is the intersection of some of the primes

which contain J , it is certainly the intersection of all primes which contain J . �

Lecture 7. January 28, 2011

More on primary decomposition. By Exercise 6.4, given any ideal J ⊆ C[x1, . . . , xn],
√
J is

the intersection P1 ∩ · · · ∩Pr for prime ideals Pi. This is a primary decomposition of
√
J , which we

may assume is irredundant (i.e., we may assume Pi 6⊆ Pj if i 6= j).
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In fact, the primes Pi are the minimal primes that contain J , as we see from the following lemma.
The geometric version of this lemma states: if C is an irreducible closed set contained in a union
C1 ∪ · · · ∪ Cr of closed sets Ci, then C is already contained in Ci for some i.

Lemma 7.1. Let P, Ji ⊆ C[x1, . . . , xn] be ideals with P prime. If J1 ∩ · · · ∩ Jr ⊆ P , then Ji ⊆ P
for some i.

Proof. If for each i we have Ji 6⊆ P , then for each i we can pick fi ∈ Ji with fi 6∈ P . Now
f = f1 · · · fr ∈ J1 ∩ · · · ∩ Jr ⊆ P , but because P is prime and fi 6∈ P for all i, we must have f 6∈ P .
Thus by contradiction we must have Ji ⊆ P for some i. �

Remark 7.2. Let P1, . . . , Pr ⊂ C[x1, . . . , xn] be prime ideals. This lemma shows that if Pi 6⊆ Pj

holds whenever i 6= j, then in fact we have the stronger property that ∩i6=jPi 6⊆ Pj . However, for
primary ideals Q1, . . . , Qr ⊂ C[x1, . . . , xn], even if Qi 6⊆ Qj holds whenever i 6= j, there can be a
j such that ∩i6=jQi ⊆ Qj . For example, consider Q1 = (x4, y2), Q2 = (x3, xy, y3), Q3 = (x2, y3) ⊂
C[x, y]. In Figure 7.1, Q1 is the ideal spanned by the monomials xiyj such that the integer lattice
point (i, j) is on or above the blue lines; Q2 corresponds to the lattice points on or above the heavy
black lines, Q3 the red and Q1 ∩ Q3 the green. Then Qi 6⊆ Qj if i 6= j holds but Q1 ∩ Q3 =

x

y

u
u

u

u

u
u

u
Figure 7.1. The monomial ideals Q1 (blue), Q2 (black), Q3 (red) and Q1 ∩ Q3

(green) from Remark 7.2.

(x4, x2y2, y3) ( Q2. In this case, Q1, Q2 and Q3 all have the same associated prime, P = (x, y), but
this is not essential. Consider Q′1 = (x4, y2, a), Q′2 = (x3, xy, y3, a, b), Q′3 = (x2, y3, b) ⊂ C[a, b, x, y].
Then the associated primes are P ′1 = (a, x, y), P ′2 = (a, b, x, y) and P ′3 = (b, x, y) respectively, and
Q′i 6⊆ Q′j holds whenever i 6= j, but again Q′1 ∩Q′3 = (x4, x2y2, y3, ax2, by2, ab) ( Q′2.

Let Q ⊂ C[x1, . . . , xn] be a primary ideal. By Exercise 7.1,
√
Q is prime; we say that

√
Q belongs

to Q, or that Q is
√
Q-primary. Given an intersection Q1∩· · ·∩Qr of primary ideals Qi, by Exercise

7.2 we may assume that the primes belonging to each Qi are all different, and it is clear that we
can remove Q′is if need be from the intersection Q1∩· · ·∩Qr so that we end up with an intersection
such that for each j we have ∩i6=jQi 6⊆ Qj .

Definition 7.3. We say an intersection Q1 ∩ · · · ∩ Qr of primary ideals Qi is irredundant if the
primes belonging to each ideal Qi are different and if for each i we have ∩j 6=iQj 6⊆ Qi.

Given an irredundant primary decomposition J = ∩Qi of an ideal J ⊆ C[x1, . . . , xn], we refer to
the primes belonging to the ideals Qi as belonging to (or as being associated with) J . The primes
belonging to an ideal J include the minimal primes containing J , but there may be additional
primes too (see Exercise 7.4).

Definition 7.4. Let J ⊆ C[x1, . . . , xn] be an ideal, and let P1, . . . , Pr be the distinct associated
primes (i.e., the primes belonging to J). The minimal primes in the set {P1, . . . , Pr} are called
isolated primes. These correspond to the irreducible components of Z(J). The non-minimal primes
in the set {P1, . . . , Pr} are called embedded primes.
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Note that the isolated primes belonging to an ideal J are uniquely determined by J , since they
are just the minimal primes containing J . In fact, all of the primes belonging to J are uniquely
determined by J (see Atiyah-Macdonald, Theorem 4.5), as are the primary ideals corresponding to
the minimal primes (see Atiyah-Macdonald, Corollary 4.11). The primary ideals corresponding to
embedded primes are not in general uniquely determined however (see Exercise 7.4).

One way that embedded primes arise naturally is when taking powers.

Example 7.5. Let J = (x, y)∩ (x, z)∩ (y, z) = (xy, xz, yz) ⊂ C[x, y, z]. Then J is radical; it is the
ideal of the union of the coordinate axes in C3. It is easy to see that J2 ( (x, y)2 ∩ (x, z)2 ∩ (y, z)2:
J2 is generated by products of pairs of the generators of J , and each such product is in (x, y)2 ∩
(x, z)2 ∩ (y, z)2 and has degree 4, hence xyz 6∈ J2 even though xyz ∈ (x, y)2 ∩ (x, z)2 ∩ (y, z)2. In
fact, J2 = (x, y)2 ∩ (x, z)2 ∩ (y, z)2 ∩ (x, y, z)4 is an irredundant primary decomposition of J2, so
(x, y, z) is an embedded prime.

It’s good to become familiar working with symbolic algebra programs, such as Macaulay 2.
Here is the preceding example worked out using Macaulay 2 (but working over a finite field of
characteristic 31991). This also demonstrates the use of the primaryDecomposition command.
> M2

Macaulay 2, version 0.9.2
--Copyright 1993-2001, D. R. Grayson and M. E. Stillman
--Singular-Factory 1.3c, copyright 1993-2001, G.-M. Greuel, et al.
--Singular-Libfac 0.3.2, copyright 1996-2001, M. Messollen

i1 : R=ZZ/31991[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : X=ideal(y,z)

o2 = ideal (y, z)

o2 : Ideal of R

i3 : Y=ideal(x,z)

o3 = ideal (x, z)

o3 : Ideal of R

i4 : Z=ideal(x,y)

o4 = ideal (x, y)

o4 : Ideal of R

i5 : J=intersect(X,intersect(Y,Z))

o5 = ideal (y*z, x*z, x*y)
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o5 : Ideal of R

i6 : M=ideal(x,y,z)

o6 = ideal (x, y, z)

o6 : Ideal of R

i7 : K=intersect(X^2,intersect(Y^2,intersect(Z^2,M^4)))

2 2 2 2 2 2 2 2 2
o7 = ideal (y z , x*y*z , x z , x*y z, x y*z, x y )

o7 : Ideal of R

i8 : J^2==K

o8 = true

i9 : toString primaryDecomposition(J^2)

o9 = {monomialIdeal matrix {{x, y^2}}, monomialIdeal matrix {{x^2, y}},
monomialIdeal matrix {{x, z^2}}, monomialIdeal matrix {{x^2, y^2, z^2}},
monomialIdeal matrix {{y, z^2}}, monomialIdeal matrix {{x^2, z}},
monomialIdeal matrix {{y^2, z}}}

Note that primaryDecomposition does not give a decomposition for which each primary com-
ponent has a different prime (which in principle it could do, by Exercise 7.2). But we can see from
the computer output that the associated primes of J2 are (x, y), (x, z), (y, z) and (x, y, z).

Exercises:

Exercise 7.1. Let Q ⊂ C[x1, . . . , xn] be a primary ideal. Show that
√
Q is prime.

Solution by Philip Gipson. Suppose fg ∈
√
Q but f, g 6∈

√
Q. Then there exists an n such that

fngn = (fg)n ∈ Q. Since Q is primary, we know that either fn ∈ Q of gn ∈
√
Q. If fn ∈ Q, then

by definition f ∈
√
Q, contradicting our hypothesis. If gn ∈

√
Q, then gnk = (gn)k ∈ Q for some

k, so g ∈
√
Q, again contradicting our hypothesis. Therefore we conclude that either f ∈

√
Q of

g ∈
√
Q, and so

√
Q is prime. �

Exercise 7.2. Let Q1, Q2 ⊂ C[x1, . . . , xn] be primary ideals belonging to the same prime P . Show
that Q1 ∩Q2 is also primary and belongs to P .

Solution by Jason Hardin. Observe that by Exercise 6.3,
√
Q1 ∩Q2 =

√
Q1 ∩

√
Q2 = P ∩ P = P ,

so if Q1 ∩Q2 is primary, then it must be P -primary.
Let ab ∈ Q1 ∩ Q2. If a ∈ Q1 ∩ Q2, we’re done. So suppose a /∈ Q1 ∩ Q2. Wlog, suppose

a /∈ Q1. Since ab ∈ Q1 and Q1 is primary, we must have b ∈
√
Q1 = P =

√
Q1 ∩Q2. So Q1 ∩Q2 is

primary. �

Exercise 7.3. Let J ⊂ C[x1, . . . , xn] be an ideal such that
√
J is a maximal ideal. Show that J is

primary. [Hint: if g 6∈
√
J , show that there are polynomials a ∈ J and b with a+ bg = 1, and thus

if fg ∈ J , then (1− a)f = bfg ∈ J and hence f ∈ J . Or see Atiyah-Macdonald, Proposition 4.2.]
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Conclude that primary ideals (unlike what happens in Z) are not always powers of prime ideals,
by giving a simple example.

Solution by Zheng Yang. Suppose fg ∈ J and g 6∈
√
J . Since

√
J is a maximal ideal (hence also

prime), we have (
√
J, g) %

√
J and so (

√
J, g) = (1). Then we have an equation a + bg = 1,

for some a ∈
√
J (so ar ∈ J for some r ≥ 1) and b ∈ C[x1, . . . , xn]. On the one hand, we

have (1 − a)f = bfg ∈ J as fg ∈ J ; on the other hand, we have 1 − a is not in
√
J (otherwise,

1 = 1−a+a ∈
√
J). Thus (1−ar)f = (1+a+· · ·+ar−1)(1−a)f = bfg ∈ J , hence f = (bg+ar)f ∈ J ,

since ar ∈ J . Thus, f ∈ (1− a)−1J ⊆ J (note J is an ideal).
The ideal (x2, y) ⊂ C[x, y] is an example of a primary ideal that is not a power of a prime ideal;

see Lecture 8. Here is another example taken from Atiyah-Macdonald’s book, Exercise 4.4. In Z[t],
m = (2, t) is a maximal, as Z[t]/m ∼= Z/2Z. The ideal q = (4, t) is primary (because Z[t]/q ∼= Z/4Z,
of which the only zero-divisors are 2̄ and it is nilpotent). But m2 = (4, t2, 2t) ( q ( m. So q is not
a power of a power of prime ideal m. �

Exercise 7.4. Consider the ideal J = (x2, xy) ⊂ C[x, y]. Show J = (x) ∩ (x2, y) and J =
(x) ∩ (x2, xy, yn) for any n ≥ 1 are primary decompositions of J . Conclude that the primes
associated to J are (x) and (x, y).

Solution. First, (x), (x2, y) and (x2, xy, yn) are primary, since (x) is prime and
√

(x2, y) = (x, y) =√
(x2, xy, yn) are maximal. Thus (x) ∩ (x2, y) and (x) ∩ (x2, xy, yn) are irredundant primary de-

compositions. Also it is easy to see that J ⊆ (x) ∩ (x2, y) and J ⊆ (x) ∩ (x2, xy, yn). Consider
an element f ∈ (x) ∩ (x2, y). Since f ∈ (x), we see x|f so every term of f is divisible by x; in
particular, f has no constant term and no terms that are pure powers of y. But f ∈ (x2, y), so
every term of f is divisible by either x2 or y (and hence also by xy since f has no terms that are
pure powers of y). Thus f is in (x2, xy), so J = (x) ∩ (x2, y).

Now consider f ∈ (x)∩(x2, xy, yn) for any n ≥ 1. As before, f has no terms that are pure powers
of y, and since f ∈ (x2, xy, yn), every terms is divisible by either x2, xy or yn but any term divisible
by yn also is divisible by x and hence by xy, so f ∈ (x2, xy) and we have J = (x) ∩ (x2, xy, yn).

This shows irredundant primary decompositions need note be unique. �

Lecture 8. January 31, 2011

Let f ∈ C[x1, . . . , xn] and J = (f) ⊆ C[x1, . . . , xn]. Using the fact that C[x1, . . . , xn] is a UFD, it
is not hard to see that J is primary if and only if

√
J is prime, and if J is primary, then J = (

√
J)r

for some r ≥ 1. (This is Exercise 8.1.) We also know by Exercise 7.3 that M r is primary for
every r ≥ 1 if M is a maximal idea, and as we will see in a later lecture, if J is a prime ideal in a
polynomial ring with J generated by monomials (i.e., if J is a monomial ideal), then Jr is primary
for every r ≥ 1.

But principal, monomial and maximal ideals are rather special in this regard, since: it is not
always true that an ideal is primary if its radical is prime; it is not always true that every primary
ideal is a power of a prime ideal; and it is not always true that powers of prime ideals are primary.

For example, (x2, y) ⊂ C[x, y] is primary by Exercise 7.3, since
√

(x2, y) = (x, y) is maximal,
and thus the only prime that contains (x2, y) is (x, y), but (x, y)2 ( (x2, y) ( (x, y) so (x2, y) is not
(x, y)r for any r.

By Exercise 7.1 we know the radical of a primary ideal is prime. To show ideals with prime
radical need not be primary, consider J = (x2, xy) ⊂ C[x, y]. Then (x) ∩ (x2, y) is a primary
decomposition, so (x2, xy) is not primary (an alternative way to see this is that although xy ∈ J ,
we have x 6∈ (x2, xy) and y 6∈

√
(x2, xy) =

√
(x) ∩ (x2, y) =

√
(x) ∩

√
(x2, y) = (x) ∩ (x, y) = (x)),

even though P =
√

(x2, xy) = (x) is prime. Note in this case that J has an associated prime
P ′ =

√
(x2, y) = (x, y) other than P , and thus P ( P ′; i.e., P ′ is an embedded prime. This must
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always be the case when a non-primary ideal J has prime radical. (For suppose J is not primary,
but has prime radical P . Consider an irredundant primary decomposition J = Q1 ∩ · · · ∩Qr. By
assumption P =

√
J =

√
Q1 ∩ · · · ∩Qr = ∩i

√
Qi, so P ⊂

√
Qi for all i and by Lemma 7.1 we know√

Qj ⊆ P for some j and hence P =
√
Qj ; we may as well assume P =

√
Q1. Since J is not

primary, we also must have r > 1, so P (
√
Q2. Thus

√
Q2 is an embedded prime.)

We now would like to give an example of an ideal (in a polynomial ring, even) which is a power
of a prime ideal but which is not primary. Such examples tend to be a bit complicated. Example
3, p. 51 of Atiyah-Macdonald, gives an example of an ideal I which is power of a prime ideal yet
is not primary, but the ring is not a polynomial ring. Example 8.18 of Introduction to Algebraic
Geometry by Brendan Hassett gives an example of an ideal I which is a power of a prime ideal yet
is not primary, and in this case the ring is a polynomial ring, but in 6 variables. It turns out that
polynomial ring examples need at least 3 variables (this will be an exercise in a later lecture). Our
example will use 3 variables.

Thus we need a prime ideal P ⊂ C[x, y, z] such that P r is not primary and as noted above P r

must have an embedded associated prime. We already have an example of an ideal having a power
with an embedded prime: J2 has an embedded associated prime if J is the ideal of Example 7.5.
Unfortunately, J is not prime, so we’d like to modify J to get a prime ideal without losing the
square having an embedded associated prime.

In order to make a good guess about what to try, it’s helpful to know what to pay attention
to. Note that the zero locus of the embedded prime of J is a point which is singular on the curve
Z(J). Being a singular point essentially means that the curve crosses itself there. (A point which
is not singular is said to be smooth. Smoothness is an important geometrical concept which we’ll
discuss more later. The point here is that embedded primes are related to smoothness. In fact, if
P ⊂ C[x1, . . . , xn] is a prime ideal and Q is an embedded prime of P r for some r > 0, then P ( Q
so Z(Q) ( Z(P ), and it turns out that the points of Z(Q) must be singular points of Z(P ).) Thus
when we modify J to get a prime ideal we want to preserve the singularity at the origin.

One way to see that J is not prime is to note that Z(J) is not irreducible; its irreducible
components are the three coordinate axes. The conceptual idea is to take the coordinate axes (as
shown at left in Figure 8.1) and connect them together to get (as shown at right in Figure 8.1) an
“irreducible curve” C ⊂ C3 that has three branches at the origin (thus preserving the singularity),
each branch tangent to a coordinate axis.

Figure 8.1. Coordinate axes and resulting irreducible heuristic curve C.

C
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To a very small observer located at the origin the curve C would appear to be the union of the
coordinate axes. If we can produce such a C which is an algebraic set, we might hope I(C) and J
would behave similarly in having embedded components at the origin. This is in fact the case in
the example which we now do more rigorously, using computer calculations to guide us.

Example 8.1. Let C ⊂ C3 be the curve defined parametrically for all t ∈ C by

t 7→ (t(t− 1)2(t+ 1)2, t2(t− 1)(t+ 1)2, t2(t− 1)2(t+ 1)).

Note that three values of t map to (0, 0, 0), these being t = −1, 0, 1, and otherwise (it is easy to
see) the map C → C3 is injective.

Let P be the kernel of the homomorphism h : C[x, y, z] → C[t] which is the identity on C and
otherwise is defined by

h(x) = t (t− 1)2(t+ 1)2,

h(y) = t2(t− 1) (t+ 1)2,

h(z) = t2(t− 1)2(t+ 1).

We now discuss the ideal P . Note that if g ∈ P , then for any point p = (a, b, c) ∈ C we have
(a, b, c) = (s(s − 1)2(s + 1)2, s2(s − 1)(s + 1)2, s2(s − 1)2(s + 1)) for some value s of t and thus
g(a, b, c) = 0, since

g(t(t− 1)2(t+ 1)2, t2(t− 1)(t+ 1)2, t2(t− 1)2(t+ 1)) = h(g) = 0,

and so in particular

g(a, b, c) = g(s(s− 1)2(s+ 1)2, s2(s− 1)(s+ 1)2, s2(s− 1)2(s+ 1)) = 0.

Thus P ⊆ I(C), but for any g ∈ I(C) we have g(a, b, c) = 0 for all (a, b, c) ∈ C and hence
g(t(t − 1)2(t + 1)2, t2(t − 1)(t + 1)2, t2(t − 1)2(t + 1)) = 0 for all t ∈ C, so h(g) = 0 and thus
g ∈ kerh = P . In particular, P = I(C). Moreover, P is a prime ideal (since C[t] is a domain).

The curve C passes through the origin when t = 0, t = −1 and t = 1, and each of these three
branches is tangent to a different coordinate axis, giving the desired singularity at the origin. We
next will investigate the possible existence of embedded primes.

Here we show some views of the curve C. Figure 8.2 shows two plots of the curve C. The one on
the left was done using Maple (a very old version) with the following commands (the color varies
from blue to red as the z-coordinate increases):

> with(plots):
> spacecurve([t*(t-1)^2*(t+1)^2,t^2*(t-1)*(t+1)^2,t^2*(t-1)^2*(t+1),
numpoints=1000], t=-1.1..1.1,axes=NORMAL);

The plot on the right was drawn using LATEX picture environment commands. The LATEX picture
environment allows drawings to be done internally to LATEX. The graph was done by plotting 3000
points on the curve. The coordinates of the points were computed ahead of time using AWK (see
the file SpaceCurveData.tex for the very short AWK script). This graph is drawn so that parts of
the curve closer to the observer are thicker, in an attempt to give perspective without color. Finally,
Figure 8.3 gives a stereoscopic view of the curve C (created using 3D-Xplor-Math-J, available at
http://3d-xplormath.org/).

http://3d-xplormath.org/
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Figure 8.2. Two views of the curve C.
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Figure 8.3. Stereoscopic view of the curve C.

Exercises:

Exercise 8.1. Let J = (f) ⊂ C[x1, . . . , xn]. Show that J is primary if and only if
√
J is prime,

and if J is primary, then J = (
√
J)r for some r ≥ 1.

Solution. Since primary ideals have prime radicals, if J is primary, then
√
J is prime.

Before proving the converse, we note a fact about principal ideals. Let f = fm1
1 · · · fms

s be a
factorization of f as a product of irreducibles, where mi ≥ 1 for all i and where fi and fj have
no common irreducible factor if i 6= j. Let I = (φ), where φ = f1 · · · fs. Then φm ∈ J for
m = max(m1, . . . ,ms), so I ⊆

√
J . And if g ∈

√
J , then gs ∈ (f) so f |gs, hence fi|gs for all i, so

fi|g for all i, hence φ|g and we have g ∈ I. Thus
√

(J) = I.
Now assume

√
(J) is prime. Then so is φ, hence r = 1; i.e., the prime factorization of f has only

one prime factor. Thus J = (fm1
1 ) = (φ)m1 =

√
J

m1 , so if ab ∈ J but a 6∈ J , then in the prime
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factorization of ab, m1 factors of f1 occur but not all of them occur in the factorization of a, hence
f1|b, so fm1

1 |bm1 and thus bm1 ∈ J , so b ∈
√
J , and so J is primary.

Finally, if J is primary, then
√
J is prime, and as we saw above J =

√
J

m1 . �

Lecture 9. February 2, 2011

If I = Q1 ∩ · · · ∩ Qr is an irredundant primary decomposition we refer to each Qi as the
√
Qi-

primary component of the decomposition. When
√
Qi is an isolated prime, the

√
Qi-primary

component is uniquely determined by I (it is the same in any primary decomposition of I; see
Atiyah-Macdonald, Corollary 4.11).

When I = Qr for a prime ideal Q, then Q is the unique isolated prime, so the Q-primary
component of I is uniquely determined by I. It is the smallest Q-primary ideal containing I,
denoted Q(r) and referred to as the rth symbolic power of Q. Symbolic powers are very important
geometrically. The fact that powers and symbolic powers do not always agree is at the root of
various unsolved problems in algebraic geometry.

9.1. A theorem of Zariski and Nagata and orders of vanishing. Recall for any ideal I ⊆
C[x1, . . . , xn], that by the Nullstellensatz

√
I = ∩M , where the intersection is over all maximal

ideals M containing I. A theorem of Zariski and Nagata (see Theorem 3.14, p. 106, of Eisenbud’s
book Commutative Algebra with a view toward Algebraic Geometry) generalizes this:

Theorem 9.1.1. Let I ⊆ C[x1, . . . , xn] be a prime ideal. Then I(r) = ∩ M r, where the intersection
is over all maximal ideals M containing I.

Definition 9.1.2. Let p ∈ Cn and let Mp = I(p) ⊂ C[x1, . . . , xn] be the corresponding maximal
ideal. Let f be a non-zero element of C[x1, . . . , xn]. If f ∈M r but f 6∈M r+1, we say the order of
vanishing of f at p is r and write ordp(f) = r. We regard the constant 0 as having infinite order of
vanishing at all p.

Example 9.1.3. If f(p) 6= 0, then f does not vanish at p And we have ordp(f) = 1. If p = (0, . . . , 0)
and f is not trivial, then ordp(f) is the degree of a term of least degree. So for example f = x2y+y5

has order of vanishing 3 at the origin. If p = (a1, . . . , an), then ordp(f) is the degree of a term of
f(x1 + a1, . . . , xn + an) of least degree; i.e., find the degree of a term of least degree with respect to
coordinates centered at the point p. If I ⊆ C[x1, . . . , xn] is an ideal, the fact that

√
I = ∩M , where

the intersection is over all maximal ideals M containing I, is just saying that the polynomials that
vanish at all points p ∈ Z(I) are precisely the elements of the radical of I. Theorem 9.1.1 says
that the polynomials that vanish to order at least r at all points of an irreducible closed set V are
exactly the elements of Q(r), where Q = I(V ).

9.2. Return to our example of the last lecture. Let J be the ideal of the union of the
coordinate axes in C3 and let P be the ideal of the curve C defined parametrically in the previous
lecture. Recall that J2 = (x, y)2∩ (x, z)2∩ (y, z)2∩ (x, y, z)4 is a primary decomposition of J2. One
way to see that J2 ( (x, y)2 ∩ (x, z)2 ∩ (y, z)2 is to note that xyz ∈ (x, y)2 ∩ (x, z)2 ∩ (y, z)2 but
(since J = (xy, xz, yz) so J2 has no elements of degree less than 4) that xyz 6∈ J2.

Our goal is to find an element f that plays the same role for P 2 as xyz does for J2, in the sense
that f is in the P -primary component of an irredundant primary decomposition of P 2 but f 6∈ P 2,
thus showing that P 2 has an embedded prime and hence P 2 is not primary.

By Theorem 9.1.1, it is enough to find an element f which is in M2 for all maximal ideals M
containing P , but such that f 6∈ P 2. In order to do this we need to find all such maximal ideals
M , and we need to find our candidate element f . It follows by Exercise 9.1 that C = C, and hence
that a maximal ideal Mp contains C if and only if p ∈ C. We will verify C = C explicitly, with the
help of Macaulay 2. We will also use Macaulay 2 to find f and verify that f ∈ M2 for all p ∈ C;
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it turns out that f = xyz + higher order terms. We will see that f 6∈ P 2 follows from the fact that
Z(P ) is singular at the origin.

Exercises:

Exercise 9.1. Let f1, . . . , fn ∈ C[t] and define the map h : C → Cn given by h(t) = (f1(t), . . . , fn(t)).
Show that the image h(C) of C under h is a Zariski closed subset of Cn. [Hint: Apply the going-up
theorem, Atiyah-Macdonald, Theorem 5.10, p. 62.]

Solution. If h maps C to a point, then clearly h(C) is closed. Suppose h is not constant. Then
fi is a non-constant polynomial for some i. Hence C[fi] ⊆ h∗(C[x0, . . . , xn]) ⊆ C[t]. Since fi is
non-constant, C[fi] ⊆ C[t] is an integral extension of rings, hence so is h∗(C[x0, . . . , xn]) ⊆ C[t].

Let p ∈ h(C); then I(p) is a maximal ideal, hence prime. Since ker(h) = I(h(C)) = I(h(C)), and
since p ∈ h(C), we have I(h(C)) ⊆ I(p). Now by Theorem 5.10 of Atiyah-Macdonald, for any prime
ideal Q ⊆ h∗(C[x0, . . . , xn]), there is a prime ideal P ⊂ C[t] such that P ∩ h∗(C[x0, . . . , xn]) = Q.
In particular, there is a prime ideal P ⊂ C[t] such that P ∩ h∗(C[x0, . . . , xn]) = I(p)/ker(h). This
means (h∗)−1(P ) = I(p). Moreover, P is maximal since if not P = (0) (these are the only choices
in C[t]) but P = (0) would mean I(p) = ker(h) which would in turn mean that I(p) = I(h(C)),
which implies h(C) = p. Since P is maximal, P = I(q) for some point q ∈ C, and (h∗)−1(P ) = I(p)
means h(q) = p. I.e., h(C) = h(C), so h(C) is closed. �

Lecture 10. February 4, 2011

In order to show that P 2 is not primary when P is the prime ideal defined in Example 8.1, we
want to show C = C and we need to find a certain element f . Macaulay 2 will be helpful. We use
it to gain some insight about P and P 2.
i1 : R=QQ[x,y,z];

i2 : S=QQ[t];

i3 : H=map(S,R,matrix{{t*(t-1)^2*(t+1)^2,t^2*(t-1)*(t+1)^2,t^2*(t-1)^2*(t+1)}});

o3 : RingMap S <--- R

i4 : P=ker H;

o4 : Ideal of R

i5 : toString P

o5 = ideal(x*y+x*z-2*y*z,y^3-8*x^2*z-7*y^2*z-8*x*z^2+23*y*z^2-z^3-8*y*z,
x^3-7/4*x^2*y+x*y^2-3/16*y^3-5/4*x^2*z+3/2*x*y*z-7/16*y^2*z+1/2*x*z^2
-5/16*y*z^2-1/16*z^3+1/2*x*y-1/2*x*z+1/2*y*z)

i6 : K=primaryDecomposition(P^2);

i7 : toString K

o6 = {ideal(x^2*y^2+2*x^2*y*z-4*x*y^2*z+x^2*z^2-4*x*y*z^2
+4*y^2*z^2,x*y^4-8*x^3*y*z-6*x*y^3*z-2*y^4*z-8*x^3*z^2+
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8*x^2*y*z^2+16*x*y^2*z^2+14*y^3*z^2-8*x^2*z^3+38*x*y*z^3-46*y^2*z^3
-x*z^4+2*y*z^4-8*x*y^2*z-8*x*y*z^2+16*y^2*z^2,x^4*y+x^4*z-3*x^3*y*z
+1/4*x*y^3*z-x^3*z^2+4*x^2*y*z^2-7/4*x*y^2*z^2-1/2*y^3*z^2+2*x^2*z^3
-25/4*x*y*z^3+4*y^2*z^3-1/4*x*z^4+1/2*y*z^4-x^2*y*z-x^2*z^2+2*x*y*z^2,x^5
-1/32*y^5-5*x^3*y*z-5/4*x*y^3*z+15/32*y^4*z-5/2*x^2*y*z^2+25/2*x*y^2*z^2
-15/16*y^3*z^2-5/2*x^2*z^3+35/4*x*y*z^3-175/16*y^2*z^3+15/32*y*z^4
-1/32*z^5+x^3*y+1/8*x*y^3-x^3*z-x^2*y*z-7/8*x*y^2*z+1/4*y^3*z-x^2*z^2
+39/8*x*y*z^2-2*y^2*z^2-1/8*x*z^3-1/4*y*z^3-x*y*z,y^6-14*y^5*z+64*x^4*z^2
-80*x*y^3*z^2+95*y^4*z^2+128*x^3*z^3-640*x^2*y*z^3+624*x*y^2*z^3
-260*y^3*z^3-64*x^2*z^4+208*x*y*z^4-33*y^2*z^4+16*x*z^5-46*y*z^5
+z^6-16*y^4*z+128*x^2*y*z^2+112*y^3*z^2+128*x*y*z^3-368*y^2*z^3
+16*y*z^4+64*y^2*z^2), ideal(z,x^2*y^2,x*y^4,x^4*y,y^6,x^6)}

According to Macaulay 2, P is generated (over Q) by

g1 =xy + xz − 2yz,

g2 =y3 − z3 − 8x2z − 7y2z − 8xz2 + 23yz2 − 8yz,

g3 =x3 − (3/16)y3 − (7/4)x2y + xy2 − (5/4)x2z + 3/2xyz − (7/16)y2z

+ (1/2)xz2 − (5/16)yz2 − (1/16)z3 + (1/2)xy − (1/2)xz + (1/2)yz.

Certainly g1, g2 and g3 are in P , because checking this just amounts to plugging in the parametric
equations and checking to see that the expression simplifies to 0, and this is independent of the
ground field.

Let p = (a, b, c) ∈ Z(P ). We wish to show p ∈ C. Since g1 ∈ P , we see that if any of the
coordinates of p are 0, then one of the other two coordinates is also 0. For example, if a = 0, then
since g1(a, b, c) = 0 we have −2bc = 0 so either b = 0 or c = 0. Now from g2 ∈ P , given that a = 0,
we see that b = 0 if and only if c = 0. Thus a = 0 implies b = c = 0. Similarly, if b = 0, then either
a = 0 or c = 0, and we just saw that a = 0 implies c = 0. If b = c = 0, then g3 ∈ P implies a = 0.
Finally, if c = 0, then as noted above either a = 0 or b = 0, but in either case all three coordinates
are 0. Thus if any coordinate of p is 0, the point p must be the origin, and hence p ∈ C.

Now assume none of the coordinates of p is 0. If a = b, then g1 gives a = c. Likewise, if a = c,
then also a = b, and if b = c, then b = a. I.e., if any two of the coordinates are equal, all three are
equal. But if a = b = c, then g2 gives that a = 0. We thus see that if none of the coordinates is 0,
then no two of them are equal. If a = 2b, then g1(a, b, c) = 0 implies c = 0, so now we also know
that a 6= 2b.

Now we wish to find a value of t such that

t 7→ (t(t− 1)2(t+ 1)2, t2(t− 1)(t+ 1)2, t2(t− 1)2(t+ 1)) = (a, b, c). (?)

Let t = b
b−a , which is defined since a 6= b. Let (α, β, γ) be the image of t = b

b−a under the map
(?), so ∈ C. We also see that none of α, β or γ is 0, since this only happens if t is −1, 0 or 1, but
t = −1 is ruled out since 2b 6= a, t = 0 is ruled out since b 6= 0 and t = 1 is ruled out since a 6= 0.
It is easy to check that

α

β
=
t− 1
t

=
a

b

and hence that (α, β) = d(a, b) for some non-zero constant d, and thus
α

2β − α
=

a

2b− a
.

Since g1(α, β, γ) = 0 by definition of P , we have γ
β = α

2β−α and since g1(a, b, c) = 0 since p ∈ Z(P ),
we have c

b = a
2b−a . Thus γ

β = c
b so (α, β, γ) = d(a, b, c).
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If we show d = 1, then p = (a, b, c) = (α, β, γ) ∈ C, and we conclude that C = C. Plug
(α, β, γ) = d(a, b, c) into g2. We get

0 = (β3−γ3−8α2γ−7β2γ−8αγ2 +23βγ2)−8βγ = (b3−c3−8a2c−7b2c−8ac2 +23bc2)d3−8bcd2,

and since d 6== 0, this means (b3−c3−8a2c−7b2c−8ac2 +23bc2)−8bc/d = 0. But 0 = g2(a, b, c) =
(b3 − c3 − 8a2c− 7b2c− 8ac2 + 23bc2)− 8bc, so d = 1.

Now consider the polynomial f = x5−(1/32)y5−5x3yz−(5/4)xy3z+(15/32)y4z−(5/2)x2yz2 +
(25/2)xy2z2−(15/16)y3z2−(5/2)x2z3+(35/4)xyz3−(175/16)y2z3+(15/32)yz4−(1/32)z5+x3y+
(1/8)xy3−x3z−x2yz−(7/8)xy2z+(1/4)y3z−x2z2+(39/8)xyz2−2y2z2−(1/8)xz3−(1/4)yz3−xyz.
According to the Macaulay 2 output above, f ∈ P (2). We will give a proof of this in a moment,
and we will also show that f 6∈ P 2, which proves that P 2 is not primary.

To show that f ∈ P (2), it suffices to show f ∈ M2 for all maximal ideals M containing P . To
show f 6∈ P 2, it suffices to show that P ⊆ (x, y, z)2 and hence P 2 ⊆ (x, y, z)4, but that f 6∈ (x, y, z)4.
But f has a term of degree 3 (namely xyz), so f 6∈ (x, y, z)4, and hence f 6∈ P 2.

To show that f ∈M2 for all maximal ideals M containing P , we just need to show that f ∈M2
p

for all p ∈ C, since C = C. Since we have a parameterization of C, we may assume every point
p = (a, b, c) ∈ C is of the form p = (t(t − 1)2(t + 1)2, t2(t − 1)(t + 1)2, t2(t − 1)2(t + 1)) for some
value of t. Thus we just need to check that

f(x, y, z) ∈ (x− (t(t− 1)2(t+ 1)2, y − t2(t− 1)(t+ 1)2, z − t2(t− 1)2(t+ 1))2

holds for all t. Alternatively, by doing a translation we just need to check that

f(x+ (t(t− 1)2(t+ 1)2, y + t2(t− 1)(t+ 1)2, z + t2(t− 1)2(t+ 1)) ∈ (x, y, z)2.

This is easy to do: just plug x + (t(t − 1)2(t + 1)2, y + t2(t − 1)(t + 1)2, and z + t2(t − 1)2(t + 1)
into f(x, y, z) for x, y and z respectively, simplify and see if the resulting expression has any terms
of total degree in x, y and z less than 2. Here’s what we get when we do the substitution (with
Macaulay 2 doing the actual algebra):
-10*x^2*t^15+10*x*y*t^15-5/2*y^2*t^15+10*x*z*t^15-5*y*z*t^15-5/2*z^2*t^15
+10*x^2*t^14-30*x*y*t^14+25/2*y^2*t^14+10*x*z*t^14+5*y*z*t^14-15/2*z^2*t^14
+25*x^2*t^13+5*x*y*t^13-75/4*y^2*t^13-35*x*z*t^13+45/2*y*z*t^13+5/4*z^2*t^13
-30*x^2*t^12+70*x*y*t^12-15/2*y^2*t^12-30*x*z*t^12-25*y*z*t^12+45/2*z^2*t^12
+5*x^3*t^10-35/2*x^2*y*t^10+35/4*x*y^2*t^10-5/8*y^3*t^10-55/2*x^2*z*t^10
+95/2*x*y*z*t^10-115/8*y^2*z*t^10+75/4*x*z^2*t^10-135/8*y*z^2*t^10-25/8*z^3*t^10
-85*x*y*t^11+55*y^2*t^11+35*x*z*t^11-30*y*z*t^11+15*z^2*t^11+20*x^2*y*t^9
-25*x*y^2*t^9+5/2*y^3*t^9-50*x*y*z*t^9+85/2*y^2*z*t^+35*x*z^2*t^9-25/2*y*z^2*t^9
-25/2*z^3*t^9+28*x^2*t^10-21/2*x*y*t^10-217/4*y^2*t^10+29/2*x*z*t^10
+49*y*z*t^10-67/4*z^2*t^10-25*x^3*t^8+95/2*x^2*y*t^8-5/4*x*y^2*t^8-5/8*y^3*t^8
+135/2*x^2*z*t^8-165/2*x*y*z*t^8-135/8*y^2*z*t^8-125/4*x*z^2*t^8
+425/8*y*z^2*t^8-85/8*z^3*t^8-52*x^2*t^9+118*x*y*t^9-89/4*y^2*t^9+6*x*z*t^9
+3/2*y*z*t^9-105/4*z^2*t^9-55*x^2*y*t^7+50*x*y^2*t^7-25/4*y^3*t^7+15*x^2*z*t^7
+90*x*y*z*t^7-225/4*y^2*z*t^7-80*x*z^2*t^7+105/4*y*z^2*t^7+65/4*z^3*t^7-6*x^2*t^8
-81*x*y*t^8+315/4*y^2*t^8+37*x*z*t^8-46*y*z*t^8-51/4*z^2*t^8+5*x^4*t^5
-5*x^3*y*t^5-5/4*x*y^3*t^5+5/16*y^4*t^5-5*x^3*z*t^5-20*x^2*y*z*t^5
+85/4*x*y^2*z*t^5-5/4*y^3*z*t^5-10*x^2*z^2*t^5+185/4*x*y*z^2*t^5
-185/8*y^2*z^2*t^5+15/4*x*z^3*t^5-45/4*y*z^3*t^5+5/16*z^4*t^5
+45*x^3*t^6-85/2*x^2*y*t^6-95/4*x*y^2*t^6+25/8*y^3*t^6-105/2*x^2*z*t^6
+15/2*x*y*z*t^6+615/8*y^2*z*t^6+25/4*x*z^2*t^6-465/8*y*z^2*t^6+225/8*z^3*t^6
+58*x^2*t^7-53*x*y*t^7-137/4*y^2*t^7-29*x*z*t^7+57/2*y*z*t^7+39/4*z^2*t^7
+5*x^3*y*t^4+5/4*x*y^3*t^4-5/8*y^4*t^4-5*x^3*z*t^4+5*x^2*y*z*t^4-115/4*x*y^2*z*t^4
+15/4*y^3*z*t^4+5*x^2*z^2*t^4-5/4*x*y*z^2*t^4+30*y^2*z^2*t^4+35/4*x*z^3*t^4
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-95/4*y*z^3*t^4+5/8*z^4*t^4+52*x^2*y*t^5-51/2*x*y^2*t^5+43/8*y^3*t^5-36*x^2*z*t^5
-24*x*y*z*t^5-153/8*y^2*z*t^5+115/2*x*z^2*t^5-119/8*y*z^2*t^5+37/8*z^3*t^5
-2*x^2*t^6+133/2*x*y*t^6-109/4*y^2*t^6-101/2*x*z*t^6+19*y*z*t^6+89/4*z^2*t^6
-10*x^4*t^3+5*x^3*y*t^3+5/4*x*y^3*t^3-5/16*y^4*t^3+5*x^3*z*t^3+35*x^2*y*z*t^3
-85/4*x*y^2*z*t^3+5/2*y^3*z*t^3+10*x^2*z^2*t^3-165/4*x*y*z^2*t^3+85/8*y^2*z^2*t^3
+5/4*x*z^3*t^3+5/2*y*z^3*t^3-5/16*z^4*t^3-33*x^3*t^4+27/2*x^2*y*t^4+35/2*x*y^2*t^4
-17/8*y^3*t^4+27/2*x^2*z*t^4+31*x*y*z*t^4-327/8*y^2*z*t^4+23/2*x*z^2*t^4
+169/8*y*z^2*t^4-97/8*z^3*t^4-25*x^2*t^5+6*x*y*t^5+24*y^2*t^5+14*x*z*t^5
-25*y*z*t^5+8*z^2*t^5-5*x^3*y*t^2-5/4*x*y^3*t^2+5/8*y^4*t^2+5*x^3*z*t^2
-5*x^2*y*z*t^2+115/4*x*y^2*z*t^2-15/4*y^3*z*t^2-5*x^2*z^2*t^2+5/4*x*y*z^2*t^2
-30*y^2*z^2*t^2-35/4*x*z^3*t^2+95/4*y*z^3*t^2-5/8*z^4*t^2-20*x^2*y*t^3
+1/2*x*y^2*t^3-7/4*y^3*t^3+24*x^2*z*t^3-14*x*y*z*t^3+135/4*y^2*z*t^3
-21/2*x*z^2*t^3-15/4*y*z^2*t^3-33/4*z^3*t^3-17*x*y*t^4-9/4*y^2*t^4
+21*x*z*t^4-y*z*t^4-27/4*z^2*t^4+x^5-1/32*y^5-5*x^3*y*z-5/4*x*y^3*z
+15/32*y^4*z-5/2*x^2*y*z^2+25/2*x*y^2*z^2-15/16*y^3*z^2-5/2*x^2*z^3
+35/4*x*y*z^3-175/16*y^2*z^3+15/32*y*z^4-1/32*z^5+5*x^4*t-15*x^2*y*z*t
-5/4*y^3*z*t-5*x*y*z^2*t+25/2*y^2*z^2*t-5*x*z^3*t+35/4*y*z^3*t+8*x^3*t^2
-x^2*y*t^2-5/4*x*y^2*t^2+1/4*y^3*t^2-x^2*z*t^2-7/2*x*y*z*t^2-19/4*y^2*z*t^2
-21/4*x*z^2*t^2+3/4*y*z^2*t^2-9/4*z^3*t^2+4*x^2*t^3-x*y*t^3-5/4*y^2*t^3
-x*z*t^3+17/2*y*z*t^3-21/4*z^2*t^3+x^3*y+1/8*x*y^3-x^3*z-x^2*y*z-7/8*x*y^2*z
+1/4*y^3*z-x^2*z^2+39/8*x*y*z^2-2*y^2*z^2-1/8*x*z^3-1/4*y*z^3+3*x^2*y*t
+1/8*y^3*t-3*x^2*z*t-2*x*y*z*t-7/8*y^2*z*t-2*x*z^2*t+39/8*y*z^2*t-1/8*z^3*t
+2*x*y*t^2-2*x*z*t^2-y*z*t^2-z^2*t^2-x*y*z-y*z*t

As can be seen by a careful inspection (most reliably done using grep, for example), there are no
constant terms and no terms which involve only t (i.e., there are no terms of degree 0 in x, y and z)
and there are no terms of degree 1 in x and y and z, so for every t the polynomial g is in (x, y, z)2

and hence f ∈ P (2).

Exercises:

Exercise 10.1. If f, g ∈ C[x1, x2] are non-constant polynomials with no non-constant common
factor and if deg(g) = 1, show |Z(f, g)| ≤ deg(f). [Hint: apply the FTA.] Give a simple example
showing that equality can fail.

Solution (with example by Philip Gipson). Since deg(g) = 1, we have g = ax1 + bx2 + c and either
a 6= 0 or b 6= 0. Let’s say b 6= 0. Then g = 0 implies x2 = −ax1/b− c. Plugging this in to f gives
a polynomial h(x1) = f(x1,−ax1/b − c) in one variable. If h is identically 0, then Z(g) ⊆ Z(f),
hence f ∈

√
(g), but g is irreducible, so g|f , contradicting f and g having no non-constant common

factor. Thus h is a nonzero polynomial, of degree r say, hence has at most r roots. I.e., there are
at most r points of Z(g) at which f also vanishes, so |Z(f, g)| ≤ deg(f).

For an example where |Z(f, g)| < deg(f), let g(x1, x2) = x1 − x2 (hence Z(g) is the diagonal
line through the point (1, 1)) and let f(x1, x2) = x1x2 − x1 − x2 + 1 = (x1 − 1)(x2 − 1) (hence
Z(f) is the union of the horizontal and vertical lines through the point (1, 1)). In this case,
Z(f, g) = Z(f) ∩ Z(g) = {(1, 1)} but deg(f) = 2. �

Exercise 10.2. More generally, if f, g ∈ C[x1, x2] are non-constant polynomials with no non-
constant common factor, show there are non-zero polynomials hi ∈ C[xi] such that Z(f, g) ⊆
Z(h1)∩Z(h2). [Hint: to find hi, consider the gcd of f and g in C(xi)[xj ].] Conclude that Z(f, g) is
a finite set. [Note: This is a weak version of Bézout’s Theorem. The classical version of Bézout’s
Theorem says more precisely that |Z(f, g)| ≤ deg(f) deg(g), with equality if you count the points
of Z(f, g) with appropriate multiplicities, including points at infinity.]
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Solution. We have f, g ∈ C[x1, x2] ⊆ C(x1)[x2]. Let (f, g) = (h) be the ideal generated by f and g in
C(x1)[x2]. Since non-zero elements C[x1] are units in C(x1), we may assume that h ∈ C[x1, x2]. In
fact, we claim that h ∈ C[x1]. To see this, note that h|f and h|g in C(x1)[x2], so there are elements
φ, γ ∈ C[x1] such that h|φf and h|γg in C[x1, x2]. If h 6∈ C[x1], then the prime factorization of h in
C[x1, x2] has an irreducible factor e involving x2, and e divides both φf and γg. Since x2 does not
appear in φ nor in γ, e does not divide φ or γ, hence e|f and e|g, contrary to the assumption that
f and g have no non-constant common factor. Thus h ∈ C[x1].

Continuing, since (f, g) = (h), we have h = af + bg for some a, b ∈ C(x1)[x2]. Pick some
polynomial d ∈ C[x1] such that da, db ∈ C[x1, x2]. (The coefficients of a and b are elements of
C(x1), so take d to be a common denominator for all of these coefficients.) Let h1 = dh, A = da
and B = db. Then dh = daf + dbg is h1 = Af +Bg, with A,B ∈ C[x1, x2] and h1 ∈ C[x1].

Since f and g are non-constant, h cannot be identically 0, so neither can h1. Thus h1, being a
non-zero polynomial in C[x1], has finitely many roots. But for any point (p1, p2) = p ∈ Z(f, g) we
have h1(p1) = A(p)f(p) +B(p)g(p) = 0, so p1 is one of these finitely many roots.

Similarly, there is a non-zero polynomial h2 ∈ C[x2] such that if (p1, p2) = p ∈ Z(f, g), then
h2(p2) = 0. Thus Z(f, g) ⊆ Z(h1, h2) = Z(h1) ∩ Z(h2), but since h1 is 0 for only finitely many
values of x1 and h2 is 0 for only finitely many values of x2, we see Z(h1) ∩ Z(h2) is finite. �

Exercise 10.3. Show that every prime ideal P ⊂ C[x1, x2] is either principal or maximal. [Hint:
One way to do this is to apply Exercise 10.2.]

Solution 1, by Kat Shultis (with added details). We know from commutative algebra that

dim(R[x1, . . . , xn]) = dim(R) + n.

As C is a field, it has dimension zero. Thus, in terms of Krull dimension, dim(C[x1, x2]) = 2,
meaning that if P ⊂ C[x1, x2] is a prime ideal but not (0) or maximal, then there is a maximal ideal
M such that (0) ( P ( M and no other prime ideals fit in this chain. If 0 6= f ∈ P is an irreducible
element (which must exist since P 6= (0) and P is prime), then we have (0) ( (f) ⊆ P ( M , and
hence (f) = P so P is principal. Thus all prime ideals of C[x1, x2] are principal or maximal. �

Solution 2, by Douglas Heltibridle (with added details). First, assume P ⊂ C[x1, x2] is a prime
ideal that is not principal. Pick generators f1, . . . , fr of P . Since P is prime, each fi has an irre-
ducible factor in P . Let gi be such a factor for each i. Then P = (f1, . . . , fr) ⊆ (g1, . . . , gr) ⊆ P ,
so P = (g1, . . . , gr). By choosing a subset of the gi we may assume that g1, . . . , gr is a minimal
generating set (i.e, that no proper subset of the gi generates P ). Thus if i 6= j then gi does not
divide gj . Also, since P is not principal, we know r > 1. Let f = g1 and let g = g2. Then both are
irreducible and neither divides the other, so in particular f and g have no non-constant common
factor.

Thus we can apply Exercise 10.2 so that we have h1 ∈ C[x1] and h2 ∈ C[x2] such that Z(f, g) ⊆
Z(h1) ∩ Z(h2). We have Z(h1) ⊇ Z(h1) ∩ Z(h2) and Z(h2) ⊇ Z(h1) ∩ Z(h2), and since f, g ∈ P
we have Z(f, g) ⊇ Z(P ). Thus Z(h1) ⊇ Z(P ) and Z(h2) ⊇ Z(P ) and by version three of the
Nullstellensatz we know h1 ∈ P and h2 ∈ P .

Now, if h1 is not prime then we can factor it and one of its factors must be in P . Continuing
to factor we find an irreducible factor of h1, which is also in P and C[x1]. Similarly we find an
irreducible factor of h2 in P and C[x2]. These are of the form x1−z1 and x2−z2 for some z1, z2 ∈ C.
So we know that P ⊇ (x1−z1, x2−z2). However, C[x1, x2]/(x1−z1, x2−z2) is a field, which means
that (x1 − z1, x2 − z2) is a maximal ideal. Thus P = (x1 − z1, x2 − z2). Therefore we have that P
is maximal as desired. �

Exercise 10.4. Show that Pm for a prime ideal P ⊂ C[x1, . . . , xn] is always P -primary if P is
either maximal or principal. Conclude that Pm is P -primary for all primes P ⊂ C[x1, . . . , xn] and
all m if and only if n ≤ 2.
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Solution. If P is maximal, then Pm is P -primary by Exercise 7.3, since
√
Pm = P . Say P = (f).

Since P is prime, f cannot be a non-zzero scalar. If f = 0, then Pm = P for all m ≥ 1, hence Pm

is P -primary. If f is not a scalar, then f is irreducible. Say gh ∈ Pm = (fm) ⊆ P = (f). Thus fm

divides gh. If g 6∈ Pm, then the largest power of f that divides g is fm−1, hence (since C[x1, . . . , xn]
is a UFD) f must divide h, so hm ∈ Pm; i.e., h ∈ P =

√
Pm. Thus Pm is P -primary. �

Lecture 11. February 7, 2011

11.1. The Example continued. To finish the example from last lecture, we must check that
P ⊆ (x, y, z)2. This follows from the fact that no non-zero polynomial with terms of degree less
than 2 can vanish on C. For let u ∈ P ⊂ C[x, y, z]. Intuitively, if u had a non-zero constant term,
then u does not vanish at the origin, but the origin is a point of C, so u 6∈ I(C) = P . If u had any
non-zero linear terms, say u = ax+ by + cz + higher order terms for a, b, c ∈ C not all 0, then the
zero locus Z(u) near (0, 0, 0) would look like a plane (the plane in question would be the zero-locus
Z(ax+ by + cz) of the non-zero linear terms, which is the plane tangent to the surface defined by
u = 0). But C has branches with tangents in three linearly independent directions, so u = 0 could
not encompass all of them.

We now show more rigorously that u has no terms of degree less than 2. Since (0, 0, 0) ∈ C
and u vanishes on C, we have u(0, 0, 0) = 0 so u has no constant term (or, if you prefer, the
constant term is 0). Now consider the image h(u) = h(u(x, y, z)) = u(h(x), h(y), h(z)) of u under
the homomorphism h corresponding to our parameterization of C. In principle h(u) is a function
of t, but since u vanishes on C (or because u ∈ P = kerh), in fact u(h(x), h(y), h(z)) is indentically
zero, and hence du(h(x), h(y), h(z))/dt = 0. Thus

0 =
du(h(x), h(y), h(z))

dt
=
∂u

∂x

dh(x)
dt

+
∂u

∂y

dh(y)
dt

+
∂u

∂z

dh(z)
dt

.

At t = 0, explicit computation (using the fact that h(x) = t(t− 1)2(t+1)2, h(y) = t2(t− 1)(t+1)2,
and h(z) = t2(t − 1)2(t + 1)) shows that dh(y)/dt = 0 and dh(z)/dt = 0, but dh(x)/dt = 1, thus
we must have ∂u/∂x = 0 at (0, 0, 0); i.e., there can be no x term. Similar calculations at t = ±1
show that ∂u/∂y and ∂u/∂z vanish at (0, 0, 0), and hence there are no y or z terms, and hence no
terms of degree 1. Thus u ∈ (x, y, z)2.

Remark 11.1.1. Let f ∈ C[x1, . . . , xn] and let p = (a1, . . . , an) ∈ Cn. Then

f(x1, . . . , xn) =
∑

i1....,in

1
i1! · · · in!

∂i1+...+inf

∂i1x1 · · · ∂inxn
(p)(x1 − a1)i1 · · · (xn − an)in .

This is just a Taylor series expansion for f near the point p. Since f is a polynomial, the expansion is
itself a polynomial. The terms of least degree in the xi−ai in this expansion give useful information
about the behavior of Z(f) near p. For example, if ∂f

∂xi
(p) 6= 0 for some i, then the zero locus of

the linear terms define the hyperplane tangent to Z(f) at the point p; i.e., the tangent hyperplane
is

Z
(∑

i

∂f

∂xi
(p)(xi − ai)

)
. (?)

For example, if n = 2, p = (0, 0) and we take our variables to be x and y with f = y− x3 + x, then
from calculus the tangent line to y = x3 − x at x = 0 is y = −x, whereas (?) gives Z(y+ x), which
is the same thing.

11.2. Algebraic maps.

Definition 11.2.1. We say a map F : Cn → Cm is an algebraic map if there exist g1, . . . , gm ∈
C[x1, . . . , xn] such that for every (a1, . . . , an) ∈ Cn we have

F ((a1, . . . , an)) = (g1(a1, . . . , an), . . . , gm(a1, . . . , an)).
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If C ⊆ Cn and D ⊆ Cm are algebraic subsets (i.e., Zariski closed subsets), we say a map f : C → D
is an algebraic map if there exists an algebraic map F : Cn → Cm such that f = F |C .

Lecture 12. February 9, 2011

Example 12.1. Simple examples of algebraic maps are identity maps idC : C → C, where C is
an algebraic set, and the inclusion maps iC : C → Cn, where C is a Zariski closed subset of Cn.
Moreover, if f : C → D and h : D → E are algebraic maps, then so is h ◦ f ; i.e., compositions of
algebraic maps are algebraic.

Definition 12.2. We say an algebraic map f : C → D is an isomorphism if there exists an algebraic
map g : D → C such that f ◦ g = idD and g ◦ f = idC , in which case we write C ∼= D and say C
and D are isomorphic algebraic sets.

Notation 12.3. We refer to Cn as affine n-space, and denote it as An
C, or just An.

Example 12.4. Let C = Z(y − x2) ⊂ A2, and let D = A1. Then C ∼= D. Specifically, define
f : C → D by f((a, b)) = a. Note that (a, b) ∈ C means b = a2. Then f is an algebraic map, and
g : D → C, where g(a) = (a, a2), is an algebraic inverse.

Example 12.5. Let C = A1, and let D = Z(y3 − x2) ⊂ A2. Then f : C → D defined by
a 7→ (a3, a2) is algebraic and a bijection, but it turns out that f is not an isomorphism. If it were,
there would be a polynomial g ∈ C[x, y] such that a = g(a3, a2) for all a ∈ C. But this would mean
that a− g(a3, a2) = 0 for all a ∈ C, hence t− g(t3, t2) = 0 ∈ C[t], so g(t3, t2) = t. But g(x, y) is in
the C-vector space span of all monomials xiyj , hence g(t3, t2) is in the span of the monomials t3i+2j ;
i.e., g(t3, t2) is in the C-vector space span of {1, t2, t3, t4, · · · }. But {1, t, t2, t3, t4, · · · } is a vector
space basis for C[t] hence t is not in the span of {1, t2, t3, t4, · · · }. Thus g(t3, t2) = t is impossible
and f is not an isomorphism.

Proposition 12.6. Let C ⊆ Cn and D ⊆ Cm be algebraic sets. An algebraic map f : C → D is
continuous in both the standard and the Zariski topologies.

Proof. Let F : Cn → Cm be an algebraic map such that F |C = f . Since polynomials are continuous
in the standard topology, an algebraic map F : Cn → Cm is continuous in the standard topology,
hence so is f , since f = F |C , and C has the subspace topology. Similarly, to show f is continuous
in the Zariski topology, it suffices to show that F is. Now, F = (f1, . . . , fm) for polynomials
fi ∈ C[x1, . . . , xn]. Each closed subset of Cm is of the form ∩jZ(gj) for some family of polynomials
gj ∈ C[y1, . . . , ym], and F−1(∩jZ(gj)) = ∩jF

−1(Z(gj)), so it’s enough to show that F−1(Z(gj))
is closed. But F−1(Z(gj)) = F−1(g−1

j (0)) = (gjF )−1(0) = Z(gj ◦ F ) is closed, since gj ◦ F =
gj(f1, . . . , fm) ∈ C[x1, . . . , xn]. �

Remark 12.7. Since algebraic maps are continuous in both the standard and the Zariski topologies,
isomorphic algebraic sets are homeomorphic in both topologies.

We now associate a ring, called the affine coordinate ring, to each algebraic set.

Definition 12.8. Let V ⊆ An be an algebraic set. The affine coordinate ring (or simply the
coordinate ring) of An is C[x1, . . . , xn], denoted C[An]. The affine coordinate ring C[V ] of V is
C[An]/I(V ). Note that V comes with a canonical quotient homomorphism, : C[An] → C[V ].
This homomorphism is actually given by restriction; i.e., f 7→ f = f |V .

Exercises:

Exercise 12.1. Let C be Z(xy − 1) in A2. Show that C and A1 are homeomorphic in the Zariski
topology but not in the usual topology. [Hint: use algebraic topology.] Conclude that C and A1

are not isomorphic algebraic sets.
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Solution. First note that xy − 1 is irreducible. To see this, suppose gh = xy − 1. Note that
deg(gh) = deg(g) + deg(h). Thus if neither g nor h is invertible, then deg(g) = deg(h) = 1,
which implies that Z(xy − 1) is either a line or a union of two lines. But any line intersects either
the horizontal or vertical coordinate axis, while xy − 1 = 0 has no solution where either x = 0
or y = 0. Thus xy − 1 must be irreducible. Since xy − 1 is irreducible, (xy − 1) is prime so
I(Z(xy − 1)) = (xy − 1).

Now let D be a non-empty proper closed subset of C. Then there is a polynomial f ∈ I(D)
which does not vanish on all of C. Thus f 6∈ (xy− 1), so f and xy− 1 have no common factor. By
Exercise 10.2, Z(f, xy− 1) is a finite set, but D ⊆ Z(f, xy− 1) so D is finite. Thus C has the finite
complement topology. Since C and A1 have the same cardinality there is a bijection, and since
for both the Zariski topology is the finite complement topology, any bijection is a homeomorphism
(and in fact it’s not hard to write down an explicit bijection).

However, C = Z(xy − 1) is homeomorphic in the standard topology to A1 \ {origin}, and thus
C is not simply connected. Since A1 is simply connected (contractible even), C and A1 are not
homeomorphic. In particular, there do not exist inverse algebraic maps f and g between C and
A1, so C and A1 are not isomorphic algebraic sets. �

Lecture 13. February 11, 2011

Given an algebraic subset V ⊆ An, the coordinate ring C[V ] on V is the set of restrictions of
polynomials on An. Among these are the constant functions, and thus we have a canonical inclusion
iV : C ⊂ C[V ]. We say that C[V ] is a C-algebra.

If W ⊆ Am is an algebraic subset, and if h : C[W ] → C[V ] is a ring homomorphism, we say
h is a C-homomorphism if h ◦ iW = iV . In particular, the canonical quotient homomorphism

: C[An] → C[V ] is a C-homomorphism, since (g) = g|V is just restriction, and constants restrict
to constants.
Construction I. Given algebraic subsets C ⊆ An and D ⊆ Am and an algebraic map f : C → D,
we construct a C-homomorphism f∗ : C[D] → C[C] and we show that if φ : C → D is an algebraic
map with φ∗ = f∗, then φ = f .

First we define f∗ in case C = An and D = Am. In that case for each g ∈ C[Am] we define
f∗(g) = g ◦ f . Since f = (f1, . . . , fm) for fi ∈ C[An] and g = g(y1, . . . , ym), where we assume
that C[Am] = C[y1, . . . , ym] is a polynomial ring in the variables yi, we have f∗(g) = g ◦ f =
g(f1, . . . , fm) ∈ C[An]. Moreover, for any gi ∈ C[Am], f∗(g1 + g2) = (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f =
f∗(g1) + f∗(g2) and likewise f∗(g1g2) = f∗(g1)f∗(g2), and clearly f∗ is the identity on constants,
so f∗ is a C-homomorphism.

Now consider the general case. Then f = F |C for some algebraic mapping F = (f1, . . . , fm) :
An → Am. Let γ ∈ C[D] and pick g ∈ C[Am] such that γ = g. We define f∗(g) = F ∗( g). Note
that F ∗( g) = g ◦ F |C ∈ C[C]. Also note that F ∗( g) = f∗(g): F ∗( g) = g ◦ F |C is equal to
g|D ◦ F |C = g ◦ f = f∗(g) since F (C) ⊆ D. In particular, f∗ is well-defined, since f∗(γ) = γ ◦ f is
independent of the choice of g. As before f∗ is a C-homomorphism.

Finally, consider an algebraic map φ : C → D with φ∗ = f∗, but suppose φ 6= f . Since φ 6= f ,
there is a c ∈ C such that f(c) 6= φ(c), and hence the coordinates of the points f(c) and φ(c)
are not all the same. Say they differ in the ith coordinate. Then yi(f(c)) 6= yi(φ(c)), and hence
f∗(yi) 6= φ∗(yi), so φ∗ 6= f∗, contradicting our hypothesis.

In the next lecture, given a C-homomorphism h : C[D] → C[C], we will construct an algebraic
map f : C → D such that f∗ = h.

Lecture 14. February 14, 2011

Construction II. Given algebraic subsets C ⊆ An and D ⊆ Am and a C-homomorphism h :
C[D] → C[C], we find an algebraic map f : C → D such that h = f∗.
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We have the canonical quotients : C[An] → C[C] and : C[Am] → C[D]. Suppose C[Am]
is a polynomial ring C[y1, . . . , ym] in variables y and C[An] is a polynomial ring C[x1, . . . , xn] in
variables x. Let φi = h(yi) and choose elements fi ∈ C[An] such that fi = φi for i = 1, . . . ,m.
Let H : C[Am] → C[An] be the unique C-homomorphism such that H(yi) = fi for i = 1, . . . ,m.
Then we have H(g) = h(g) for all g ∈ C[Am]. Now F = (f1, . . . , fm) defines an algebraic map
F : An → Am, and clearly H = F ∗.

First we claim that F (C) ⊆ D. To see this it’s enough to check that g(F (c)) = 0 for all c ∈ C
and all g ∈ I(D). Note that g = 0 since g ∈ I(D). Thus

g(F (c)) = (F ∗(g))(c) = (H(g))(c) = (H(g))|C(c) = H(g)(c) = (h(g))(c) = (h(0))(c) = 0

for all c ∈ C and all g ∈ I(D). Since as we now see F (C) ⊆ D, F restricts to an algebraic map
f = F |C : C → D. Moreover, for any γ ∈ C[D] there is a g ∈ C[Am] with g = γ and we have
f∗(g) = g|D ◦ F |C = g ◦ F |C = H(g) = h(g) so f∗ = h, as we wanted.

We thus have the following theorem:

Theorem 14.1. The ∗-operation f 7→ f∗ gives a bijective correspondence from algebraic maps of
algebraic sets to C-homomorphisms of their coordinate rings.

Proof. The mapping f 7→ f∗ is injective by Construction I and it’s surjective by Construction
II. �

Corollary 14.2. A mapping f : C → D of algebraic sets is an isomorphism if and only if f∗ :
C[D] → C[C] is an isomorphism.

Proof. Suppose f is an isomorphism. Then there is a mapping g : D → C such that g ◦ f = idC

and f ◦ g = idD. Thus f∗ ◦ g∗ = (g ◦ f)∗ = (idC)∗ = idC[C] and similarly g∗ ◦ f∗ = idC[D], so f∗ is
an isomorphism with inverse g∗.

Conversely, suppose f∗ is an isomorphism and let h be its inverse. Then there is a mapping
g : D → C with h = g∗, and we have (g ◦ f)∗ = f∗ ◦ g∗ = idC[C] = (idC)∗, hence g ◦ f = idC and
similarly f ◦ g = idD. Thus f is an isomorphism with inverse g. �

Example 14.3. Exercise 12.1 asks you to give a topological explanation for why C = Z(xy − 1)
in A2 is not isomorphic to D = A1. We can use Corollary 14.2 to give an algebraic reason.
If f : D → C were an isomorphism, then f∗ : C[C] → C[D] would be an isomorphism too. But
C[C] = C[x, y]/(xy−1) ∼= C[x, 1

x ] and C[D] = C[t]. Let h : C[x, 1
x ] → C[t] be any C-homomorphism.

Then since h(x) has inverse h( 1
x), but the only invertible elements of C[t] are non-zero constants,

then h(x) ∈ C, hence Im(C[C]) = C, so h is not an isomorphism. Since C[C] and C[D] are not
isomorphic, neither are C and D.

Exercises:

Exercise 14.1. Show that every algebraic mapping f : A1 → An is closed (i.e., that the image of
each Zariski-closed subset is closed).

Solution by Jason Hardin. Write f = (f1, . . . , fn). Let C ⊆ A1 be a closed subset. If C = ∅, then
f(C) = ∅ is closed. If C = A1, then Ex 9.1 shows that f(C) is closed.

If C 6= ∅,A1, then by Ex 2.3 we know C = {c1, . . . , cm}. For i = 1, . . . ,m, define ideals Ii ⊂
C[y1, . . . , yn] by Ii := (y1 − f1(ci), . . . , yn − fn(ci)). Note that Z(Ii) = (f1(ci), . . . , fn(ci)) = f(ci).
Thus, f(C) =

⋃m
i=1 f(ci) =

⋃m
i=1 Z(Ii) = Z (

⋂m
i=1 Ii) is closed. �

Exercise 14.2. For some m and n, give an example of an algebraic mapping f : An → Am which
is surjective but not closed.
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Solution by Becky Egg. Consider f : A2 → A1 defined by f(a1, a2) = a1. So f is clearly surjective.
To see that f is not closed, consider V = Z(xy − 1) ⊆ A2. Note that V is closed in A2, with
V = {(x, 1/x)|x 6= 0}. So f(V ) = A1\{0}. Note f(V ) = A1\Z(1), so f(V ) is open in A1 = C.
Since C is connected, the only subsets of it which are both open and closed are C and ∅. So f(V )
is not closed, and hence f is not a closed map. �

Exercise 14.3. Let f : C → D be an algebraic mapping of algebraic sets. If C is irreducible, show
that the Zariski closure of f(C) is irreducible.

Solution by Zheng Yang (with added details). By Exercise 6.2, it suffices to show I(Z(I(f(C))) is a
prime ideal. We justify and then use the fact for any subset B ⊂ C that I(f(B)) = (f∗)−1(I(B)).
(Note g ∈ I(f(B)) if and only if g vanishes on f(B) if and only if f∗(g) = g ◦ f vanishes on
B if and only if f∗(g) ∈ I(B) if and only if g ∈ (f∗)−1(I(B)).) But I(C) is prime by Exercise
6.2, and contraction of a prime ideal is prime under f∗ so I(f(C)) = (f∗)−1(I(C)) is prime.
But I(f(C)) = I(Z(I(f(C))) by the Nullstellensatz (Theorem 5.1.3) and Z(I(f(C))) = f(C) by
Exercise 2.9. And by Exercise 6.2 again I(f(C)) = I(f(C)) is prime. �

Exercise 14.4. For each n ≥ 1, show that an algebraic mapping f : An → A1 is either surjective
or constant (i.e, has image a single point).

Solution by Nora Youngs. Let f : An → A1 be an algebraic mapping. Then, by definition, there is
some g1 ∈ C[x1, ..., xn] such that for every (a1, ..., an) ∈ An we have f(a1, ..., an) = g(a1, ..., an).

If g1 is a constant polynomial, then f is constant.
If g1 is not a constant polynomial: Let c ∈ C be given. To show that f is surjective, we need to

show that g1(x1, ..., xn) = c has a solution. Equivalently, we must show g1 − c = 0 has a solution.
Let I = (g1 − c). Note g1 − c is not constant, so I is a proper ideal of C[x1, ..., xn]. Thus, by

Version 1 of the Nullstellensatz, g1 − c has a zero.
Thus, there is a solution to g1 − c = 0; hence, f is surjective. �

Exercise 14.5. For some m and n, give an example of an algebraic mapping f : An → Am that is
neither surjective nor constant.

Solution by Philip Gipson. Consider the embedding f : C → C2 via f(x) = (x, 0). This is certainly
algebraic but neither constant nor surjective. �

Exercise 14.6. Let F : An+m → Am be the projection mapping (a1, . . . , an, b1, . . . , bm) 7→
(b1, . . . , bm). It is well known that F is an open mapping in the standard topology (i.e., that
the image of an open subset is open). Show that F is an open algebraic mapping for the Zariski
topology.

Solution by Katie Morrison. It is that clear that F is algebraic since it is given by the collection of
polynomials f(x1, . . . , xn+m) = (xn+1, . . . , xn+m). To see F is open, let A ⊆ An+m be an open set,
then there exists some polynomials gi ⊆ C[x1, . . . , xn+m], i ∈ I, such that An+m \A = ∩i∈IZ(gi) or
equivalently, A = ∪i∈I(An+m \ Z(gi)). Since F (∪i∈I(An+m \ Z(gi))) = ∪i∈IF (An+m \ Z(gi)) and
the union of open sets is open, it suffices to show that each F (An+m \ Z(gi)) is open, and so we
restrict to A = An+m \ Z(g) for some g ∈ C[x1, . . . , xn+m]. Then

A = {(a1, . . . , an+m) : g(a1, . . . , an+m) 6= 0},
and so

F (A) = {(an+1, . . . , an+m) | ∃ a1, . . . , an s.t. g(a1, . . . , an, an+1, . . . , an+m) 6= 0}.
Let i(b1,...,bn) : Am → An+m denote the inclusion map where (c1, . . . , cm) 7→ (b1, . . . , bn, c1, . . . , cm).
Then we see

Am \ F (A) = {(bn+1, . . . , bn+m) : ∀ b1, . . . , bn, g(b1, . . . , bn, bn+1, . . . , bn+m) = 0}
= ∩(b1,...bn)∈CnZ(g ◦ i(b1,...bn)),
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which is a closed set since it is the intersection of closed sets. Thus we have that F (A) is open, and
so F is an open map. � �

Exercise 14.7. Consider the standard topology on the closed interval X = [−1, 1]. Give an
example of continuous maps f, g : X → X such that f ◦ g = idX but such that g ◦ f 6= idX .
Conclude that g is not a homeomorphism.

Solution by Nora Youngs. Let f = sin(πx) and g = arcsin(x)
π . [Note that arcsin has been scaled to

have image points only in the interval [−1, 1].
Then, for any x ∈ [−1, 1]

(f ◦ g)(x) = sin
(
π

arcsin(x)
π

)
= sin(arcsin(x)) = x

by definition of arcsin.

However, g ◦ f is not the identity: Consider x = 1.
Then

(g ◦ f)(1) =
arcsin(sin(π · 1))

π
=

arcsin(0)
π

= 0,

so g ◦ f is not the identity for x = 1. �

Exercise 14.8. Let f, g : An → An be algebraic maps such that f ◦g = idAn . Show that g◦f = idAn

and hence that g is an isomorphism. [Hint: Look up and apply Ax’s Theorem, sometimes also called
the Ax-Grothendieck theorem.]

Solution by Ashley Weatherwax. We’ll begin by showing that g is bijective. Let c, d ∈ An such
that g(c) = g(d). Then f ◦ g(c) = f ◦ g(d). However, as we assumed that f ◦ g = idAn , we get
immediately that c = d, and thus g is injective. Then, by the Ax-Grothendieck theorem, g is, in
fact, bijective.

Now, let c ∈ An and consider g ◦ f(c). As g is bijective, there exists and a ∈ An such that
g(a) = c. Then

g ◦ f(c) = g ◦ f(g(a)) = g(a) = c

as f ◦ g = idAn . Therefore g ◦ f = idAn and g is an isomorphism. �

Lecture 15. February 16, 2011

MaxSpec.

Lemma 15.1. Let V ⊂ An be an algebraic set. Then the following are equivalent:
(a) specifying a point v ∈ V ;
(b) specifying a C-homomorphism C[V ] → C; and
(c) specifying a maximal ideal M ⊂ C[V ].

Proof. (a) implies (b): Having v ∈ V is the same as {v} ⊆ V , which we know induces a C-
homomorphism C[V ] → C[v] = C.

(b) implies (c): Given a C-homomorphism h : C[V ] → C, let M = ker(h). Since h is surjective
and C is a field, M is a maximal ideal.

(c) implies (a): Given a maximal ideal M ⊂ C[V ], consider

C[An]
q1−−→ C[V ]

q2−−→ C[V ]/M = C.

Since q2 ◦ q1 is surjective with image a field, N = ker(q2 ◦ q1) is a maximal ideal of C[An], hence
N = I(v) for some point v ∈ An, by Theorem 4.1, version 2 of the Nullstellensatz. Since clearly
I(V ) ⊆ N = I(v), we see that v ∈ V . �
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Remark 15.2. By Lemma 15.1, we see that the maximal ideals of C[V ] are exactly the ideal of
the form I(v)/I(V ) for points v ∈ V . We will denote I(v)/I(V ) by IV (v).

Corollary 15.3. Let V ⊆ An and W ⊆ Am be algebraic sets. Let h : C[W ] → C[V ] be a C-
homomorphism. Then h−1(M) is a maximal ideal for every maximal ideal M ⊂ C[V ].

Proof. Note that
C[W ] h−→ C[V ]

q2−→ C[V ]/M = C
is a surjection to a field, so has kernel a maximal ideal N = h−1(M). �

Example 15.4. If h : R→ S is a homomorphism of rings, it is not in general true that the inverse
image of a maximal ideal is maximal. For example, let h : Z → Q be inclusion of the integers in
the rationals. Then (0) ⊂ Q is maximal, and h−1((0)) = ((0)), but (0) ⊂ Z is not maximal.

Remark 15.5. If f : V → W is the algebraic map corresponding to the homomorphism h in
Corollary 15.3, if v ∈ V is the point with IV (v) = M and if w ∈ W is the point with IW (w) =
h−1(M), then w = f(v) and (f∗)−1(IV (v)) = IW (f(v)). See Exercise 15.1.

Definition 15.6. Let R be a commutative ring with 1 6= 0. Then MaxSpec (R) is defined to be
the topological space whose point set is the set of maximal ideals of R, and where the closed sets
are the subsets C ⊆ MaxSpec (R) of the form C = CJ for some ideal J ⊆ R, where CJ = {M ∈
MaxSpec (R) : J ⊆M}. This topology is, as you might guess, called the Zariski topology.

Exercises:

Exercise 15.1. Let f : V → W be an algebraic map of algebraic sets. Let v ∈ V . Show that
(f∗)−1(IV (v)) = IW (f(v)).

Solution by Becky Egg. Let V ⊆ C[x1, . . . , xn] and W ⊆ C[y1, . . . , ym] be algebraic sets, and f :
V →W an algebraic map. Let h = h+ I(W ) ∈ IW (f(v)). So h ∈ C[y1, . . . , ym], with h(f(v)) = 0.
Then

[f∗(h)](v) = h(f(v)) = 0,
so h ◦ f = f∗(h) ∈ I(v), and hence f∗h ∈ IV (v). So h ∈ (f∗)−1(IV (v)).
Now let g = g + I(W ) ∈ (f∗)−1(IV (v)). So g ∈ C[y1, . . . , ym], and f∗(g) = g ◦ f ∈ I(v). So
g(f(v)) = 0 implies that g ∈ I(f(v)), and hence g ∈ IW (f(v)). Thus we have (f∗)−1(IV (v)) =
IW (f(v)).

�

Exercise 15.2. Show that the sets of the form CJ as given in Definition 15.6 do indeed comprise
the closed sets of a topology.

Solution 1, by Douglas Heltibridle. Recall that in Definition 15.1.6 we have CJ = {M ∈ MaxSpec(R) :
J ⊆ M} where J is an ideal in R. As (0) ⊆ M for all M ∈ MaxSpec(R) we have that
C(0) = MaxSpec(R), and as R 6⊆M for any M ∈ MaxSpec(R) we have CR = ∅.

Now let CJ and CI be closed sets. Since J ∩ I ⊆ J and J ∩ I ⊆ I we have I ⊆ M and J ⊆ M
both imply J ∩ I ⊆M . Thus CI∩J ⊇ CJ ∪ CI . Now, let M ∈ CJ∩I , and suppose that I 6⊆M and
J 6⊆M , then there exists i ∈ I such that i 6∈M and j ∈ J such that j 6∈M . However, as I and J
are ideals ij ∈ I ∩J . Since M is prime, ij 6∈M and thus M 6⊇ I ∩J . Thus we have a contradiction
and so either M ⊇ I or M ⊇ J , which means M ∈ CJ ∪ CI . Therefore CJ∩I ⊆ CJ ∪ CI and we
have equality. Thus the union of the arbitrary closed sets CI and CJ is itself a closed set.

Next, let {CI}I∈I be a family of closed sets with I the set of ideals in R. First, M ∈ ∩ICI if
and only if M ∈ CJ for each J ∈ I. Then, M ∈ CJ for each J ∈ I if and only if J ⊆ M for all
J ∈ I. Finally J ⊆ M for all J ∈ I if and only if ∪IJ ⊆ M . Therefore M ∈ C∩ICI

if and only
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if M ∈ ∩ICI , which means ∩ICI = C∩ICI
. Thus arbitrary intersections of closed sets are closed,

and so we have that the closed sets of the form CJ give a topology for MaxSpec(R). �

Solution 2, by Kat Shultis. Let CJ := {M ∈ MaxSpec(R)|J ⊆ M} be sets in MaxSpec(R) which
are defined for any ideal J of R. Then CR = ∅ and C(0) = MaxSpec(R). Thus we have the emptyset
and the whole set in the collection of CJ . Let I, J be ideals in R. Then as M ∈ MaxSpec(R) are
all prime, we know that IJ ⊆M if and only if I ⊆M or J ⊆M . Hence CI ∪CJ = CIJ so that the
collection of CJ is closed under finite intersections. Next, let {Iα}α∈A be an arbitrary collection of
ideals in R. Then, J =

⊕
α∈A Iα is an ideal of R. Also, M ∈ CJ if and only if

⊕
α∈A Iα = J ⊆M ,

which is true if and only if Iα ⊆ M for all α ∈ A. Hence CJ =
⋂

α∈ACIα , and our collection of
CJ is closed under arbitrary intersections. Hence, the collection of CJ define the closed sets of a
topology on MaxSpec(R). �

Exercise 15.3. Let V ⊆ An be an algebraic set. Define a map hV : V → MaxSpec (C[V ]) by
hV : v 7→ IV (v). Show that hV is a homeomorphism in the Zariski topologies.

Solution by Philip Gipson. We already know from Lemma 15.1 that this correspondence is bijective,
so all that remains to be shown is that it is Zariski-continuous. To that end consider a closed set
CJ ⊆ MaxSpec(C[V ]). We know that CJ = {M : J ⊆ M} for some ideal J ⊆ C[V ]. Since each
maximal ideal M is uniquely expressible as M = IV (vM ) for some vM ∈ V we have that

CJ = {M : J ⊆M} = {IV (vM ) : J ⊆ IV (vM )} = {IV (vM ) : vM ∈ Z(J)}

and therefore

h−1
V (CJ) = {h−1

V (IV (vM )) : vM ∈ Z(J)} = {vM : vM ∈ Z(J)} = Z(J).

Since hV is bijective, we also have hV (Z(J)) = CJ . Thus both hV and h−1
V are continuous and so

hV is a homeomorphism. �

Lecture 16. February 18, 2011

16.1. More on MaxSpec. Let V and W be algebraic sets, and let f : MaxSpec (C[V ]) →
MaxSpec (C[W ]) be any map. Then f̃ = h−1

W ◦ f ◦ hV (where hV is as defined in Exercise 15.3) is
a map f̃ : V →W such that f(IV (v)) = IW (f̃(v)).

Definition 16.1.1. Let V andW be algebraic sets, and let f : MaxSpec (C[V ]) → MaxSpec (C[W ])
be a map. We say f is algebraic if there is a C-homomorphism φ : C[W ] → C[V ] such that
f(IV (v)) = φ−1(IV (v)) for all v ∈ V .

By Exercise 16.2, the algebraic maps V → W correspond bijectively via hV and hW to the
algebraic maps MaxSpec (C[V ]) → MaxSpec (C[W ]). Thus we can in some sense regard an algebraic
set V as being the same thing as MaxSpec(C[V ]). But the elements of C[V ] can be regarded as
being functions on V . We might ask in what sense do they give functions on MaxSpec(C[V ]).

If f ∈ C[V ], then f : V → C is algebraic, hence corresponds to the C-homomorphism f∗ :
C[t] = C[C]toC[V ] defined by t 7→ f . Similarly, f ∈ C[V ] corresponds to the algebraic map
f̃ : MaxSpec(C[V ]) → MaxSpec(C[C]) = C. There are several ways to think about f̃ . Given
v ∈ V , then f̃(IV (v)) = IC(f(v)) ⊂ C[C], or f̃(IV (v)) = f + IV (v) ∈ C[V ]/IV (v), or f̃(IV (v)) =
(f∗)−1(IV (v)) = (t− f(v)) ⊂ C[C].

The advantage of MaxSpec is that MaxSpec(R) makes sense for any commutative ring R with
1 6= 0. The problem with MaxSpec is that whereas for algebraic sets V and W the algebraic maps
MaxSpec (C[V ]) → MaxSpec (C[W ]) correspond to C-homomorphisms C[W ] → C[V ], it’s not clear
how to define algebraic maps MaxSpec (R) → MaxSpec (S) for arbitrary rings R and S.
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16.2. France to the fore: Grothendieck and the Paris school. The solution is Grothendieck’s
notion of affine scheme:

Definition 16.2.1. Let R be a commutative ring with 1 6= 0. Then Spec(R) is a topological space
whose point set is the set of all prime ideals of R and where the closed sets are the subsets of
the form CJ = {P ∈ SpecR : J ⊆ P} where J ⊆ R is an ideal. (Given ideals J ⊆ I, note that
CI ⊆ CJ .) The topology is referred to as the Zariski topology on Spec(R), and we refer to Spec(R)
as an affine scheme.

Example 16.2.2. If R = C[V ] for an algebraic set V , we can by Exercise 16.3 regard V as a
dense (but usually proper) subset of Spec(C[V ]). The points of Spec(C[V ]) are the prime ideals of
C[V ], which correspond to the irreducible subsets of V ; i.e., for every irreducible subset of V we
get a point of Spec(C[V ]). These points are not always closed. If P ∈ Spec(C[V ]), then the Zariski
closure P ⊆ Spec(C[V ]) is

P = ∩P∈CJ
CJ = ∩J⊆PCJ = CP = {Q ∈ Spec(C[V ]) : P ⊆ Q}.

So, for example, if V = A2, where C[A2] = C[x, y], and if P = (x), then P consists of all prime
ideals that contain x. In addition to P itself, these are precisely the maximal ideals (x, y − c) for
c ∈ C; i.e., the ideals of points on Z(x).

Exercise 15.3 suggests that it makes sense to identify an algebraic set V with MaxSpec(C[V ]).
Under this identification the points of V are identified with the maximal ideals of the coordinate
ring. However, Spec has nicer formal properties than MaxSpec. One reason is that given any
homomorphism f : A→ B of commutative rings (we’ll always assume rings have 1 6= 0 and that a
homomorphism takes 1A to 1B), if P ⊂ B is a prime ideal, then f−1(P ) is a prime ideal of A, but
it need not be true that f−1(M) is a maximal ideal of A just because M is a maximal ideal of B.

The first person to think of replacing the points of V by the primes of C[V ] may have been
Emmy Noether in the 1920s (although regarding the mathematics of her time—she died in 1935–
Noether remarked “it is all already in Dedekind”.) Wolfgang Krull suggested thinking of prime
ideals in arbitrary commutative rings as points in a topological space in some lectures in the
1930s, but his ideas were not taken seriously at the time. The advantages of doing so became
apparent to the Paris school of the 1950s, especially in the work of Jean-Pierre Serre and Alexander
Grothendieck. Given a commutative ring R, Grothendieck referred to Spec(R) as an affine scheme
and used it as the foundation for his general theory of schemes (although Serre has said that no
one invented schemes; they were in the air in Paris in the 1950s.) [For a fun and interesting
article exploring the history of these ideas, and which I used as a source for this paragraph, see:
http://www.math.jussieu.fr/~leila/grothendieckcircle/mclarty1.pdf.]

Exercises:

Exercise 16.1. Let V and W be algebraic sets, and let f : MaxSpec (C[V ]) → MaxSpec (C[W ])
be a map.

(a) Show that f is algebraic if and only if f̃ : V →W is algebraic.
(b) If f is algebraic, show that f(IV (v)) = (f̃∗)−1(IV (v)) = IW (f̃(v)) for all v ∈ V .

http://www.math.jussieu.fr/~leila/grothendieckcircle/mclarty1.pdf
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Solution by Katie Morrison (with minor changes). (a) (⇐) If f̃ is algebraic, we have the following
diagram:

MaxSpec(C[V ])
f−−−−→ MaxSpec(C[W ])xhV

xhW

V
ef−−−−→ WyIV

yIW

MaxSpec(C[V ]) −−−−−−−−→
( ef∗)−1

MaxSpec(C[W ])

where hV , hW are defined as in Exercise 15.3, and f̃∗ : C[W ] → C[V ], defined by g 7→ g ◦ f̃ , is a
C-homomorphism. Now the top square commutes by definition of f̃ , so f(IV (v)) = IW (f̃(v)), and
the bottom square commutes since IW (f̃(v)) = (f̃∗)−1(IV (v)) by Exercise 15.1. Thus, f(IV (v)) =
(f̃∗)−1(IV (v)) for the C-homomorphism f̃∗, so f is algebraic.

(⇒) If f is algebraic, then there exists some C-homomorphism φ∗ : C[W ] → C[V ] such that
f(IV (v)) = (φ∗)−1(IV (v)) (and hence we have the corresponding algebraic map φ : V → W ) and
we obtain the following commutative diagram

MaxSpec(C[V ])
f−−−−→ MaxSpec(C[W ])xhV

xhW

V
φ−−−−→ WyIV

yIW

MaxSpec(C[V ]) −−−−−−−−→
(φ∗)−1

MaxSpec(C[W ])

Since f̃ also makes the diagram commute and the maps hV and hW are bijective by Lemma 15.1,
we have f̃ = φ, so f̃ is algebraic.

(b) Since f is algebraic, f̃ is algebraic as well by part (a). Then f(IV (v)) = IW (f̃(v)) since
the diagram from part (a) commutes, and IW (f̃(v)) = (f̃∗)−1(IV (v)) by Exercise 15.1. Thus
f(IV (v)) = (f̃∗)−1(IV (v)) = IW (f̃(v)) for all v ∈ V . �

Exercise 16.2. Let V and W be algebraic sets. Show that f 7→ f̃ gives a bijection from the set of
algebraic maps MaxSpec(C[V ]) → MaxSpec(C[W ]) to the set of algebraic maps V →W .

Solution. Since hV and hW are bijective and hW ◦ f̃ = f ◦ hV , we see that f 7→ f̃ is a bijection
from the set of all maps MaxSpec(C[V ]) → MaxSpec(C[W ]) to the set of all maps V → W , and
by Exercise 16.1 f̃ is algebraic if and only if f is. Hence f 7→ f̃ gives a bijection from the set of
algebraic maps MaxSpec(C[V ]) → MaxSpec(C[W ]) to the set of algebraic maps V →W . �

Exercise 16.3. Let V be an algebraic set. Let iV : V → Spec(C[V ]) be the map iV : v → IV (v).
Show that iV is a continuous injective map such that the closure of iV (V ) is Spec(C[V ]).

Solution. Note that MaxSpec(C[V ]) is a subset of Spec(C[V ]), and that a subset C ⊆ MaxSpec(C[V ])
is closed if and only if there is an ideal J ⊆ C[V ] such that C = {M ∈ MaxSpec(C[V ]) : J ⊆ M}.
But a subset D ⊆ Spec(C[V ]) is closed if and only if there is an ideal J ⊆ C[V ] such that
D = {P ∈ Spec(C[V ]) : J ⊆ P}. Thus the closed sets C of MaxSpec(C[V ]) are precisely the
sets of the form C = D ∩MaxSpec(C[V ]) where D is closed in Spec(C[V ]). Thus MaxSpec(C[V ])
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is a topological subspace of Spec(C[V ]), hence the inclusion MaxSpec(C[V ]) ⊆ Spec(C[V ]) is con-
tinuous. However, hV is a homeomorphism and iV factors as

V
hV−−−→ MaxSpec(C[V ]) ⊆ Spec(C[V ]).

Thus iV is a composition of injective continuous maps, hence is itself injective and continuous.
We now show that iV (V ) is dense in Spec(C[V ]). Since V is an algebraic set, we have V = Z(J)
for some ideal J ⊆ C[x1, . . . , xn] for some n. By Exercise 5.7,

√
J = ∩M , where the intersection

is over all maximal ideals M of C[x1, . . . , xn] containing J . Since C[V ] = C[x1, . . . , xn]/
√
J , we

see that
√

(0) = ∩M where now the intersection is over all maximal ideals M ⊂ C[V ] containing
0. Thus if D is a closed subset of Spec(C[V ]) containing all maximal ideals M of C[V ], then
D = CJ for some ideal J ⊆ C[V ] such that J ⊆ M for all maximal ideals M , hence J ⊆

√
(0), so

D = CJ = C(0) = Spec(C[V ]), so iV (V ) is dense. �

Exercise 16.4. Let R be a commutative ring. Show that P ∈ Spec(R) is a closed point if and
only if P is a maximal ideal.

Solution by Anisah Nu’Man. Suppose P is a maximal ideal. Clearly by definition we have P ∈ CP .
Let Q ∈ CP . Then P ⊆ Q and Q is a prime ideal of R. Since Q is a proper ideal we have Q = P .
Therefore we have CP = {P}, and so is a closed point. Now Suppose P ∈ Spec(R) is a closed
point, hence CP = {P}. Since every ideal is contained in a maximal ideal there exists a maximal
ideal M such that P ⊆ M . Thus M ∈ CP = {P} so we have M = P . Therefore P is a maximal
ideal. �

Exercise 16.5. Let R be a commutative ring. Since every maximal ideal is a prime ideal we have
the inclusion MaxSpec(R) ⊆ Spec(R). Show that this is continuous in the Zariski topology, but
give an example to show that MaxSpec(R) need not be dense in Spec(R). [Hint: for the example,
do not pick R to be of the form C[V ] for some algebraic set V , since by Exercises 15.3 and 16.3,
MaxSpec(C[V ]) is dense in Spec(C[V ]).]

Solution. The proof that the inclusion MaxSpec(R) ⊆ Spec(R) is continuous (i.e., that MaxSpec(R)
is a topological subspace of Spec(R)) was given in the solution to Exercise 16.3. For the example,
let R be any integral domain which is not a field but which has a single maximal ideal M . Since R is
not a field, (0) ( M , and since R is an integral domain, (0) is a prime ideal. But now MaxSpec(R)
is the single closed point of Spec(R), hence not dense.

Here is a specific example of such an R. Let R be the set of rational numbers with odd denomi-
nators. It’s easy to check this is a subring of the rationals, and hence a domain. Suppose M ⊆ R
is a maximal ideal. Let a ∈ M be an element. The a = f/g where f and g are integers with g
odd. Since g is a unit, we have (a) = (f). Since M ( R, we cannot have a being odd (since then a
would be invertible). Since odds are invertible, we can assume f is either 0 or a power of 2. Thus
a ∈ (2), and hence M ⊆ (2). Since 2 is not invertible, we see (2) ( R, hence M = (2). I.e., (2) is a
maximal ideal of R and it is the only maximal ideal of R, but 2 6= 0. �

Lecture 17. February 21, 2011

17.1. Morphisms of affine schemes. A morphism φ : Spec(S) → Spec(R) of affine schemes is
a pair φ : (f, f#), where f# : R → S is a ring homomorphism and f : Spec(S) → Spec(R) is the
map f(Q) = (f#)−1(Q). Clearly, f# determines f . The utility of defining a morphism as a pair is
clearer for morphisms of schemes that are not affine. As we will see, schemes are built by gluing
together affine schemes, in much the same way that an n-dimensional manifold is built by gluing
together open balls of Rn. I.e., a scheme in general is locally an affine scheme and morphisms of
schemes are defined by gluing together morphisms of affine schemes, but if φ = (f, f#) : X → Y
is a morphism of schemes X and Y , f : X → Y is a globally defined continuous map, but there
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is no globally defined ring of functions and hence no globally defined homomorphism of rings f#.
Instead f# is essentially a collection of locally defined homomorphisms, whose relationships to each
other are codified by a sheaf and depend on f .

One of the most important examples of non-affine schemes are projective spaces. But instead of
defining them scheme theoretically to start with, we again take a historical approach first.

Example 17.1.1. Let f# : C → C be the identity and let g# : C → C be complex conjugation.
Define φi : Spec(C) → Spec(C) as φ1 = (f, f#) and φ2 = (g, g#), where f = g = idC. Then both
φ1 and φ2 are morphisms, but φ1 6= φ2.

17.2. Projective Space. Intuitively, projective space is a compactification of affine space obtained
by adding points at infinity. For example, P1 is the one point compactification of A1; in the standard
topology, P1

C is the 2-sphere.
But P2 is not the one point compactification of A2. A basic result about P2 is that any two lines

intersect in a single point. We regard parallel lines as being equivalent, and for each equivalence
class of parallel lines we add a point at infinity. For any two parallel lines we regard this point
at infinity as where the two lines meet. Of course, two lines are parallel exactly when they have
the same slope (which can be infinite if the lines are vertical). Thus the points at infinity can be
regarded as an C = A1 (representing the possible slopes) plus a point representing infinity; i.e., the
points at infinity that we add to A2 to get P2 themselves comprise a P1, so P2 = A2 ∪ P1. I.e., the
points at infinity for P2 form a line at infinity, and this line is a P1. In general, Pn is defined in
such a way that Pn = An ∪ Pn−1.

More rigorously, C\{0} acts on Cn+1{0} by scalar multiplication. Then Pn is the quotient space
(Cn+1{0})/(C\{0}); its points are the orbits of C\{0} under the action (i.e., the lines through the
origin). It’s conventional in this context to think of C[Cn+1] as being C[x0, . . . , xn]. Each non-zero
point p = (a0, . . . , an) is contained in a unique orbit which we denote by [p], and each orbit is [p]
for some non-zero point p ∈ Cn+1.

One can think of An as a subset of Pn in the following way. For each 0 ≤ i ≤ n, let U0 =
Z(x0 = 1). Thus there is a bijection An → Ui given by inserting a 1 in the 0th spot: (a1, . . . , an) 7→
(1, a1, . . . , an). Every line through the origin, except those lying in the plane x0 = 0 intersect U0 in
a unique point. The lines through the origin lying in the plane x0 = 0 form a Pn−1. Thus An ∼= U0

and U0 ∪ Pn−1 = Pn.
Figure 17.1 shows a figurative way to think of P2, with the points at infinity comprising a line

z = 0. Also shown are two lines which in A2 are parallel, but which intersect at a point at infinity.

y = 0

x = 0

z = 0

s
���

��

�����

@
@

@
@

@
@

@

Figure 17.1. Figurative representation of P2.

Exercises:

Exercise 17.1. Let φ : (f, f#) be a morphism φ : Spec(S) → Spec(R) of affine schemes. Show
that f : Spec(S) → Spec(R) is continuous in the Zariski topology.
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Solution by Katie Morrison. Let C ⊆ Spec(R) be a Zariski-closed set. Then C is the intersection
of sets of the form CJ for ideals J ⊆ R. Since the pre-image of an intersection of sets is the
intersection of the pre-images of the sets and the intersection of closed sets is closed, it suffices to
show that the pre-image of C = CJ is closed. Tracing through definitions of CJ and f , we see

f−1(CJ) = {P ∈ Spec(S) : f(P ) ⊇ J}
= {P ∈ Spec(S) : (f#)−1(P ) ⊇ J}
= {P ∈ Spec(S) : P ⊇ f#(J)}
= {P ∈ Spec(S) : P ⊇ (f#(J))}
= C(f#(J)).

Thus, the pre-image of closed sets is closed, and so f is continuous. �

Lecture 18. February 23, 2011

Homogeneity.

Definition 18.1. Let F ∈ C[x0, . . . , xn]. We say F is homogeneous if either F = 0 or each monomial
term appearing in F has the same total degree, this being deg(F ). And if I ⊆ C[x0, . . . , xn] is an
ideal, we say I is homogeneous if I = (F1, . . . , Fr) for some homogeneous polynomials Fi.

Example 18.2. Consider F = x2
0 − x1 ∈ C[x0, x1]. Then F is not homogeneous. On the other

hand H = 3x2
0 − x0x1 ∈ C[x0, x1] is homogeneous, since each term has the same total degree, 2.

Example 18.3. The ideal I = (3x2
0−x0x1, x

3
0) ⊂ C[x0, x1] is homogeneous, since each generator is

homogeneous. However the ideal J = (x2
0−x1) ⊂ C[x0, x1] is not homogeneous (see Exercise 18.1).

On the other hand, the ideal L = (x2
0− x1, x1) ⊂ C[x0, x1] is homogeneous since L = (x2

0, x1) has a
set of homogeneous generators.

Terminology: Let R = C[x0, . . . , xn] and F ∈ R. Let Fi be the sum of the monomial terms of F
of total degree i. If F has ho terms of degree i, set Fi = 0. Note that Fi is homogeneous for all
i, and F =

∑
i Fi. We refer to Fi as the homogeneous component of F of degree i. If we denote

by Rj the C-vector space span of the monomials in R of total degree j, note that RiRj = Ri+j .
This gives a ring structure to R0 ⊕ R1 ⊕ · · · , and the map h : R0 ⊕ R1 ⊕ · · · → R induced by
sending each monomial to itself is a ring isomorphism (see Exercise 18.4). We refer to Rj as the
homogeneous component of R of degree j. If I ⊆ R is a homogeneous ideal, then h also induces
an isomorphism I0 ⊕ I1 ⊕ · · · → I where Ij = I ∩ Rj (see Exercise 18.5). We refer to Ij as the
homogeneous component of I of degree j. Note that RiRj = Ri+j

Example 18.4. For F = 6x4
1 +x0x1 +x2

0−x1, we have F0 = 0, F1 = −x1, F2 = x0x1 +x2
0, F3 = 0,

F4 = 6x4
1 and Fi = 0 for i > 4.

Remark 18.5. Let F ∈ C[x0, . . . , xn]. One can check homogeneity F by looking at the zero-locus
of F : by Exercise 18.6, F is homogeneous if and only if Z(F ) ⊆ Cn+1 is either the origin or a
union of lines through the origin. For example, consider F = x2 + y ∈ C[x, y]. Then F is not
homogeneous and Z(F ) is neither the origin nor a union of lines through the origin, but Z(G) for
G = x2 + xy is the union of two lines through the origin.

Notation 18.6. For each point p ∈ Cn+1 \ {origin}, let [p] ∈ Pn denote the orbit of p under
the action of C∗ on Cn+1 \ {origin}. Note that every point of Pn is of the form [p] for some
p ∈ Cn+1 \ {origin}.

If F is a non-constant homogeneous polynomial F ∈ C[x0, . . . , xn], then F does not give a well-
defined function on Pn, since F (tp) = tdF (p), where t = deg(F ). Thus F can take different values
at different representatives tp ∈ [p]. But the zero-locus of F is well-defined, since for any t 6= 0 we
have F (p) = 0 if and only if F (tp) = 0.
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Definition 18.7. A projective algebraic subset V of Pn is a subset of the form V = Z(F1, . . . , Fr)
for homogeneous polynomials Fi ∈ C[x0, . . . , xn], where Z(F1, . . . , Fr) means Z(F1) ∩ · · · ∩ Z(Fr).
More generally, if I ⊆ C[x0, . . . , xn] is a homogeneous ideal, we define Z(I) to be ∩Z(F ), where
the intersection is over all homogeneous F ∈ I. By Exercise 18.7, Z(I) = Z(F1, . . . , Fr) for any set
of homogeneous generators Fi of I.

The projective algebraic subsets of Pn comprise the closed sets of a topology on Pn, called the
Zariski topology. However, the interplay between closed sets and ideals is more complicated than
for affine space:

Example 18.8. If I ⊆ C[An] has Z(I) = ∅ ⊆ An, then I = (1). However, if I ⊆ C[x0, . . . , xn] has
Z(I) = ∅ ⊆ Pn, then I = (1) is only one of many possibilities. We will see the other possibilities
next time.

Exercises:

Exercise 18.1. Show that the ideal J = (x2
0 − x1) ⊂ C[x0, x1] is not homogeneous.

Solution. By Exercise 18.3. if J were homogeneous, then we would have x2
0, x1 ∈ J . But this would

mean, in particular, that x2
0 − x1 divides x1, which it does not. Thus J is not homogeneous. [Note

that it is not enough to just show that x2
0−x1 is not homogeneous, since for example neither of the

given generators of (x2
0−x1, x

2
0+x1) is homogeneous, but (x2

0−x1, x
2
0+x1) = (x2

0, x1) is homogeneous
since we can find another set of generators each element of which is homogeneous.] �

Exercise 18.2. Let 0 6= F ∈ C[x0, . . . , xn] be homogeneous, d = deg(F ).
(a) Show that F (tx0, . . . , txn) = tdF (x0, . . . , xn).
(b) (Euler’s formula) Show that

∑
i xi

∂F
∂xi

= dF .

Solution by Jason Hardin. (a) Since F (x0, . . . , xn) is homogeneous of degree d, each term of F (x0, . . . , xn)
has the form cxe0

0 · · ·xen
n , where c ∈ C and ei are non-negative integers satisfying e0 + · · · + en =

d. The corresponding term in F (tx0, . . . , txn) is c(tx0)e0 · · · (txn)en = te0+···+encxe0
0 · · ·xen

n =
tdcxe0

0 · · ·xen
n . So each term of F (tx0, . . . , txn) is td times the original term of F (x0, . . . , xn). Fac-

toring out the common factor td, we obtain the result.
(b) By (a), F satisfies the equation F (tx0, . . . , txn) = tdF (x0, . . . , xn). Differentiating both sides

of this equation with respect to t via the chain rule of partial differentiation, we obtain
n∑

i=0

∂F (tx0, . . . , txn)
∂txi

· ∂txi

∂t
= dtd−1F (x0, . . . , xn).

Since
∂txi

∂t
= xi, this yields

n∑
i=0

xi
∂F (tx0, . . . , txn)

∂txi
= dtd−1F (x0, . . . , xn).

Finally, setting t = 1 we obtain the desired result:
n∑

i=0

xi
∂F (x0, . . . , xn)

∂xi
= dF (x0, . . . , xn).

�

Exercise 18.3. Let I ⊆ C[x0, . . . , xn] be an ideal. Show that I is homogeneous if and only if
whenever F ∈ I, then Fi ∈ I for each homogeneous component Fi of F .
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Solution, presented in class by Jason Hardin. Suppose I is homogeneous. Write I = (F 1, . . . , Fm),
where F 1, . . . , Fm ∈ C[x0, . . . , xn] are homogeneous polynomials. Let F ∈ I. Then there are
polynomials G1, . . . , Gm ∈ C[x0, . . . , xn] such that F =

∑m
j=1G

jF j . Since F j ∈ I, we have Gj
iF

j ∈
I for all i, and Gj

iF
j is homogeneous as it is a product of homogeneous polynomials. Thus,

(GjF j)i = Gj
i−deg(F j)

F j ∈ I for all i and j = 1, . . . ,m. Hence, we have Fi =
∑m

j=1(G
jF j)i ∈ I, as

required.
Conversely, suppose that whenever F ∈ I we have Fi ∈ I for all i. Write I = (F 1, . . . , Fm) with

deg(F j) = dj . Let J be the ideal generated by all the homogenous components of F 1, . . . , Fm,
i.e., J = (F 1

0 , . . . , F
1
d1
, F 2

0 , . . . , F
2
d2
, . . . , Fm

0 , . . . , F
m
dm

). Observe that J is a homogeneous ideal as it’s
generated by homogeneous polynomials. We have I ⊆ J since each generator of I is the sum of its
homogeneous components, which are all in J . Also, J ⊆ I since F j

i ∈ I by the hypothesis. Thus,
I = J is homogeneous. �

Exercise 18.4. Show that the map h : R0 ⊕ R1 ⊕ · · · → R induced by sending each monomial to
itself is a ring isomorphism.

Solution by Nora Youngs (with minor additions). Since the monomials of degree i give a basis of
Ri, h restricted to Ri is the identity, so h is defined by (r0, r1, ...) 7→ r0 + r1 + · · · . It is now
easy to check that h preserves addition and multiplication, so we will show that h is injective and
surjective.

Suppose h(r0, r1, ...) = h(s0, s1, ...). Then, r0 + r1 + · · · = s0 + s1 + · · · . Since ri, si are the
homogeneous components of degree i and the polynomials are equal, we must have ri = si for all
i. Thus, (r0, ...) = (s0, ...) and so h is injective.

To see that h is surjective, let f ∈ R. If f = 0, then h(0) = f , so assume f 6= 0. Write
f = f0 + · · · + fr where fi is the homogeneous component of f of degree i and r = deg(f). Then
h(f0, . . . , fr) = f0 + · · ·+ fr = f , so h is also surjective. �

Exercise 18.5. Let I ⊆ R = C[x0, . . . , xn] be a homogeneous ideal. Under the isomorphism
h : R0 ⊕R1 ⊕ · · · → R, show that h(I0 ⊕ I1 ⊕ · · · ) = I, where Ij = I ∩Rj .

Solution. Since h restricted toRi is the identity, h restricted to Ij is also the identity. But I =
∑

j Ij ,
so h(I0 ⊕ I1 ⊕ · · · ) = I. �

Exercise 18.6. Let F ∈ C[x0, . . . , xn] and let p ∈ Cn+1. Show that F is homogeneous if and only
if whenever F (p) = 0, then F (cp) = 0 for all c ∈ C.

Solution. First suppose F is homogeneous. If F = 0, then clearly F (cp) = cdF (p) for all c ∈ C.
So assume F is not the zero polynomial and let d = deg(F ). Then F (cp) = cdF (p) by Exercise
18.2(a), so if F (p) = 0, then also F (cp) = 0 for all c ∈ C.

Conversely, suppose F is not homogeneous. Write F = Fm + · · · + FM as the sum of its
homogeneous components, where m is the degree of the term of least degree, and M is the degree of
the term of largest degree (and hence m < M). We know Z(F ) is not empty by the Nullstellensatz,
since if Z(F ) were empty, then F would be a non-zero constant, but deg(F ) = M > m ≥ 0. Also,
by assumption, Fm 6= 0. If m = 0, then F has a non-zero constant term, so F (0) 6= 0. Pick any
point p ∈ Z(F ). Then the line through the origin and p is not contained in Z(F ); i.e., F (cp) = 0
does not hold for all c ∈ C. Suppose m > 0. Note that Z(F ) ( Cn+1. (If we had Z(F ) = Cn+1,
then F ∈

√
(0) = (0) by the Nullstellensatz.) Since Cn+1 is irreducible (since I(Cn+1) = (0) is

prime), Z(Fm) ∪ Z(FM ) 6= Cn+1, so we can pick a point p 6∈ Z(Fm) ∪ Z(FM ). Thus F (tp) is a
polynomial in the single indeterminate t whose homogeneous component of least degree is Fm(tp)
and whose homogeneous component of maximum degree is FM (tp). Thus F (tp) is not the zero
polynomial, so there are values of t for which F (tp) 6= 0. Since m > 0, we see t|F (tp), so 0 is a
root of F (tp), but F (tp) is not a pure power of t, so 0 cannot be its only root. Thus F vanishes at
some point q 6= 0 on the line tq, but not at every point of the line. �
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Exercise 18.7. If F1, . . . , Fr is any set of homogeneous generators for a homogeneous ideal I ⊆
C[x0, . . . , xn], show that Z(F1, . . . , Fr) = Z(I).

Solution by Zheng Yang. If Fi vanishes on c for all i, then so does any polynomial in I, as these
Fi’s are generators for I, hence Z(F1, . . . , Fr) ⊆ Z(I). For the reverse inclusion, assume F (c) = 0
for some c and all F in I. Then since each homogeneous component Fj of F is also in I by Exercise
18.3, we have that Fj vanishes at c too, so Z(F1, . . . , Fr) = Z(F1) ∩ · · · ∩ Z(Fr) ⊇ Z(I). �

Lecture 19. February 25, 2011

19.1. Homogeneity continued.

Notation 19.1.1. Let J ⊆ C[x0, . . . , xn] be a homogeneous ideal. Then Z(J) could denote a
subset either of projective space Pn or affine space An+1. To distinguish which is meant, we
will use ZAn+1(J) ⊆ An+1 or ZPn(J) ⊆ Pn. Of course, ZAn+1(J) and ZPn(J) are related: if
p ∈ An+1 \ {origin}, then p ∈ ZAn+1(J) if and only if [p] ∈ ZPn(J).

Example 19.1.2. As noted last lecture, ZAn+1((1)) = ZPn((1)) = ∅, but if M = (x0, . . . , xn) ⊂
C[x0, . . . , xn], and I is M -primary and homogeneous, then ZPn(I) = ∅, even though ZAn+1(I) =
{origin}.

The previous example shows that different homogeneous ideals can define different projective
zero loci, even if the ideals do not have the same radical. But as we will see from the projective
Nullstellensatz, this phenomenon is limited to the empty zero locus. First a lemma characteriz-
ing the homogeneous ideals with empty projective zero locus. Because of this lemma, the ideal
(x0, . . . , xn) is sometimes referred to as the em irrelevant ideal.

Lemma 19.1.3. Let J ⊆ C[x0, . . . , xn] be a homogeneous ideal. Then ZPn(J) = ∅ if and only if
(x0, . . . , xn) ⊆

√
J

Proof. If ZPn(J) = ∅, then ZAn+1(J) ⊆ {origin} (by notational remark 19.1.1 above), hence
(x0, . . . , xn) = I({origin}) ⊆ I(ZAn+1(J)) =

√
J.

Conversely, ZAn+1(J) = ZAn+1(
√
J) ⊆ ZAn+1((x0, . . . , xn)) = {origin}, hence ZPn(J) = ∅ (again

notational remark 19.1.1). �

Definition 19.1.4. Given any subset S ⊆ Pn, let I(S) be the ideal generated by all homogeneous
F ∈ C[x0, . . . , xn] such that ZPn(F ) contains S. (For emphasis, we may sometimes write IPn(S) for
I(S), although in principle this is not necessary, since given a set A, whether I(A) means the ideal
of all polynomials vanishing on A or the ideal generated by all homogeneous polynomials vanishing
on A is determined by whether A is a subset of affine space or projective space.) We also write
C[Pn] for C[x0, . . . , xn], and refer to it as the homogeneous coordinate ring of Pn.

Theorem 19.1.5 (Projective Nullstellensatz). Let J ⊆ C[Pn] be a homogeneous ideal. If ZPn(J)
is not empty, then I(ZPn(J)) =

√
J .

Proof. To show I(ZPn(J)) =
√
J , since both ideals are homogeneous, it suffices to show that any

non-zero homogeneous element of one is an element of the other.
So let F ∈ I(ZPn(J)) be non-zero and homogeneous. Since ZPn(J) 6= ∅, F is not constant. Let

p ∈ ZAn+1(J). If p is the origin, then (since every homogeneous polynomial vanishes at the origin),
F (p) = 0. If p is not the origin, then again F (p) = 0 since p ∈ ZAn+1(J) implies [p] ∈ ZPn(J). Thus
F ∈

√
J by the Nullstellensatz, hence I(ZPn(J)) ⊆

√
J .

For the reverse containment, let F ∈
√
J be non-zero and homogeneous. Then F r ∈ J ⊆

I(ZPn(J)) so F ∈ I(ZPn(J)). �
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19.2. Comparing conics, over R and over C, in A2 and in P2. There are eight different kinds
of zero loci in R2 for degree 2 polynomials in R[x, y]. Here are examples of each one.

(1) ellipses: x2 + y2 − 1 = 0;
(2) hyperbolas: x2 − y2 − 1 = 0;
(3) parabolas: y − x2 = 0;
(4) pairs of intersecting lines: x2 − y2 = 0;
(5) pairs of parallel lines: (x+ y)(x+ y + 1) = 0;
(6) doubled lines: (x+ y)2 = 0;
(7) single points: x2 + y2 = 0; and
(8) the empty set: x2 + y2 + 1 = 0.

Over C this reduces to only five different kinds. Note for example that under the coordinate
change in which we replace y by iy, x2 + y2 − 1 = 0 becomes x2 − y2 − 1 = 0. Moreover, ZA2(f)
is always an infinite set for a degree 2 polynomial f(x, y) ∈ C[x, y] (see Exercise 19.2), so cases (7)
and (8) above do not occur over C.

(1) ellipse-hyperbola category: x2 + y2 − 1 = 0;
(2) parabolas: y − x2 = 0;
(3) pairs of intersecting lines: xy = 0;
(4) pairs of parallel lines: (x+ y)(x+ y + 1) = 0;
(5) doubled lines: (x+ y)2 = 0;

To compare this to what happens in projective space, we introduce the notion of homogenization.

Definition 19.2.1. Let 0 6= g ∈ C[x1, . . . , xn] and let d = deg(g). Define the homogenization gH of
g to be the polynomial gH(x0, . . . , xn) = xd

0 g(
x1
x0
, . . . , xn

x0
) ∈ C[x0, . . . , xn]. Note that gH is indeed a

homogeneous polynomial. We refer to ZPn(gH) as the projective closure of ZAn(g).

Example 19.2.2. If f = x2
1 +x2

2−1, then fH = x2
1 +x2

2−x2
0. If f = x2−x2

1, then fH = x0x2−x2
1.

Further simplification occurs when classifying zero loci of degree 2 homogeneous polynomials in
P2. We can regard A2 as an open subset of P2; the points (a, b) ∈ A2 can be identified with the
points [(a, b, 1)] ∈ P2. The points of A2 at infinity can be identified with [(a, b, 0)] ∈ P2.

If 0 6= f(x, y) ∈ C[x, y], suppose [(a, b, 0)] is a point at infinity which is a limit point (in the
standard topology) of a sequence [(ai, bi, 1)] of points in the zero locus ZA2(f) in the finite affine

plane A2. Then either ai

i→∞
−−−→ ∞ or bi

i→∞
−−−→ ∞; say the latter and assume for simplicity that

b 6= 0. Then [(ai
bi
, 1, 1

bi
)] is the same sequence of points in P2, but the limit is [(a

b , 1, 0)] = [(a, b, 0)].
Since f(ai, bi) = 0 for all i, we have fH(ai, bi, 1) = f(ai, bi) = 0, hence we also have bdi fH(ai

bi
, 1, 1

bi
) =

fH(ai, bi, 1) = 0 and hence fH(a, b, 0) = limi fH(ai
bi
, 1, 1

bi
) = 0. Thus ZP2(fH) contains (and in fact

is equal to) the union of ZA2(f) and the limit points at infinity, hence the name projective closure.
Thus after including the points at infinity in our categories above we have the ellipse-hyperbola

category, ZP2(x2 +y2−z2), the parabola category, ZP2(yz−x2), the two intersecting lines, ZP2(xy),
the parallel lines, ZP2((x+ y)(x+ y + z)), and the doubled line, ZP2((x+ y)2). But after a change
of coordinates where we substitute y for x+ iy, z for x− iy and x for z, ZP2(x2 + y2− z2) becomes
ZP2(yz − x2); i.e., the parabola is just another instance of the ellipse-hyperbola category.

And the two parallel lines become a pair of intersecting lines, so in P2 this suggests we have only
3 categories:

(1) ellipse-hyperbola-parabola category (i.e., the irreducible conics): ZP2(yz − x2);
(2) two intersecting lines (the reducible conics): xy = 0;
(3) the doubled lines (the “non-reduced” conics): (x+ y)2 = 0;
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Figure 19.1. The hyperbola ZA2(xy − 1) and its projective closure ZP2(xy − z2).
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Figure 19.2. The parabola ZA2(y − x2) and its projective closure ZP2(yz − x2).

In the figures above, note that the projective closure of the hyperbola has equation xy − z2 and
the projective closure of the parabola has equation yz − x2; these are the same equations after a
permutation of the variables (i.e., up to a projective change of coordinates the projective closures
are the same). In the affine plane they are different: the parabola has a single point at infinity,
while the hyperbola has two.

Exercises:

Exercise 19.1. Let J ⊆ C[x0, . . . , xn] be a homogeneous ideal. Show that
√
J is homogeneous and

hence that ZPn(
√
J) is defined. Conclude that ZPn(J) = ZPn(

√
J).

Solution by Jason Hardin. Let F ∈
√
J and let F = F0 + F1 + · · · + Fd be its decomposition into

homogeneous components. By exercise 18.3, it suffices to show that Fi ∈
√
J for 0 ≤ i ≤ d.

Since F ∈
√
J , we know Fm1 ∈ J for some m1. Observe that (Fm1)0 = (F0)m1 . Since J

is homogeneous, (F0)m1 = (Fm1)0 ∈ J by exercise 18.3. Thus, F0 ∈
√
J . This means that

G := F −F0 = F1 + · · ·+Fd ∈
√
J , so Gm2 ∈ J for some m2. Observe that (F1)m2 = (Gm2)m2 ∈ J

since J is homogeneous, and thus F1 ∈
√
J . So H := G− F1 = F2 + · · ·+ Fd ∈

√
J . Continuing in
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this fashion, we see that at each step the smallest remaining non-zero homogeneous component of
F is in

√
J . This process terminates after d+ 1 steps, and we have Fi ∈

√
J for 0 ≤ i ≤ d.

Since
√
J is homogeneous, ZPn(

√
J) is defined. Moreover, we have [p] ∈ ZPn(J) if and only if

p ∈ ZAn+1(J) = ZAn+1(
√
J) if and only if [p] ∈ ZPn(

√
J). Hence, ZPn(J) = ZPn(

√
J). �

Exercise 19.2. Show that ZA2(f) is infinite for every degree 2 polynomial f(x, y) ∈ C[x, y].

Solution by Kat Shultis. Let f(x, y) ∈ C[x, y] be a degree 2 polynomial. Then f(x, y) = αx2 +
βy2 + γxy+ δx+ εy+ η and at least one of α, β, γ is nonzero. We consider each case separately. If
α 6= 0, then if we choose any y0 ∈ C, we get a quadratic polynomial f(x, y0) in one variable, x, and
since C is algebraically closed, we know that there is an x0 ∈ C such that f(x0, y0) = 0. Similarly,
if β 6= 0, we can choose any x0 ∈ C, and get a quadratic polynomial in y, namely f(x0, y). Hence
there exists some y0 ∈ C such that f(x0, y0) ∈ C. Thus, in either of these two cases, ZA2(f) has
the same cardinality of C, and hence is infinite. Next, we assume that γ 6= 0. If x0 ∈ C \ {0}, then
f(x0, y) = αx2

0 + βy2 + γx0y + δx0 + εy + η is at least a linear polynomial in y, as γ 6= 0. Thus
there exists some y0 ∈ C such that f(x0, y0) = 0. Here, ZA2(f) is in bijection with C \ {0} which
is infinite. �

Lecture 20. February 28, 2011

Projective changes of coordinates. To show rigorously that all irreducible conics are in some
sense the same, we formalize the notion of projective changes of coordinates. Let M ∈ GLn+1(C),
so M = (mij) is an (n + 1) × (n + 1) invertible matrix with complex entries. Let TM : A =
Cn+1 → B = Cn+1 be the linear transformation defined by M with respect to the standard basis
e0 = (1, 0, . . . , 0)t, . . . , en = (0, . . . , 0, 1)t. If a = (a0, . . . , an)t ∈ Cn+1, then

TM (a) = Ma =
(∑

j

m0jaj , . . . ,
∑

j

mnjaj

)
∈ Cn+1,

so TM is an algebraic mapping TM = (f0, . . . , fn) where, taking C[A] = C[x0, . . . , xn], the coordinate
functions are fi =

∑
j mijxj . If we write C[B] = C[y0, . . . , yn], then we have T ∗M : C[B] → C[A],

given by T ∗M (yi) = fi = yi ◦ TM .
We can regard M as giving a change of coordinates on Cn+1 by taking εi = (TM )−1(ei). Given

the coordinate vector a ∈ Cn+1 of a point in A with respect to the standard basis, then b = Ma
is the coordinate vector of the same point with respect to the basis {εi}, since∑

i

biεi =
∑

i

bi(TM )−1(ei) = (TM )−1
(∑

i

biei

)
= (TM )−1(b) = (TM )−1TM (a) = a =

∑
i

aiei.

A linear change of coordinates TM on Cn+1 gives a change of coordinates also on Pn (denoted
TP

M and well-defined since TM is linear and hence takes lines through the origin to lines through the
origin), since Pn inherits its coordinates from Cn+1. We call this change of coordinates a projective
change of coordinates. The set of all such coordinate changes TP

M forms a group under composition,
the projective linear group, denoted PGLn(C). By Exercise 20.1, PGLn(C) ∼= GLn+1(C)/C∗, where
we regard the non-zero complex number C∗ as a subgroup of GLn+1(C) by thinking of c ∈ C∗ as
cIn+1; this is in fact a normal subgroup.

Note that a projective change of coordinates on Pn is defined by picking a basis ε0, . . . , εn of
Cn+1. Picking the basis εi is equivalent to picking linear forms yj ∈ C[x0, . . . , yn], 0 ≤ j ≤ n (a
form is just another word for a homogeneous polynomial). Given the basis εi, the forms yj are
those such that yj(εi) is 1 if i = j and 0 otherwise, and given the forms yj , on can recover the
basis vectors εi by solving the equations yj(εi) = δij (where here δij is Kronecker’s delta-function;
i.e., (δij) is the identity matrix). If the basis εi is given by (TM )−1(ei) for a matrix M = (mij),
then the forms yi are

∑
j mijxj . This is because if [a] is the coordinate vector (with respect to
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the standard basis) of a point in Pn, then the coordinate vector with respect to the basis εi is [b],
where b = Ma. The ith coordinate of b is bi, but

yi(p) = yi(
∑

j

bjεj) =
∑

j

bjyi(εj) = bi =
∑

j

mijaj =
∑

j

mijxj(p),

hence yi =
∑

j mijxj .

Exercises:

Exercise 20.1. Let M1,M2 ∈ GLn+1(C). Show that TP
M1

= TP
M2

if and only if M1 = cM2 for some
non-zero scalar c ∈ C.

Solution by Ashley Weatherwax. ⇐ Suppose M1 = cM2 for a scalar c ∈ C. Then

TP
M2

([a]) = [M2a] = [cM2a] = TP
cM2

([a]) = TP
M1

([a])

⇒ Suppose TP
M1

([a]) = TP
M2

([a]). Then we can compose both sides with TP
M−1

2

to get TP
M−1

2 M1
=

TP
I . Thus it suffices to show that TP

M = TP
I implies M = cI for some constant c.

Let [a] ∈ Pn. Then TP
M ([a]) = TP

I ([a]) implies [Ma] = [a], and so there exists a ca so that

Ma = caa

But notice that this says that a is an eigen-vector, and as a was arbitrary, every vector is an eigen-
vector. Let also [b] 6= [a] ∈ Pn. Then there is an eigen-value cb for b so that Mb = cbb. But as every
vector is an eigen-vector, a+ b is an eigen-vector. By linearity we have

M(a+ b) = Ma+Mb = caa+ cbb

Thus a+ b is an eigen-vector iff ca = cb = c, and thus as a, b were arbitrary every eigen-vector has
the same eigen-value. Thus for some c ∈ C we have M = cI. �

Lecture 21. March 2, 2011

Classifying projective conics. Now that we have the notion of a projective change of coordinates,
we will classify homogeneous forms of degree 2 in 3 variables; i.e., we will classify projective plane
conics.

The result is that up to a projective change of coordinates, a form 0 6= F ∈ C[x, y, z] of degree 2
is either:

(a) F = xy − z2;
(b) F = xy; or
(c) F = x2

These are exactly the three cases asserted in Lecture 19.2.
We will do this first under the following assumptions. Let F ∈ C[X,Y, Z] be a non-zero form

of degree 2. First, ZP2(F ) is infinite (this is because of Exercise 19.2). Second, for each point
p ∈ ZP2(F ), there is a form Lp defining a line containing p such that p is the only point of ZP2(F )
on that line. (We will justify this later.)

So, first assume that F is not irreducible; i.e., F is reducible. Since F has degree 2, then, by
Exercise 21.1, F = AB for linear forms A and B. If ZP2(A) = ZP2(B), then A = cB for a nonzero
constant c, and we can choose a coordinate system specified by linear forms x, y, and z in which
x =

√
cB, and in which y and z are any two additional linear forms such that {x, y, z} are linearly

independent. Then F = AB = cB2 = x2.
If ZP2(A) 6= ZP2(B), then A is not a non-zero multiple of B, so A and B are linearly independent.

This time we pick x = A, y = B and extend this to a basis {x, y, z} of the linear forms. Now F = xy.
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Finally, assume F is irreducible. Since ZP2(F ) is infinite, we can pick distinct points p, q ∈
ZP2(F ). Let x = Lp, y = Lq, and let z = 0 be the equation of the line through p and q. Let r be
the point where Lp and Lq meet. Since by assumption, Lp ∩ZP2(F ) = {p} and Lq ∩ZP2(F ) = {q},
we see that r 6∈ ZP2(F ) and we also see that neither of the points p and q is on both lines Lp = 0
and Lq = 0. Thus Lp = 0 and Lq = 0 are different lines and hence p, q and r are 3 distinct points,
and not collinear. If x, y and z were dependent, there would be constants a, b, c, not all 0, such
that cx+ by + cz = 0. Evaluating at p gives a0 + by(p) + c0 = 0, since p ∈ {x = 0} ∩ {z = 0}. But
p 6∈ {y = 0}, so b = 0. Evaluating at q gives a = 0, and evaluating at r gives c = 0. This shows that
x, y, and z are linearly independent and hence define a coordinate system on P2. The coordinates
of p, q and r in this coordinate system are, respectively, [(0, 1, 0)], [(1, 0, 0)], and [(0, 0, 1)].

Therefore we can write F as a linear combination F = ax2 + bxy + cy2 + dxz + eyz + fz2.
We have 0 = F (p) = F (0, 1, 0) = c, 0 = F (q) = F (1, 0, 0) = a, and 0 6= F (r) = f . Thus
F = bxy + dxz + eyz + fz2.

Now use the fact that the only common zero of F and y is q. Solving F = 0 and y = 0
simultaneously gives F = dxz + fz2, which has (−f, 0, d) as a root. Since Lq ∩ ZP2(F ) = {q}, we
see that [(−f, 0, d)] = [(1, 0, 0)], hence d = 0. Likewise, solving F = 0 and x = 0 simultaneously
gives e = 0.

Thus F = bxy + fz2. Since F is irreducible we cannot have b = 0. Replacing x by x/b and z by
iz/
√
f gives F = xy − z2.

We still have to justify that for each point p ∈ ZP2(F ), there is a form Lp defining a line containing
p such that p is the only point of ZP2(F ) on that line.

Exercises:

Exercise 21.1. If F ∈ C[x0, . . . , xn] is a non-zero homogeneous polynomial and G ∈ C[x0, . . . , xn]
is a factor of F , show that G is homogeneous.

Solution by Katie Morrison. Since G is a factor of F , there exists an H ∈ C[x0, . . . , xn] such that
F = GH. Let mG be the degree of the homogeneous component of G of least degree, and let
mH be the degree of the homogeneous component of H of least degree. Then the component of
least degree in GH will have degree mGmH , and the product of other components of G and H will
have strictly larger degree. But F = GH is homogeneous so there is only one component and it
must have degree mGmH . Thus, G and H can only have one component each as well, and so G is
homogeneous. �

Lecture 22. March 4, 2011

Classifying projective conics (cont.). Note: Class began with jason presenting Problem 18.3.
To finish our classification of conics, given an irreducible form F ∈ C[x, y, z] of degree 2, we need

to verify for each point p ∈ Z(F ) ⊂ C3 that there is a linear form Lp such ZP2(F,Lp) = {[p]}. (In
fact, Lp is the form defining the tangent line to ZP2(F ) at p.)

So let [p] ∈ ZP2(F ). To define Lp (without reference to tangent lines), pick any two linearly
independent linear forms u and v which both vanish at [p]. Pick any third linear form w that does
not vanish at [p]. Then u, v and w are linearly independent. (If not we have scalars a, b, c, not all
0, such that au+ bv+ cw = 0, but evaluation at [p] gives 0 = au(p) + bv(p) + cw(p) = cw(p), hence
c = 0 since w(p) 6= 0. Thus au+ bv = 0, but we chose u and v to be independent.)

Using this coordinate system, we can write F = au2 + buv + cv2 + duw + evw + fw2 for some
scalars a, . . . , f . Since F (p) = 0, and sicne u(p) = 0 = v(p), we have f = 0. If d = e = 0, then F
factors (no form in 2 variables is ever irreducible unless it’s linear). Thus either d 6= 0 or e 6= 0.
Let Lp = du+ ev, and assume e 6= 0; the argument in case d 6= 0 is similar.
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Now solve the system F = 0, Lp = 0. Since we assume Lp = 0, we can write v = −du/e.
Substitute into F to get 0 = F = (a−(bd/e)+c(d/e)2)u2. If a−(bd/e)+c(d/e)2 = 0, then ZP2(Lp) ⊆
ZP2(F ), hence by the projective Nullstellensatz F ∈

√
(Lp) = (Lp), so Lp|F , contradicting having

F be irreducible. Thus u2 = 0, so u = 0 = v, hence the only solution is [p]; i.e., ZP2(F,Lp) = [p].

Exercises:

Exercise 22.1. Let F ∈ C[x, y, z] be an irreducible form of degree 2 and let [p] ∈ ZP2(F ).
Show that, up to multiplication by scalars, Lp is the only linear form vanishing at [p] such that
ZP2(F,Lp) = [p].

Solution. Pick a coordinate system x, y, z such that Lp = x and let [p] = ZP2(x, y). Let L = ax+by+
cz be a linear form which is not a scalar multiple of Lp and write F = dx2+exy+fy2+gxz+hyz+iz2.
Since F ([p]) = 0 we have i = 0. The restriction of F = 0 to the line x = 0 gives fy2 + hyz = 0,
and since ZP2(F,Lp) = [p], we see that h = 0. Thus F = dx2 + exy + fy2 + gxz and since F is
irreducible, then f 6= 0 and g 6= 0. In order for L([p]) = 0 we need c = 0. Since L is not a scalar
multiple of Lp, we must have b 6= 0. Dividing L by b allows us to reduce to the case that L = ax+y.
Solving F = 0 with L = 0 gives y = −ax and dx2− aex2 + a2fx2 + gxz = 0 and hence either x = 0
(which gives us [p] ∈ ZP2(F,L)) or (d − ae + a2f)x + gz = 0 which has the solution [(1,−a, 0)] if
d− ae+ a2f = 0 or [(−g, ag, d− ae+ a2f)] if d− ae+ a2f 6= 0. Either way, ZP2(F,L) is not just
[p]. �

Lecture 23. March 7, 2011

Maps of projective algebraic sets. It is natural to mimic what we did for affine algebraic sets
in trying to define algebraic maps of projective algebraic sets. If we do this we would want to say
that a map f : V →W of projective algebraic sets V ⊆ PN and W ⊆ PM is the restriction of V of
a mapping F : PN → PM , where F = (F0, . . . , FM ) in which each Fi is a polynomial in C[PN ]. In
order for F to be well-defined, we need: each Fi to be homogeneous; we need the degree of each Fi

which is not the 0 polynomial to be the same; and we need ZPN (F0, . . . , FM ) = ∅.
But it turns out this is not enough to get a good notion of maps of projective algebraic sets, as

the next two examples will help us to see.

Example 23.1. Let C[P1] = C[a, b] and let C[P2] = C[x0, x1, x2]. Consider F : P1 → P2 where
F = (F0, F1, F2) with F0 = ab, F1 = a2 and F2 = b2. Note that the Fi all are homogeneous of
degree 2, and that if F1 = 0 and F2 = 0, then a = 0 and b = 0 so ZPN (F0, F1, F2) is empty,
and F gives a well-defined homomorphism of P1 into P2. In addition, F defines a homomorphism
F ∗ : C[P2] → C[P1] in the usual way, by sending Fi to xi. The kernel of F ∗ is (x2

0 − x1x2),
and x2

0 − x1x2 is in fact the equation of the image of P1 under F . The map F is bijective to its
image C = F (P1) and we’ll eventually see that C is isomorphic to P1, but the homomorphism
F ∗ : C[P2]/I(C) → C[P1] induced by F ∗ is not an isomorphism. Thus the connection between
homogeneous coordinate rings and projective algebraic sets is less direct than is the connection
between coordinate rings and affine algebraic sets.

Example 23.2. Again let C[P1] = C[a, b] and let C[P2] = C[x0, x1, x2]. Consider another map
F : P1 → P2 where this time F = (F0, F1, F2) with F0 = a, F1 = b and F2 = 0. Note that the
non-zero Fi both are homogeneous of degree 1, and that if F0 = 0 and F1 = 0, then a = 0 and
b = 0 so ZPN (F0, F1, F2) is again empty, and F gives a well-defined homomorphism of P1 into P2.
The equation of the image C = F (P1) of F is x2 = 0, and (x2) is the kernel of the homomorphism
F ∗ : C[P2] → C[P1]. In fact we get an isomorphism C[P2]/I(C) ∼= C[P1], so we might expect C and
P1 to be isomorphic, and once we define things correctly, they will be.
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The curves C in the preceding two examples turn out both to be isomorphic to P1, but the first
example shows that the homogeneous coordinate ring is not enough to detect this, and in both
examples there is no well-defined map G : P2 → P1 defined by homogeneous polynomials whose
restriction to C is the inverse of F . In fact, the only well-defined map G : P2 → P1 defined by
homogeneous polynomials are the constant maps.

We now justify this. Certainly if G = (G0, G1) where Gi ∈ C for both i (and where the Gi are
not both 0) is a well-defined map P2 → P1, but it is the constant map that sends every point of
P2 to the point (G0, G1). Suppose G0 or G1 is not a constant. Suppose for example, that G0 is
not a constant. Then G0 is a homogeneous polynomial of some degree d > 0. As noted above, for
G to be well-defined, G1 is either the 0 polynomial or is homogeneous of degree d. If G1 is the
0 polynomial, then for each p ∈ P2 where G0(p) 6= 0, G(p) = [(1, 0)], and for each p ∈ ZP2(G0),
G(p) = [(0, 0)], which is undefined. I.e., at those points where G is defined, it’s constant. So
we would be in the worst of all possible worlds: G is both constant and (since by the projective
Nulstellensatz ZP2(G0) 6= ∅) not well-defined!

Thus G1 is not a constant, hence G1 is a homogeneous polynomial of degree d. If G0 and
G1 have a non-constant common factor F , then F is homogeneous by Exercise 21.1 and we have
∅ 6= ZP2(F ) ⊆ ZP2(G0, G1), so G is not well-defined. More generally, since (0, 0, 0) ∈ ZA3(G0, G1),
it follows that ZA3(G0, G1) 6= ∅, and we will see that every irreducible component of ZA3(G0, G1)
has dimension at least 1 (see Exercise 38.5). Since for every point p ∈ ZA3(G0, G1), the line
Lp through the origin which also goes through p is contained in ZA3(G0, G1), it follows that Lp

represents a point of ZP2(G0, G1), and hence ZA3(G0, G1) 6= ∅. Thus G is not well-defined.

Remark 23.3. For any two homogeneous polynomials G0 and G1, Bézout’s Theorem states that
the number of points of ZP2(G0, G1) is infinite if G0 and G1 have a non-constant common factor,
and otherwise ZP2(G0, G1) consists of exactly deg(G0) deg(G1) points, if the points are counted
with multiplicity. In either case Bézout implies that ZP2(G0, G1) is non-empty unless one of the Gi

is a non-zero constant. Thus, if we allow ourselves to use Bézout’s Theorem, we get a shorter way
to show that no non-constant map G : P2 → P1 is well-defined.)

Since there is no map G : P2 → P1, we cannot get an isomorphism C → P1 using only maps
defined by homogeneous polynomials. The resolution to the problem is to define a more flexible
notion of algebraic map. We do this by working locally.

Exercises:

Exercise 23.1. Consider the map F of Example 23.1. Show that Im(F ) = ZP2(x2
0 − x1x2) and

that ker(F ∗) = (x2
0 − x1x2), but that F ∗ is not an isomorphism.

Solution. First, Im(F ) ⊆ ZP2(x2
0 − x1x2), since F ([(a, b)]) = [(ab, a2, b2)] satisfies (ab)2 − a2b2 = 0,

which also shows that (x2
0 − x1x2) ⊆ ker(F ∗). Conversely, say [(c, d, e)] ∈ ZP2(x2

0 − x1x2). If d = 0,
then c2 − de = 0 implies c = 0, and we have [(c, d, e)] = [(0, 0, 1)] = F ([(0, 1)]). If d 6= 0, let
b = c/d and let a = 1. Then F ([(a, b)]) = F ([(1, b)]) = [(b, 1, b2)] = [(c, d, db2)], but c2 = de implies
e = c2/d = b2d, so [(c, d, db2)] = [(c, d, e)]. Thus Im(F ) = ZP2(x2

0 − x1x2).
Note that F ∗(xi) is homogeneous of degree 2 for each i. Thus if H ∈ C[x0, x1, x2] and we write

H as a sum H = H0 + · · ·+Hd of its homogeneous components, then for each non-zero term Hj ,
F ∗(Hj) is homogeneous of degree 2 deg(Hj). Thus H ∈ ker(F ∗) if and only if Hj ∈ ker(F ∗) for each
j. In particular, ker(F ∗) is a homogeneous ideal. Thus to show ker(F ∗) = (x2

0 − x1x2), given that
we already have seen (x2

0−x1x2) ⊆ ker(F ∗), it suffices to show F ∗(H) = 0 implies x2
0−x1x2 divides

H whenever H is homogeneous. But F ∗(H) = 0 implies ZP2(x2
0− x1x2) = Im(F ) ⊆ ZP2(H), hence

by Theorem 19.1.5, the projective Nullstellensatz, that H ∈
√

(x2
0 − x1x2), but

√
(x2

0 − x1x2) =
(x2

0 − x1x2) since x2
0 − x1x2 is irreducible. (To see irreducibility, note that any factor of x2

0 − x1x2
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is homogeneous by Exercise 21.1. Thus were x2
0−x1x2 not to be irreducible, it would be a product

of two linear forms, say x2
0 − x1x2 = LM . But ZP2(L,M) consists of the point p where the lines

defined by L and M cross. Also note that the gradient of LM is ∇(LM) = L∇(M) + M∇(L),
hence vanishes at p. But ∇(x2

0−x1x2) = (2x0,−x2,−x1) never vanishes. Thus x2
0−x1x2 cannot be

the product of two linear forms and so is irreducible. In language we’ll see later on, ZP2(x2
0−x1x2)

is smooth, but a reducible conic ZP2(LM) is not.)
Finally, F ∗ is not an isomorphism, since the image of each variable is homogeneous of degree 2.

Thus neither a nor b is in the image, so F ∗ is not onto. �

Exercise 23.2. If I ⊂ C[PN ] is a homogeneous ideal and if Q is a minimal prime ideal containing
I, show that Q is homogeneous. [Hint: apply Exercise 6.4.]

Solution. Let Q be minimal among all prime ideals containing I; i.e., if I ⊆ P ⊆ Q with P
prime, then P = Q. Let H be the ideal generated by all homogeneous elements of Q. Then H is
homogeneous and I ⊆ H ⊆ Q. Say FG ∈ H. Then Q being prime tells us either F or G is in
Q; say F ∈ Q. Then every homogeneous component of F is in Q hence in H, so F ∈ H. Thus
H is prime, hence H = Q. [Note: We don’t need the hint; I don’t remember now what I had in
mind to use the hint for. One thing it does do is tell us that

√
I is the intersection of the minimal

primes containing I, of which there are finitely many. Clearly,
√
I ⊆ Q, for each minimal prime

Q containing I. By Exercise 6.4,
√
I is a finite intersection of prime ideals, hence by Lemma 7.1,

each Q is one of these ideals.] �

Lecture 24. March 9, 2011

To define a more flexible notion of algebraic map, we recall the notion of localization.
Localization. Let R be a commutative ring with 1 6= 0, let S ⊆ R be a multiplicatively closed
subset; i.e., if a, b ∈ S, then so is ab. For simplicity, we also assume 1 ∈ S.

Define S−1R to be equivalence classes of all fractions of the form r
s , such that r ∈ R and s ∈ S,

where we say
r1
s1
∼ r2
s2

if for some s ∈ S we have s(r1s2 − s1r2) = 0. Then S−1R is a ring under the usual addition and
multiplication operations on fractions, and we have a canonical homomorphism R→ S−1R defined
by r 7→ r

1 .

Example 24.1. If f ∈ R, let S = {1, f, f2, . . .}. Then S−1R is denoted Rf and we have an
isomorphism R[t]/(tf − 1) ∼= S−1R induced by r 7→ r

1 for all r ∈ R and by t 7→ 1
f .

Example 24.2. Let P ⊂ R be a prime ideal. Let S = R \ P . Then S−1R has a unique maximal
ideal (which comes from P ); we denote S−1R by RP . (A ring with a unique maximal ideal is
sometimes called a local ring. N.B.: Some people use local ring only for Noetherian rings with a
unique maximal ideal.)

If P is a maximal ideal and R = C[V ] for an affine algebraic set V ⊆ An, then the elements of
RP can be regarded as germs of functions.

Definition 24.3. Given a function f : X → Y of topological spaces and a point x ∈ X, the germ
of f at x is an equivalence class of functions defined on neighborhoods of x. If U1 and U2 are open
neighborhoods of x, and if gi : Ui → Y are functions, then we say g1 and g2 represent the same germ
(or have the same germ) if for some open neighborhood U3 ⊆ U1 ∩ U2 of x we have g1|U3 = g2|U3 .

Example 24.4. Let f : R→ R be the function f(x) = |x|. For each ε > 0, let gε : R→ R be

gε(x) =

{
|x| if |x| ≤ ε,
ε if |x| ≥ ε.
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Then f and gε for every ε > 0 represent (or have) the same germ at x = 0.

Example 24.5. If 0 ∈ S, then S−1R = {0}. This is because we can use s = 0 in s(r1s2−s1r2) = 0,
and hence get r1

s1
∼ r2

s2
for any two fractions; in particular, every fraction is equivalent to 0

1 .

Example 24.6. If R is a domain, then R(0) is a field. if R = C[V ] for some irreducible affine
algebraic set V , then we denote R(0) by C(V ), and refer to it as the function field of V .

Example 24.7. It is easy to see that the homomorphism R→ S−1R is injective if R is a domain
and 0 6∈ S, but otherwise injectivity can fail. For example, Let V = Z(xy) ⊂ A2, so V is the
union of the coordinate axes. Let x be the image of x under the quotient C[A2] → C[V ], where
C[AAA2] = C[x, y] and C[V ] = C[x, y]/(xy) (note that I(V ) = (xy)). Then C[V ]x ∼= C[x]x ∼=
C[x, 1

x ] and (y) is the kernel of C[V ] → C[V ]x.

Exercises:

Exercise 24.1. Justify the claims made in Example 24.1.

Solution by Ashley Weatherwax. We’ll start by refreshing what example 24.1.1 was. Let f ∈ R and
let S = {1, f, f2, ...}. Then S−1R is denoted Rf and we have an isomorphism R[t]/(tf −1) ∼= S−1R

induced by r 7→ r
1 for all r ∈ R and by t 7→ 1

f .
Define as above h : R[t] → S−1R by r 7→ r

1 and t 7→ 1
f . Then we get an induced map φ :

R[t]/(tf − 1) → S−1R. Clearly, h is a homomorphism, and we know this induced map is well
defined, as (tf − 1) ⊂ ker h.

Now define a map g : R → R[t]/(tf − 1), defined by r 7→ r. Then g(f) = f , which is a unit
in R[t]/(tf − 1). So by the universal property of localization, there is a unique homomorphism
ψ : S−1R→ R[t]/(tf − 1), which sends r

fk 7→ g(r)g(fk)−1 = rtm.
Claim: φ ◦ ψ = idS−1R and ψ ◦ φ = idR[t]/(tf−1)

Let r
fk ∈ S−1R. Then

φ ◦ ψ(
r

fk
) = g(r)g(fk)−1 = φ(rf−k) = rf−k =

r

fk

Let [a0 + a1t+ a2t
2 + ...+ akt

k] ∈ R[t]/(tf − 1). Then

ψ ◦ φ([a0 + ...+ akt
k]) = ψ(a0 +

a1

f
+ ...+

ak

fk
) = a0 + a1f

−1 + ...+ akf
−k

But as f−1 = t, this is equal to

ψ ◦ φ([a0 + ...+ akt
k]) = a0 + a1t+ ...+ akt

k

Then as φ has an inverse, it is an isomorphism. �

Exercise 24.2. Suppose we defined
r1
s1
∼ r2
s2

by the condition that r1s2− s1r2 = 0. Show that this need not be an equivalence relation by giving
two examples. In one example, let 0 ∈ S for any R and S of your choice. For the other example,
take R = C[x, y]/(xy) and S = {1, x, x2, . . .}.

Solution by Anisah Nu’Man. Let R = Z and S = {0, 1, a, a2, a3, . . . } for any a ∈ Z with a 6= 0.

Observe we have
1
0
∼ 0

0
since 1(0) = 0(0) = 0 and

0
0
∼ 0
a

since 0(a) − 0(0) = 0. Yet
1
0

�
0
a

since

1(a)− 0(0) = a 6= 0.
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Now let R = C[x, y]/(xy) and S = {1, x, x2, . . . }. Observe we have
y2

x
∼ 0

x
since y2(x) −

x(0) = y(yx) − 0 = 0 and
0
x
∼ y

1
since 0(1) − x(y) = 0 − xy = 0 − 0 = 0. Yet

y2

x
�

y

1
since

y2(1)− xy = y2 − 0 = y2 6= 0. �

Exercise 24.3. Show that (y) is the kernel of the homomorphism C[V ] → C[V ]x in Example 24.7
and that C[V ]x ∼= C[x]x.

Solution by Zheng Yang. First, C[x, y]/(xy)x
∼= C[x, y, t]/(xy, tx−1) ∼= C[x, y, t]/(xy, tx−1, txy) ∼=

C[x, y, t]/(xy, tx− 1, y) ∼= C[x, t]/(tx− 1) ∼= C[x]x. The kernel of the localization map R → S−1R
is {r : rs = 0} for some s ∈ S. Here S = {1, x, x2, . . .}, so the kernel is (y). �

Lecture 25. March 11, 2011

The structure sheaf (or the sheaf of regular functions). Let V ⊆ An be an irreducible closed
subset. For each non-empty open subset U of V define OV (U) to be ∩p∈UC[V ]IV (p) ⊂ C(V ). For
the empty set, define OV (∅) = 0. Elements of C(V ) are called rational functions. If p ∈ V and if
a rational function f is in C[V ]IV (p), we say f is regular at p. The elements of OV (U) are precisely
the rational functions regular at each point p ∈ U , so we call OV (U) the ring of regular functions
on U (or the ring of functions regular on U).

It is not in general easy to determine OV (U), given an open subset U ⊆ V . There are important
cases where OV (U) is known.

Lemma 25.1. Let V ⊆ An be an irreducible closed subset. Let f ∈ C[V ] and let Uf = V \ ZV (f).
Then OV (Uf ) = C[V ]f .

Proof. This is true by definition if f = 0, so assume f 6= 0. Since p ∈ Uf implies f(p) 6= 0, we have
f 6∈ IV (p). Thus g

fm ∈ C[V ]IV (p) for all g ∈ C[v] and all m > 0. Hence C[V ]f ⊆ OV (Uf ).
Now say h ∈ OV (Uf ). Thus for each p ∈ Uf we have h = gp

fp
, where gp ∈ C[V ] and fp 6∈ IV (p).

Thus ZV ({fp : p ∈ Uf}) ∩ Uf = ∅, so ZV ({fp : p ∈ Uf}) ⊆ ZV (f), hence f ∈
√

(({fp : p ∈ Uf}).
Therefore, fm = ap1fp1 + · · · aprfpr for some elements api ∈ C[V ] and points pi ∈ Uf , so fmh =
ap1fp1h + · · · aprfprh = ap1fp1

gp1
fp1

+ · · · aprfpr

gpr
fpr

= ap1gp1 + · · · aprgpr . Call this g; then g ∈ C[V ]
and h = g

fm ∈ C[V ]f , so OV (Uf ) ⊆ C[V ]f . �

Example 25.2. Let V be an irreducible closed subset of An. Then OV (V ) = C[V ]. Just take
f = 1, using the fact that C[V ]1 = C[V ].

Example 25.3. Let U = A2 \ {(0, 0)}. Then OA2(U) = C[A2] = C[x, y]. By definition, C[A2] ⊆
OA2(U), so let h ∈ OA2(U). Then h|Ux ∈ C[A2]x and h|Uy ∈ C[A2]y, hence in C(A2) we can write
h = f

xm = g
yn for some f, g ∈ C[A2] and some m,n ≥ 0. Thus ynf = xmg, so by unique factorization

we have f = φxm and g = γyn and h = φ = γ ∈ C[A2].

Example 25.4. It can happen that OV (U) is not a finitely generated C-algebra (see A. Neeman,
Steins, affines and Hilbert’s fourteenth problem, Ann. of Math. 127 (1988), 229–244, for example)
or even Noetherian. One of the most famous examples is one of (if not the) first, due to D. Rees
(On a problem of Zariski, Illinois J. Math. 2 (1958), 145–149). Rees constructed a ring A = C[V ]
and an open subset U = V \ ZV (I) such that B = OV (U), which is of the form (in his notation)
∪nI

−n, is not a finitely generated C-algebra, or even a Noetherian ring.
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Exercises:

Exercise 25.1. A topological space X is said to be quasi-compact if every open cover has a finite
subcover. (Some people reserve the use of the word compact to mean quasi-compact and Hausdorff.)
Show that every open subset of an algebraic set is quasi-compact.

Solution by Jason Hardin. Let V ⊆ An be an algebraic set and U ⊆ V be an open subset. Let
{Ui}i∈I be an open cover for U . So U ⊆ ∪i∈IUi. This means that ∩i∈I(V \Ui) ⊆ (V \U). Since V \Ui

is a closed subset of V , by the definition of the subspace topology it has the form V \Ui = Z(Ji)∩V ,
where Ji ⊆ C[x1, . . . , xn] is an ideal. Now we have

∩i∈I(V \Ui) = ∩i∈I(Z(Ji) ∩ V ) = ∩i∈I(Z(Ji)) ∩ V = Z((∪i∈IJi)) ∩ V
= Z(fi1 , . . . , fit) ∩ V,

where fij ∈ Jij . Let I ′ = {i1, . . . , it} ⊆ I. Then

V \U ⊇ ∩i∈I(V \Ui) = Z(fi1 , . . . , fit) ∩ V = ∩i∈I′(Z(Ji) ∩ V ) = ∩i∈I′(V \Ui),

i.e., U ⊆ ∪i∈I′Ui. So {Ui}i∈I′ is a finite subcover of {Ui}i∈I , and hence U is quasi-compact. �

Exercise 25.2. Show that the open subsets of the form Uf give a basis for the Zariski topology
on an algebraic set V .

Solution 1, by Philip Gipson. Since the Zariski topology is formed by declaring {Z(J) : J ⊆ C[V ]}
to be the closed sets and Uf = V \ZV (f) it is enough to show that the closed sets {U c

f} = {ZV (f)}
generates {Z(J) : J ⊆ C[V ]}.
To that end let J be any ideal in C[V ]. Since C[V ] is noetherian J is finitely generated J =
〈f1, ..., fn〉. Thus ZV (J) = ZV (f1, ..., fn) =

⋂
ZV (fi) and so we conclude that {ZV (f)} generates

{Z(J)} and thus is a basis for the topology. �

Solution 2, by Kat Shultis. We first check that the collection of sets of the form Uf form a basis.
Notice that the polynomial 0 is zero everywhere, and so U0 = ∅. Also, the polynomial 1 is zero
nowhere, so for every v ∈ V , v ∈ U1 = V . Now, let v ∈ Uf ∩ Ug. This means that f(v) 6= 0 and
g(v) 6= 0. Thus, (fg)(v) 6= 0. If w ∈ Ufg then (fg)(w) 6= 0 so that f(w) 6= 0 and g(w) 6= 0, so that
v ∈ Ufg ⊆ Uf ∩ Ug. Thus, the sets Uf form a basis of some topology.

We must now check that the basis topology given by the sets of the form Uf is the Zariski
topology. Let U be a set that is open in the basis topology. Then U = ∪αUfα for some collection
{fα}. By definition, each Uf is open in the Zariski topology, and so each open set in the basis
topology is also open in the Zariski topology. Now, let U be an open set in the Zariski topology.
Thus, U is of the form V \ZV (T ) for some collection of polynomials T . However, we can write this
as U = ∪s∈UUfs where fs does not vanish at s. Thus, every open set in the Zariski is a union of
basis elements, and so, we have that Zariski open sets are also open in the basis topology. Hence,
the basis topology is the Zariski topology. �

Lecture 26. March 14, 2011

What is a sheaf? Let X be a topological sapce. We can regard the topology as specifying a
category whose objects are the open subsets and whose arrows are the inclusion maps. If you are
comfortable with category theory, a sheaf of abelian groups is then a contravariant functor to the
category of abelian groups, but the functor must satify some conditions which essentially say that
the “sections” are determined “locally”.

Thus a sheaf S (of abelian groups) on X is a certain assignment of an abelian group S(U)
for every open subset U ⊆ X. We refer to the elements of S(U) as sections of S over U , or
global sections if U = X. For each inclusion U2 ⊆ U1 we have the “restriction” homomorphism
ρ12 : S(U1) → S(U2). If f ∈ S(U1), it is common to write f |U2 for ρ12(f). (This is just formal
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notation, motivated by the example of sheaves of the type OV where sections over open sets U ⊆ V
are actual functions U → C, since it makes sense to restrict a function on an open set to an open
subset.) Moreover, if U2 = U1, then ρ12 is the identity. If U3 ⊆ U2, then ρ23ρ12 = ρ13. If U = ∅,
then S(U) = 0. So far, this just says that S is a contravariant functor.

In addition, we require that sections be determined locally. I.e., if {Ui} is an open cover of an
open set U , and if f, g ∈ S(U) such that f |Ui = g|Ui for all i, we require that f = g, and if there
are sections fi ∈ S(Ui) for all i, such that fi|Ui∩Uj = fj |Uj∩Ui for all i and j, then we require that
there is a section f ∈ S(U) such that f |Ui = fi for all i.

Example 26.1. If V is an affine algebraic set, it’s not hard to check that OV is a sheaf.

We can now enlarge the class (or category) objects we can deal with.

Definition 26.2. An irreducible Zariski-closed subset of An is called an affine variety. A quasi-
affine variety is a non-empty Zariski-open subset of an affine variety.

Now that we have quasi-affine varieties, we need to define their morphisms.

Definition 26.3. Let V1 and V2 be affine varieties and let Ui ⊆ Vi be quasi-affine varieties. A
morphism φ : U1 → U2 is a continuous map such that for each point p ∈ U1 there are affine open
subsets φ(p) ∈ Uφ(p) ⊆ V2 and p ∈ Up ⊆ φ−1(Uf(p)) ⊆ V1 such that φ∗ (i.e., composition with φ)
defines a C-homomorphism OV2(Uφ(p)) → OV1(Up).

Lecture 27. March 16, 2011

Morphisms of quasi-affine varieties.

Example 27.1. Let φ : V →W be an algebraic map of irreducible affine algebraic sets. Then φ is
a morphism. By Proposition 12.6, φ is continuous. For each p ∈ V , take Up = V and Uφ(p) = W .
Since φ∗ defines a C-homomorphism C[W ] → C[V ], we see that φ is a morphism.

Example 27.2. Let φ : V → W be a morphism of irreducible affine algebraic sets. Then φ is
an algebraic map. Since φ is a morphism there are open subsets p ∈ Up ⊆ φ−1(Uφ(p)) and C-
homomorphisms φ∗ : OW (Uφ(p)) → OV (Up). Since Up is affine, there is an element fp ∈ C[V ] such
that OV (Up) = C[V ]fp . Let ip : C[W ] ⊆ OW (Uφ(p)) be the canonical inclusion. Then we have

C-homomorphisms C[W ]
ip−−→ OW (Uφ(p))

φ∗−−−→ OV (Up) = C[V ]fp which for simplicity we will refer
to as φ∗p.

Thus for any h ∈ C[W ], we have φ∗p(h) = gp

f
mp
p

for elements gp ∈ C[V ]. Note that

gp

f
mp
p

∣∣∣
Up∩Uq

= φ∗p(h)
∣∣
Up∩Uq

=
gq

f
mq
q

∣∣∣
Uq∩Up

so in C(V ) we have gp

f
mp
p

gq

f
mq
q

for all p and q. Since {Up} is a cover of V , we have ZV ({fp : p ∈ V }) =

∅, so 1 =
∑

p apf
mp
p , where each ap ∈ C[V ] but only finitely many are non-zero. Let η =

∑
p apgp.

Then in C(V ) we have

η =
∑

p

apgp =
∑

p

apf
mp
p

gp

f
mp
p

=
(∑

p

apf
mp
p

) gq

f
mq
q

=
gq

f
mq
q

= φ∗p(h),

and so φ∗p(h) = η ∈ C[V ]. Thus φ∗ is a C-homomorphism C[W ] → C[V ], so by Theorem 14.1, φ is
an algebraic map.

Example 27.3. Let U be the quasi-affine variety U = A1 \ {0} and let W be the affine variety
W = Z(xy − 1) ⊂ A2. Then U and W are isomorphic. Let f : U → W be f : s 7→ (s, 1

s ) and
let g : W → V be g : (a, b) 7→ a. It is easy to see that f and g are bijective, inverse to each
other and continuous (since the U has the finite complement topology, being a subspace of A1,
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as does W , by Exercise 10.2). If we take C[A1] = C[t] and C[W ] = C[x, y]/(xy − 1) ∼= C[x]x,
it is also easy to see that f∗ : C[W ] → OA1(U) = C[A1]t is the C-homomorphism x 7→ t and
g∗ : OA1(U) = C[A1]t → C[W ] is the C-homomorphism t 7→ x, and hence f and g are morphisms
and U and W are therefore isomorphic.

Exercises:

Exercise 27.1 (The Universal Property of Localization). Given rings R and T , a multiplicatively
closed subset S ⊂ R and a homomorphism f : R → T such that f(s) is a unit for every s ∈ S,
show that there is a unique homormorphism S−1f : S−1R→ T such that f factors as

R
r 7→ r

1−−−→ S−1R
S−1f−−−→ T.

[Hint: consider S−1f : r
s 7→ f(r)(f(s))−1.]

Solution by Becky Egg. Define S−1f : S−1R → T by S−1f(r/s) = f(r)f(s)−1. If r
s ∼ r′

s′ , then
there exists t ∈ S with t(rs′ − r′s) = 0. So trs′ = tr′s, and hence

f(t)f(r)f(s′) = f(trs′) = f(tr′s) = f(t)f(r′)f(s).

Since f(t), f(s), f(s′) are units of T , we have f(r)f(s)−1 = f(r′)f(s′)−1, that is, S−1f( r
s) =

S−1f( r′

s′ ). So S−1f is well-defined.

Also note that,

S−1f(
r

s
· r

′

s′
) = f(rr′)f(ss′)−1

= f(r)f(r′)[f(s)f(s′)]−1

= f(r)f(s)−1f(r′)f(s′)−1

= S−1f(
r

s
)S−1f(

r′

s′
)

and

S−1f(
r

s
+
r′

s′
) = S−1f(

rs′ + r′s

ss′
)

= f(rs′ + r′s)f(ss′)−1

= [f(r)f(s′) + f(r′)f(s)]f(s)−1f(s′)−1

= f(r)f(s)−1 + f(r′)f(s′)−1

= S−1f(
r

s
) + S−1f(

r′

s′
),

so S−1f is in fact a homomorphism. Then, given r ∈ R, we have

S−1f(
r

1
) = f(r)f(1)−1 = f(r),

i.e., f factors through S−1R.
To see that S−1f is unique, suppose that φ : S−1R → T is a homomorphism such that such that
φ(r/1) = f(r) for all r ∈ R. We have

φ(
r

s
) = φ(

r

1
)φ(

1
s
) = f(r)φ(

1
s
).

However,

φ(
1
s
)φ(

s

1
) = φ(

1
1
) = 1,
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that is, φ(1
s ) is invertible, with [φ(1

s )]−1 = φ( s
1). Thus we have f(r) = φ( r

s)φ( s
1), and so

Sf−1(
r

s
) = f(r)f(s)−1

= φ(
r

s
)φ(

s

1
)f(s)−1

= φ(
r

s
)f(s)f(1)−1f(s)−1

= φ(
r

s
).

So the homomorphism S−1f is the unique map such that f factors through S−1R. �

Lecture 28. March 18, 2011

The structure sheaf for projective varieties. To define the structure sheaf for projective varieties we
mimic the definitions for affine varieties. The function field C(Pn) is defined to be all fractions F

G
such that F and G are homogeneous elements of C[Pn] with G not the zero polynomial and with
deg(F ) = deg(G).

Now let p ∈ Pn and define OPn,p ⊂ C(Pn) to be those elements of C(Pn) regular at p; i.e., all
F
G ∈ C(Pn) with G(p) 6= 0.

For any open subset U ⊆ Pn, define CPn(U) to be the ring of functions regular on U ; i.e.,
CPn(U) = ∩p∈UOPn,p.

Open sets of particular interest are those of the form UG = Pn \ ZPn(G) where G ∈ C[Pn] is a
homogeneous polynomial, but not the zero polynomial.

Proposition 28.1. Let C[Pn] = C[x0, . . . , xn]. Then OPn(Uxi) = C[x0
xi
, . . . , xn

xi
] = C[An].

Proof. Since x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi
are algebraically independent, C[x0

xi
, . . . , xn

xi
] is just the poly-

nomial ring in n indeterminates, hence C[x0
xi
, . . . , xn

xi
] = C[An]. So now we show OPn(Uxi) =

C[x0
xi
, . . . , xn

xi
].

By definition, xj

xi
∈ OPn(Uxi), so C[x0

xi
, . . . , xn

xi
] ⊆ OPn(Uxi). Let q ∈ Uxi and let

q̃ = (
q0
qi
, . . . ,

qi−1

qi
,
qi+1

qi
, . . . ,

qn
qi

) ∈ An.

Then OPn,q = C[x0
xi
, . . . , xn

xi
]IAn (eq).

To see this, let F/G ∈ OPn,q, where F and G are homogeneous, G 6= 0, d = deg(G) and either
d = deg(F ) or F = 0. Then F/G = (F/xd

i )/(G/x
d
i ) = f/g, where f = F (x0/xi, . . . , xn/xi)

and g = G(x0/xi, . . . , xn/xi). But G(q) 6= 0 implies g(q̃) 6= 0, so f/g ∈ C[x0
xi
, . . . , xn

xi
]IAn (eq).

Conversely, if f/g ∈ C[x0
xi
, . . . , xn

xi
]IAn (eq) for f, g ∈ C[x0

xi
, . . . , xn

xi
] with g 6∈ IAn(q̃), then either f = 0

and so f/g = 0 ∈ OPn,q or f 6= 0 and we have f/g = F/G for F = xd
i f and G = xd

i g, where
d = max(deg(f),deg(g)). Then F and G are homogeneous of the same degree with G(q) = g(q̃) 6= 0,
so f/g = F/G ∈ OPn,q.

Therefore we have OPn(Uxi) = ∩q∈Uxi
OPn,q = ∩eq∈AnC[An]IAn (eq) = OAn(An) = C[x0

xi
, . . . , xn

xi
]. �

Example 28.2. Let C[Pn] = C[x0, . . . , xn]. Here is an alternative way to evaluate OPn(Uxi).
By Exercise 28.1, we have OPn(Uxi) = Rxi . But for any homogeneous F of degree m, F/xm

i =
F (x0/xi, . . . , xn/xi) ∈ C[x0/xi, . . . , xn/xi], and for any f(x0/xi, . . . , xn/xi) ∈ C[x0/xi, . . . , xn/xi]
of degree d we have f = F/xd

i ∈ Rxi ; note that F = xd
i f is homogeneous of degree d. Thus

Rxi = C[x0
xi
, . . . , xn

xi
].

Example 28.3. Using Exercise 28.1, we see that the global sections OPn(Pn) of OPn are just
constants; OPn(Pn) = R1 = C.
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Exercises:

Exercise 28.1. Let G ∈ C[Pn] be homogeneous. Show that OPn(UG) is the ring RG of all fractions
of the form F

Gm ∈ C(Pn) where F is either 0 or homogeneous and deg(F ) = mdeg(G).

Solution by Becky Egg. We have that

OPn(UG) =
⋂

p∈UG

OPn,p

where UG is the set of points in Pn at which G is not 0, and elements of OPn,p are of the form F
H ,

where H(p) 6= 0 and deg(F ) = deg(H).
First, consider F

Gm ∈ RG with deg(F ) = mdeg(G). For any p ∈ UG, we have that G(p) 6= 0, and
hence Gm(p) 6= 0. So F

Gm ∈ OPn,p for all p ∈ UG, and thus F
Gm ∈ OPn(UG).

Now suppose that F
H ∈ OPn(UG). Note that H(p) 6= 0 for all p ∈ UG, so q ∈ ZPn(H) implies that

q /∈ UG, and hence G(q) = 0. So we have

G ∈ I(ZPn(H)) =
√

(H),

where equality of the ideals follows from the projective Nullstellensatz. So Gm ∈ (H) for some m,
i.e., Gm = F ′H for some F ′ ∈ C[Pn]. Thus we have

F

H
=
F ′F

F ′H
=
F ′F

Gm
∈ RG.

Note also that deg(F ) = deg(H), and so

deg(F ′F ) = deg(F ′H) = deg(Gm) = mdeg(G).

Thus OPn(UG) is the ring RG of all fractions of the form F
Gm ∈ C(Pn) where F is either 0 or

homogeneous and deg(F ) = mdeg(G). �

Lecture 29. March 28, 2011

Quasi-projective varieties.

Definition 29.1. A projective variety is a closed irreducible subset of Pn. A quasi-projective
variety is a non-empty open subset of a projective variety. Given a projective variety V ⊆ Pn, the
homogeneous coordinate ring of V is C[V ] = C[Pn]/IPn(V ) and the function field of V is the field
C(V ) of all fractions F/G such that F,G ∈ C[V ] are homogeneous, and where G 6= 0 and F is
either 0 or deg(F ) = deg(G). For p ∈ V , we define OV,p to be the ring of functions regular at p;
i.e., all fractions F/G such that F,G ∈ C[V ] are homogeneous, and where G(p) 6= 0 and F is either
0 or deg(F ) = deg(G). Finally, we set OV (∅) = 0 and for a non-empty open subset U ⊆ V , we set
OV (U) = ∩p∈UOV,p ⊆ C(V ).

Now we establish some notation. Let V ⊂ Pn be a projective variety. Let 0 6= G ∈ C[V ] be
homogeneous of degree d = deg(G) > 0. Let UG = V \ ZV (G).

Example 29.2. Let C[P3] = C[x, y, z, w] and let V ⊂ P3 be the zero locus of xw − zy. There
is a map P1 × P1 → V called the Segre embedding which we will eventually be able to see is an
isomorphism, defined by ([(a, b)], [(u, v)]) 7→ [(au, av, bu, bv)], so the parametric equations for the
image are x = au, y = av, z = bu and w = bv, and substituting into xw−zy gives aubv− buav = 0.
Figure 29.1 shows a graph of the map A1 × A1 → A3 given by (a, u) 7→ (au, a, u). This is just the
an affine image of the graph of P1×P1 → P3; i.e., the image in the affine complement P3 \ZP3(w) of
the locus w = 0 in P3. The grid lines are the affine images of the two P1 factors, called rulings. The
locus ZV (y, w) is one of those lines, so the open subset U = V \ ZV (y, w) ⊂ V is the complement
of the grid line defined by y = 0 = w.
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Note that U = Uw ∪ Uy. Thus OV (U) = ∩p∈UOV,p = (∩p∈UwOV,p) ∩ (∩p∈UyOV,p). Now, in
C(V ) we have z

w = x
y , since xw − zy = 0, where : C[P3] → C[V ] is the quotient homomorphism.

But for q = [(0, 1, 0, 0)] ∈ Uy, z
w does not appear to meet the definition for being in OV,q since

w(q) = 0. It is only when we rewrite z
w as x

y that we see that it is an element of OV,q. And for
q = [(0, 0, 1, 0)] ∈ Uw, x

y does not appear to meet the definition for being in OV,q since y(q) = 0. It
is only when we rewrite x

y as z
w that we see that it is an element of OV,q. Thus x

y , as written, is
regular at the points of Uy but not at all points of Uw, and z

w , as written, is regular at the points
of Uw but not at all points of Uy. However, x

y = z
w on Uy ∩ Uw, so we have an element regular

at all points of U = Uy ∪ Uw. It turns out that there is no non-constant homogeneous G ∈ C[P3]
such that ZP3(G) ∩ U = ∅, so we cannot express this element by a single fraction F

G
such that G

is non-zero at all points of U .

Figure 29.1. Hyperboloid xw− zy defined parametrically in A3 by x = au, y = a,
z = u, w = 1

Exercises:

Exercise 29.1. Let V ⊂ Pn be a projective variety. Let 0 6= G ∈ C[V ] be homogeneous of degree
d = deg(G) > 0. Show that OV (UG) is the ring of all fractions F/Gm such that m ≥ 0, F ∈ C[V ]
is homogeneous, and either F is 0 or deg(F ) = mdeg(G). (We will later see in Exercise 33.1 that
UG is isomorphic to a closed subset of An for some n, and hence is referred to as an open affine
subset of V .)

Solution. Clearly, all F/Gm ∈ OV (UG), so assume h ∈ OV (UG). For each p ∈ UG we can write
h = Fp/Gp where Fp and Gp are homogeneous of the same degree but Gp(p) 6= 0. Since

ZV ({Gp : p ∈ UG}) ∩ UG = ∅,
we have ZV ({Gp : p ∈ UG}) ⊆ ZV (G). By the Projective Nullstellensatz, Theorem 19.1.5, for
some m ≥ 0 we have Gm ∈ I({Gp : p ∈ UG}), so as elements of C[V ] we have Gm =

∑
pHpGp
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for homogeneous Hp ∈ C[V ] of degree deg(Hp) = mdeg(G)− deg(Gp) for those Hp which are not
0 (all but finitely many of the Hp are in fact 0 since the sum is a finite sum). Now we see that
h = ((

∑
pHpGp)/Gm)h = (

∑
pHphGp)/Gm = (

∑
pHp(Fp/Gp)Gp)/Gm = (

∑
pHpFp)/Gm has the

required form. �

Lecture 30. March 30, 2011

Morphisms of quasi-projective varieties. Let U be a quasi-projective variety. Thus there is
some projective variety V ⊆ Pn and U is a nonempty open subset of V . The structure sheaf OU is
defined; for any open subset U ′ ⊆ U we have OU (U ′) = OV (U ′). We can also speak of affine open
subsets of U : for U ′ to be an open affine subset of U just means it is an open affine subset of V .

Definition 30.1. Let U1 and U2 be quasi-affine projective varieties. A map φ : U1 → U2 is a
morphism if φ is continuous in the Zariski topology, such that for each point p ∈ U1 there are open
affine neighborhoods Vp ⊆ U1 and Wp ⊆ U2 such that φ(p) ∈ Wp, p ∈ Vp, φ(Vp) ⊂ Wp and φ∗

induces a C-homomorphism φ∗ : OU2(Wp) → OU1(Vp).

Example 30.2. Let C[Pn] = C[x0, . . . , xn]. Then Uxi is isomorphic to An. For simplicity, we’ll
consider the case that i = 0, so let U = Ux0 . Define φ : U → An by φ([(a0, . . . , an)]) = (a1

a0
, . . . , an

a0
);

note that [(a0, . . . , an)] ∈ Ux0 means that a0 6= 0, so division by a0 is allowed. Since also
(a1

a0
, . . . , an

a0
) = ( ca1

ca0
, . . . , can

ca0
) for any representative (ca0, . . . , can), 0 6= c ∈ C, of [(a0, . . . , an)],

φ is well-defined. Let ψ : An → U be defined by (b1, . . . , bn) 7→ [(1, b1, . . . , bn)]. It is easy to
check that φ and ψ are inverses of each other. By Proposition 28.1, OU (U) = C[x1

x0
, . . . , xn

x0
].

Let’s use y for the variables on An, so OAn(An) = C[y1, . . . , yn]. Given any f(y1, . . . , yn) ∈
OAn(An), we have by composition the map φ∗(f) = f ◦ φ. For any [(a0, . . . , an)] ∈ U , note that
(φ∗(f))([(a0, . . . , an)]) = f(φ([(a0, . . . , an)]) = f(a1

a0
, . . . , an

a0
) we see φ∗ is just the C-homomorphism

C[y1, . . . , yn] → C[x1
x0
, . . . , xn

x0
] given by yj 7→ xj

x0
for each j. Similarly, it is easy to check that ψ∗

is the inverse C-homomorphism. This also shows that φ and ψ are continuous. Consider φ; it
suffices to show that φ−1(Uf ) is open for open subsets of the form Uf where f ∈ C[y1, . . . , yn]. But
φ−1(Uf ) = Uφ∗(f), which is open. Thus φ and ψ are inverse morphisms, hence φ is an isomorphism.

Remark 30.3. If we identify Uxi with An, we thus have OAn(U) = OUxi
(U) = OPn(U) for any

open subset U ⊆ An. From this point-of-view, we can regard the coordinate ring of An = Uxi as
being OAn(An) = OUxi

(Uxi) = OPn(Uxi) = C[x0
xi
, . . . , xn

xi
].

Remark 30.4. We now see that any quasi-affine variety is isomorphic to a quasi-projective variety.
If U is quasi-affine, then U is a non-empty open subset of an affine variety V ; i.e., U ⊆ V ⊆ An ∼=
Ux0 ⊂ Pn. If we identify U with its isomorphic image in Ux0 ⊂ Pn, we can regard the Zariski-closure
of U in Pn as a projective variety (see Exercise 30.1).

Example 30.5. If X is an affine variety, then we can recover X up to isomorphism from its
coordinate ring C[X]. In particular, C[X] is a finitely generated C-algebra, so for some n we have a
surjective homomorphism h : C[An] → C[X]. The kernel of h is a prime ideal. Let Y = Z(P ) ⊆ An.
Then X ∼= Y since C[X] ∼= C[Y ]. However, with projective varieties this is not true: it is quite
common to have projective varieties X ∼= Y such that the homogeneous coordinate rings C[X]
and C[Y ] are not isomorphic. For example, consider the map ν2 : P1 → P2 given by ν2([(a, b)]) =
[(a2, b2, ab)], known as the 2-uple Veronese embedding of P1 in P2. Then ν2 is an isomorphism of
X = P1 to its image Y = ZP2(xy − z2), but C[P1] = C[s, t], while C[Y ] = C[x, y, z]/(xy − z2). The
map ν2 induces a homomorphism ν∗2 : C[x, y, z] → C[s, t] given by x 7→ s2, y 7→ b2 and z 7→ st. This
is not surjective so the induced homomorphism C[x, y, z]/(xy − z2) → C[s, t] is certainly not an
isomorphism. In fact, there is no isomorphism. One way to see this is that C[x, y, z]/(xy−z2) is not
a regular ring, but C[s, t] is. We’ll discuss this in more detail later, but here’s how this difference
manifests itself. Let M be the maximal ideal (x, y, z) ⊂ C[x, y, z] = C[x, y, z]/(xy − z2). Then
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M/M2 is a 3-dimensional vector space, spanned by the images of x, y, and z in M/M2. However,
every maximal ideal of C[s, t] is of the form (s−a, t−b) for a, b ∈ C, but (s−a, t−b)/(s−a, t−b)2 is
a 2-dimensional vector space, spanned by the images of s−a and t−b. If there were an isomorphism
C[x, y, z]/(xy − z2) → C[s, t], then C[s, t] would have some maximal ideal I such that I/I2 were
3-dimensional.

The 2-uple Veronese embedding is one of several classical morphisms it’s worth knowing about.
More generally, for each d and n we have the d-uple Veronese embedding νd : Pn → PN , where
N =

(
n+d

d

)
−1. There is also the Segre embedding σ : Pn×Pm → PN , where N = (n+1)(m+1)−1.

And there is the Plücker embedding ρ : Gr(r, n) → PN of the Grassmann variety Gr(r, n) of r-planes
in n-space to PN , where N =

(
n
r

)
− 1. More on these in the next lecture.

Exercises:

Exercise 30.1. Let U be a quasi-affine variety. I.e., U is a non-empty open subset of some closed
irreducible subset V ⊆ An. Thinking of An = Ux0 ⊂ Pn as an open subset of Pn, we refer to
the Zariski closure of U in Pn as its projective closure. Show that the projective closure of U is
irreducible, hence a projective variety.

Solution. Let C = V \ U . First, U is an irreducible topological space. For if A and B are closed
subsets of U with U = A∪B so V = A∪ (B ∪C). Since V is irreducible, either V = A (and hence
U = A) or V = B∪C (and hence U = B), so U is irreducible. Let W be the closure of U in Pn and
let D and E be closed subsets of W such that W = D ∪ E. Since U is irreducible, either U ⊆ D
or U ⊆ E; assume the former, the argument being the same if U ⊆ E. If U ⊆ D, then the closure
W of U is also contained in D, hence W is irreducible. �

Lecture 31. April 1, 2011

The Segre embedding. Let s and t be positive integers. The Segre embedding is a map of
σ : Ps×Pt → PN , where N = (s+1)(t+1)−1. Given a point ([a], [b]) = [(a0, . . . , as)], (b0, . . . , bt)] ∈
Ps × Pt, think of the points of PN as the set of non-zero (s+ 1)× (t+ 1) matrices, modulo scalar
multiplication by non-zero scalars. Then σ(([a], [b])) = [(aibj)], where (aibj) is the (s+ 1)× (t+ 1)
matrix whose entries are aibj . Note that we can write this as a matrix multiplication: aTb = (aibj),
where we think of a and b as row vectors. Moreover, the map is well-defined: aTb = (aibj) is zero
if and only if both a and b are zero, and replacing a and b by possibly different representatives of
the same points just replaces (aibj) by a non-zero scalar multiple, which represents the same point
of PN .

The product Ps × Pt does not have an intrinsic structure of algebraic variety according to our
definitions, but in fact σ is injective and the image σ(Ps × Pt) is closed and irreducible, so we can
regard Ps × Pt as an algebraic variety by identifying it with its image.

First we check that σ is injective. Let (aibj) be a representative of σ(([a], [b])). Pick any non-
zero entry aibj . Let c = (a0bj , . . . , asbj) be the transpose of column j of the matrix (aibj) and let
d = (aib0, . . . , aibt) be row i. Then [a] = [c], and [b] = [d], and so we can recover ([a], [b]) given
[(aibj)], hence σ is injective.

To show that σ(Ps × Pt) is closed, note that every matrix representing a point in the image of σ
has rank 1, since every row of aTb is a multiple of b, and the rows are not all 0. Conversely, given
any (s+ 1)× (t+ 1) rank 1 matrix M , it has some non-zero row, say bj, and every other row is a
multiple of bj; say row 1 is a0bj, row 2 is a1bj, etc. Thus M = aTb for a = (a0, . . . , as), so [M ]
is in the image of σ. In particular, the image of σ is precisely the set of (s + 1) × (t + 1) rank 1
matrices.
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Given an (s+ 1)× (t+ 1) rank 1 matrix M , every rectangular submatrix has rank at most 1. In
particular, every 2× 2 submatrix has determinant 0. If we denote the homogeneous coordinates on
PN by xij , corresponding to the ij entry of an (s+ 1)× (t+ 1) matrix, let I be the homogeneous
ideal generated by all polynomials of the form xijxkl − xilxkj , with i, j, k, l distinct. Then we see
that ZPN (I) contains the image of σ. But any non-zero (s + 1) × (t + 1) matrix in ZPN (I) must
have rank 1. To see this, suppose M is a non-zero (s + 1) × (t + 1) matrix which does not have
rank 1. Then two columns of M = (mij) are linearly independent. Say the columns are columns
j and l. Similarly, two rows of these two columns must be linearly independent; say the rows are
rows i and k. Thus the square matrix whose entries are in rows i and k and in columns j and l
has rank 2, so its determinant mijmkl −milmkj 6= 0, and therefore M is not in the zero locus of I.
Thus the zero locus of I is precisely the image of σ.

Finally, we want to see that σ(Ps × Pt) is irreducible. Let C[Ps] = C[y0, . . . , ys] and let C[Pt] =
C[z0, . . . , zt]. Consider Uxij ⊂ PN . Then σ−1(Uxij ) = Uyi × Uzj . Thus σ gives an algebraic map
(and hence a morphism) of affine varieties As+t = As × At = Uyi × Uzj → Uxij = AN , since
the map is given by polynomial functions. But the inclusion of Uxij = AN into PN is also a
morphism, hence Uyi × Uzj → PN is a morphism of quasi-projective varieties by Exercise 31.1.
Since As+t = Uyi × Uzj is irreducible, so is the closure of its image in PN under σ (by Exercise
31.2). But the closure of any non-empty open subset of As+t is all of As+t, since As+t is irreducible.
Consider the open subset ∩i,jUyi × Uzj , which is just Uy0···ysz0···zt inside As+t, where we take the
y’s and z’s as the coordinate variables on As+t; i.e., C[As+t] = C[y0, · · · , ys, z0, · · · , zt]. Thus the
closure of Uy0···ysz0···zt includes the closure of As+t = Uyi × Uzj for all i and j, hence the closure of
σ(Uy0···ysz0···zt) includes σ(Uyi ×Uzj ) for all i and j. Thus the closure of σ(Uy0···ysz0···zt) includes the
union ∪i,jσ(Uyi × Uzj ). But σ(Uyi × Uzj ) = σ(Ps × Pt) ∩ Uxij , and the open sets Uxij cover PN , so
∪i,jσ(Uyi ×Uzj ) = Ps×Pt. In particular, σ(Ps×Pt) is the closure of the image of As+t = Uyi ×Uzj

for any fixed i and j. Thus σ(Ps × Pt) is irreducible by Exercise 31.2.

Exercises:

Exercise 31.1. Let U → V and V → W be morphisms of quasi-projective varieties. Show that
the composition U →W is a morphism.

Solution by Anisah Nu’man, with some changes. Let φ : U → V and ψ : V → W be morphisms
of quasi-projective varieties. We will show (ψ ◦ φ) : U → W is a morphism. First note (ψ ◦ φ) is
continuous in the Zariski topology since the composition of continuous functions is continuous.

Let p ∈ U . Since φ(p) ∈ V and ψ : V → W is a morphism, there exist affine open subsets
Vφ(p) ⊆ V and Wφ(p) ⊆ W such that ψ(φ(p)) ∈ Wφ(p), φ(p) ∈ Vφ(p), ψ(Vφ(p)) ⊆ Wφ(p), and
ψ∗ : OW (Wφ(p)) → OV (Vφ(p)) is a C-homomorphism. Since φ is a morphism, there exist affine open
subsets Up ⊆ U and Vp ⊆ V such that φ(p) ∈ Vp, p ∈ Up, φ(Up) ⊆ Vp, and φ∗ : OV (Vp) → OU (Up)
is a C-homomorphism.

Now pick an open affine neighborhood V ′p of φ(p) in Vp ∩ Vφ(p) and pick an open affine neigh-
borhood U ′p of p in Up ∩ φ−1(V ′p). Since Up and Vp are affine (and thus have a basis of open sets
of the form {(Up)f : f ∈ OU (Up)} and {(Vp)g : g ∈ OV (Vp)}, respectively) we may assume that
V ′p = (Vp)g for some g ∈ OV (Vp), and that U ′p = (Up)f for some f ∈ OU (Up). The homomorphism
OV (V ′p) → OU (U ′p) is the C-homomorphism induced from OV (Vp) → OU (Up) by inverting f and g.
Thus (ψ ◦φ) induces a C-homomorphism (ψ ◦φ)∗ : OW (Wφ(p)) → OV (Vφ(p)) → OV (V ′p) → OU (U ′p),
as required. �

Exercise 31.2. Let f : U → V be a morphism of quasi-projective varieties. Show that the
Zariski-closure of f(U) in V is irreducible.
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Solution. Say f(U) = A ∪ B for closed subsets A and B. Thus f−1(A) and f−1(B) are closed
subsets whose union is U , hence (since U is irreducible) either U = f−1(A) or U = f−1(B), so
either f(U) = A or f(U) = B, hence f(U) is closed. �

Lecture 32. April 4, 2011

The Veronese embedding. We begin with a lemma.

Lemma 32.1. The number of monomials in C[Pr] = C[x0, . . . , xr] of degree d is
(
r+d

r

)
.

Proof. There is a bijection between permutations of r bars and d stars and monomials xn0
0 · · ·xnr

r

such that d = n0 + · · ·+ nr. For example, if r = 3 and d = 2, the permutations “ | | ∗ ∗ | ” gives
the monomial x0

0x
0
1x

2
2x

0
3 = x2

2. But there are
(
r+d

r

)
permutations of r bars and d stars. �

We now define a map νd : Pr → PN where N =
(
r+d

r

)
− 1. Let C[Pr] = C[x0, . . . , xr] and

enumerate the monomials of degree d in the variables x0, . . . , xr as G0, . . . , GN . For each point
p = [(a0, . . . , ar)] ∈ Pr, define νd(p) = [(G0(a0, . . . , ar), . . . , GN (a0, . . . , ar)] ∈ PN . It is easy to
check that this is well-defined.

Note that we can also regard νd as an algebraic map Ar+1 → AN+1. The corresponding C-
homomorphism

ν∗d : C[PN ] = C[AN+1] = C[y0, . . . , yN ] → C[x0, . . . , xr] = C[Ar+1] = C[Pr]

is given by yi 7→ Gi.

Remark 32.2. A polynomial ring R = C[x0, . . . , xr] is a graded ring in the sense that there is a
canonical ring isomorphism h : R0 ⊕ R1 ⊕ · · · → R, where Ri is the C-vector space span of the
homogeneous polynomials of degree i. The homomorphism h is induced by the inclusions Ri ⊂ R
by the universal property of direct sums. It is typical for people to just identify R0⊕R1⊕ · · · with
R. The subring R0 ⊕Rd ⊕R2d ⊕ · · · ⊂ R is called a Veronese subring of R. It is exactly the image
of ν∗d . [Let S be a ring. Let I be some index set, and let Ai, i ∈ I, be a family of S-modules.
Recall that the direct product ΠiAi is the set of all maps f : I → ∪iAi such that f(i) ∈ Ai. For
example, A1 × A2 = {(a1, a2) : a1 ∈ A1, a2 ∈ A2} is really the set of all maps f : {1, 2} → A1 ∪ A2

such that f(1) ∈ A1 and f(2) ∈ A2. Such a map f can be thought of as the element (f(1), f(2)).
The direct sum ⊕iAi is the subset of the direct product ΠiAi of all maps f ∈ ΠiAi such that f(i)
is 0 for all but finitely many i. Note for each j that there is a natural inclusion of φj : Aj ⊆ ⊕iAi.
Now let B be an S-module. The universal property of direct is the fact that if we are given S-
module homomorphisms hi : Ai → B for all i, then there is a unique S-module homomorphism
h : ⊕iAi → B such that h ◦ φj = hj .]

To show that νd : Pr → PN is a morphism, it’s convenient to pick an enumeration G0, . . . , GN

such that G0 = xd
0, G1 = xd

1, . . ., Gr = xd
r , with the rest of the monomials enumerated in whatever

way the reader desires. Let 0 ≤ i ≤ r and let p ∈ Pr. If νd(p) ∈ Uyi , then yi(νd(p)) 6= 0, hence
Gi(p) = (ν∗d(yi))(p) 6= 0, but since Gi = xd

i , we see Gi(p) 6= 0 if and only if xi(p) 6= 0. Conversely,
if xi(p) 6= 0 then Gi(p) = (nu∗d(yi))(p) 6= 0, so νd(p) ∈ Uyi . Thus ν−1

d (Uyi) = UGi = Uxi and we see
that νd|Uxi

: Ar ∼= Uxi → Uyi
∼= AN is an algebraic mapping whose corresponding C-homomorphism

νd|∗Uxi
: OPN (Uyi) → OPr(Uxi) is the homomorphism C[y0/yi, . . . , yN/yi] → C[x0/xi, . . . , xr/xi]

given by yj/yi 7→ Gj/Gi = Gj/x
d
i = Gj(x0/xi, . . . , xr/xi).

Since νd|Uxi
is an algebraic mapping, it is continuous for each i. Since the open sets Uxi give an

open cover of Pr, it follows that νd : Pr → PN is continuous and since the induced homomorphisms
(νd|Uxi

)∗ : OPN (Uyi) → OPr(Uxi) are C-homomorphisms, νd is itself a morphism.
We next want to show that νd is an isomorphism to its image, which is closed in PN .
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Exercises:

Exercise 32.1. Let d be a positive integer and let G0, . . . , Gt ∈ C[Ps] = C[x0, . . . , xs] be homo-
geneous such that for each i, Gi is either 0 or has degree i. Also assume that Gi is not zero for
some i. Let U ⊆ Pr be the open subset U = Pr \ ZPr(G0, . . . , GN ). Show that f : [(a0, . . . , ar)] 7→
[G0(a0, . . . , ar), . . . , GN (a0, . . . , ar)] defines a morphism f : U → PN as quasi-projective varieties
and explain why f is not defined on ZPr(G0, . . . , GN ). [The closed set ZPr(G0, . . . , GN ) is called
the indeterminacy locus of f . It is also called the base locus of G0, . . . , GN .]

Solution by Katie Morrison. First note that f is well-defined because

f([ca0, . . . , car)]) = [cdG0(a0, . . . , ar), . . . , GN (a0, . . . , ar)]

= [G0(a0, . . . , ar), . . . , GN (a0, . . . , ar)] = f([a0, . . . , ar)]),

and so the value of f is independent of the choice of representative at which f is evaluated. To
see that f is a morphism, consider the following. Let p ∈ U then since p /∈ ZPr(G0, . . . , GN ), there
exists a Gi such that Gi(p) 6= 0. Without loss of generality, say i = 0. Let Vp = UG0 ⊆ U be
an affine neighborhood of p and Wp = Uy0 ⊆ PN = C[y0, . . . , yN ] be an affine neighborhood of
f(p). By Exercise 29.1, OU (Vp) = {F/Gm

0 : m ≥ 0, F ∈ C[V ] is homogeneous, and either F =

0 or deg(F ) = mdeg(G)} and OPN (Wp) = C
[

y1

y0
, . . . , yN

y0

]
. For any H

(
y1

y0
, . . . , yN

y0

)
∈ OPN (Wp),

H ◦ f = H
(

G1
G0
, . . . , GN

G0

)
, and so H ◦ f will have the form F/Gm

0 where m is the degree of H.
Thus, the image of f∗ is contained in OU (Vp) and it is clear that f∗ is a C-homomorphism into
this image. Thus f is a morphism. Finally f is not defined on ZPr(G0, . . . , GN ) because for any
a ∈ ZPr(G0, . . . , GN ), f(a) = [(0, . . . , 0)] which is not a valid point in projective space, thus f
cannot be defined on this set. �

Lecture 33. April 6, 2011

The Veronese embedding (cont.). First we show that νd is injective. Let a = (a0, . . . , ar) and
b = (b0, . . . , br) represent points in Pr. Suppose that νd([a]) = νd([b]). Since a 6= 0, we know ai 6= 0
for some i. But [(ad

0, . . . , a
d
r , . . .)] = νd([a]) = νd([b]) = [(bd0, . . . , b

d
r , . . .)], so if ai 6= 0 then also ad

i 6= 0
and bdi 6= 0 and hence bi 6= 0. Thus we can divide by either ai or bi and from νd([a]) = νd([b]) we
see Gj(a)/ad

i = Gj(b)/bdi for all j. But among the monomials Gj we have xd−1
i xk for each k, so

ak

ai
=
ad−1

i ak

ad
i

=
bd−1
i bk

bdi
=
bk
bi
.

Thus (
1,
a1

ai
, . . . ,

ar

ai

)
=
(
1,
b1
bi
, . . . ,

br
bi

)
hence [a] = [b], so νd is injective.

Now in fact it is a fundamental result that a morphism of projective varieties is a closed map;
i.e., the image of a closed set is always closed. We will not prove this, at least not now. Instead
we’ll show that the image of νd is closed.

Note that (νd|Uxi
)∗ : OPN (Uyi) → OPr(Uxi) is the homomorphism

C
[y0

yi
, . . . ,

yN

yi

]
→ C

[x0

xi
, . . . ,

xr

xi

]
given by yj

yi
7→ Gj

xd
i

. This is surjective, since for each k there is a j such that Gj = xd−1
i xk, and

hence xk
xi

= Gj/x
d−1
i is in the image of (νd|Uxi

)∗. We can identify Uyi with AN by regarding
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a point [(c0, . . . , cN )] ∈ Uyi As being the point (c0/ci, . . . , ci−1/ci, ci+1/ci, . . . , cN )] ∈ AN . Let
I ⊆ C[y0

yi
, . . . , yN

yi
] be the kernel of (νd|Uxi

)∗ so

C
[y0

yi
, . . . ,

yN

yi

]
/I ∼= C

[x0

xi
, . . . ,

xr

xi

]
. (†)

Thus for any point p ∈ Uyi = AN in the zero locus of I, we have a maximal ideal Mq ⊂ C[x0
xi
, . . . , xr

xi
]

corresponding under the isomorphism (†) to Mp/I. Thus ((νd|Uxi
)∗)−1(Mq) = Mp and hence

p = (νd|Uxi
)(q); i.e., νd maps Uyi)(Uxi) onto the closure of its image.

Since νd is injective, closed and continuous, it has a continuous inverse, and since νd restricted
to each open set Uxi ⊂ Pr is an isomorphism to its image, the inverse map is a morphism, so νd is
an isomorphism.

Exercises:

Exercise 33.1. Let V ⊂ PN be a projective variety. Let 0 6= G ∈ C[V ] be homogeneous of degree
d = deg(G) > 0. Show that UG is isomorphic to a closed subset of An for some n.

Solution. We give a sketch of the proof. LetW = νd(PN ) ⊆ Pr, where r =
(
N
d

)
−1. ThusW is closed

in Pr and hence so is νd(V ). Note that G is a linear combination of monomials of degree d. Taking
the same linear combination but with the corresponding variables in Pr replacing the monomials
we get a linear form L ∈ C[Pr] such that ν∗d(L) = G and hence such that ν−1

d (ZPr(L)) = ZPN (G).
Thus νd gives an isomorphism from UG to W ∩ UL, while UL ⊂ Pr is isomorphic to Ar, so UG is
isomorphic to W ∩ UL which is itself isomorphic to a closed subset of Ar. �

Lecture 34. April 8, 2011

Grassmanians. Let V be a C-vector space of dimension n and let r be an integer with 0 ≤ r ≤ n.
Let Gr(r, V ), or Gr(r, n), denote the set of r-dimensional C-vector subspaces of V . We call Gr(r, n)
the Grassmannian of r-planes of V . So far Gr(r, n) is just a set, but we will soon see how to give
it topological and geometric structure, so we think of the elements of Gr(r, n) as points.

Example 34.1. If r = 0 or r = n, then Gr(r, n) consists of a single point. Thus as a space it
is natural to regard Gr(r, n) to be 0-dimensional in these cases. If r = 1 < n + 1, then there is
a bijection between the points of Gr(r, n + 1) and lines through the origin in Cn+1. But there is
also a bijection between the points of Pn and lines through the origin in Cn+1, so we can regard
Gr(1, n+ 1) as being Pn, and thus it is natural to regard Gr(1, n+ 1) as having dimension n.

Example 34.2. A subvariety V ⊆ Pn is said to be linear if either V = Pn or V is the zero-
locus of linear homogeneous polynomials of C[Pn]. The dimension of a linear subvariety is the
minimal number of linear homogeneous generators that generate I. The Grassmannian Gr(r +
1, n+ 1) denotes the set of (r+ 1)-dimensional C-vector subspaces of Cn+1, but there is a bijective
correspondence between (r + 1)-dimensional C-vector subspaces of Cn+1 and r-dimensional linear
subvarieties of Pn, so we can also regard Gr(r + 1, n + 1) as the set of all r-dimensional linear
subvarieties of Pn, thus generalizing the previous example of thinking of Gr(1, n+ 1) as being the
set of points of Pn.

Example 34.3. Let V be an n-dimensional vector space. There is a natural correspondence
between subspaces of V of dimension r and subspaces of the dual vector space V ∗ of dimension
n− r. In particular, given an r-dimensional subspace W ⊆ V , let Ŵ be the subspace of V ∗ of all
linear functionals λ : V → C such that the nullspace of λ contains W . Then Ŵ has dimension
n − r. Likewise, given a subspace U ⊆ V ∗ of dimension n − r, let Û be the subspace of all v ∈ V
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such that λ(v) = 0 for all λ ∈ U . Then Û has dimension r, and we have both ̂̂U = U and ̂̂W = W .
Thus we get a bijection Gr(r, V ) ∼= Gr(n− r, V ∗); i.e., Gr(r, n) ∼= Gr(n− r, n).

The topological structure of Gr(r, n) comes from its being a homogeneous space; i.e., we can
regard Gr(r, n) as being GLn(C)/G for some subgroup G occurring as a stabilizer subgroup with
respect to an action on Gr(r, n) by the group GLn(C) of n × n invertible matrices with com-
plex entries. In particular, let W1,W2 ⊆ Cn be vector subspaces of dimension r. Using a lit-
tle linear algebra, it’s easy to see that there are elements g ∈ GLn(C) such that gWi = W2.
Thus the action of GLn(C) on Gr(r, n) is transitive. If we denote by G the stabilizer subgroup
G = StabGLn(C)(W1) = {g ∈ GLn(C) : gW1 = W1}, then there is a bijection from the G-coset
space GLn(C)/G to Gr(r, n). Starting with the standard complex topology on GLn(C), if we give
GLn(C)/G the quotient topology, then Gr(r, n) becomes a compact complex manifold.

Although we haven’t rigorously defined the notion of dimension of a manifold or of a projective
variety, we have some intuition as to what it should mean. The circle is a 1-dimensional real
manifold, the 2-sphere is a 2-dimensional real manifold but also a 1-dimensional complex manifold,
and complex projective n-space Pn is an n-dimensional complex manifold. If a projective variety
is also a manifold, as is true for Pn for example, its dimension either as a manifold or as a variety
agree.

So, as a manifold, Gr(r, n) has some dimension. To give a heuristic argument for what that
dimension is, let e1, . . . , en be the standard basis of Cn. Let W be the span of e1, . . . , er. Then
the stabilizer subgroup G = StabGLn(C)(W ) is the group of matrices of block matrix form(

A B
0 C

)
where A ∈ GLr(C), the lower left block is an (n − r) × r 0-matrix, B is an arbitrary r × (n − r)
matrix, and C ∈ GLn−r(C). Thus we expect

dim(Gr(r, n)) = dim(GLn(C))− dim(G) = n2 − (r2 + r(n− r) + (n− r)2) = r(n− r).

As expected we get dim(Gr(r, n)) = r(n− r) = (n− r)(n− (n− r)) = dim(Gr(n− r, n)).
Next we will be interested in giving Gr(r, n) the structure of a projective variety. We do this by

embedding Gr(r, n) in PN for N =
(
n
r

)
, using the Plücker embedding.

Exercises:

Exercise 34.1. A subvariety of Pn is said to be linear if it is the zero-locus of linear homogeneous
polynomials of C[Pn]. Let I ⊂ C[Pn] be generated by linear homogeneous polynomials. Show that
there is an isomorphism Pr → ZPn(I), where r is the minimal number of linear polynomials that
generate I. Conclude that ZPn(I) is irreducible, hence a projective variety.

Solution. If we write C[Pn] = C[x0, . . . , xn], we can, up to change of coordinates, assume that one
of the linear forms is xn. By induction it is enough to show that ZPn(xn) is isomorphic to Pn−1. But
it is easy to check that φ : [(a0, . . . , an−1)] 7→ [(a0, . . . , an−1, 0)] defines an morphism φ : Pn−1 → Pn

which is an isomorphism onto its image. Since ZPn(I) ∼= Pr and Pr is irreducible by Exercise 30.1
(since Pr is the closure of Ar whose coordinate ring C[Ar] is a domain, hence is itself irreducible),
ZPn(I) is irreducible, hence a projective variety. �

Lecture 35. April 11, 2011

The Plücker Embedding. The Plücker embedding is an injective map of Gr(r, n) → PN , where
N +1 =

(
n
r

)
, whose image is a closed subset of PN . A natural way to study this map is via exterior

algebras. If V is a vector space, the exterior algebra is denoted
∧
V . This is an elegant way to
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do it, but we will not take the time to develop the necessary background to use this approach.
However, elements of exterior algebras are essentially vectors whose entries are defined in terms of
determinants. So exterior algebras are lurking behind the aproach we will use.

To start, let M be the set of all n× r rank r complex matrices. There are N +1 =
(
n
r

)
r element

subsets of the set S = {1, . . . , n}. Enumerate these subsets as S0, . . . ,SN . We may assume that
S0 = {1, . . . , r}.

Given M ∈M, let Mi denote the submatrix of M obtained by taking the rows of M correspond-
ing to the elements of Si. ThusM0 consists of rows 1 through r ofM since S0 consists of the numbers
1 through r. Define a map δr : M → CN+1 \ {0} by setting δr(M) = (det(M0), . . . ,det(MN )).
Note that since each Mi is an r× r matrix it makes sense to take the determinant. Since some set
of r rows of a matrix of rank r are linearly independent, we know det(Mi) 6= 0 for some index i,
and hence we know that δr(M) 6= 0, so the image of δr is contained in CN+1 \ {0}. We now make
two claims.

Claim I: The map δr induces a well-defined map Gr(r, n) → PN which we will also denote by
δr.

Here is how this induced map is defined. Let p ∈ Gr(r, n). Then p is an r-dimensional subspace
of Cn. Pick a basis of this subspace and use the basis vectors as the columns of an n × r matrix
M , which necessarily has rank r. Now define δr(p) to be the point [δr(M)] ∈ PN represented by
the vector δr(M) ∈ CN+1.

Since we define the induced map by picking a matrix M representing the point p and defining
δr(p) in terms of δr(M), we need to check that δr(p) is independent of our choice of M . But if
N is another such choice, then M and N have the same column space (these both being the r
dimensional subspace of Cn specified by p). But since col(M) = col(N), there is a change of basis
matrix g ∈ GLr(C) with N = Mg. Thus

δr(N) = δr(Mg) = (det((Mg)0), . . . ,det((Mg)N ))

= (det(M0) det(g), . . . ,det(MN ) det(g)) = det(g)δr(M),

so δr(N) and δr(M) represent the same point of PN ; i.e., [δr(N)] = [δr(M)].
Claim II: The map δr : Gr(r, n) → PN is injective.
Given any M ∈ M, let AM denote the augmented n× (r + 1) matrix where the first r columns

of AM are the columns of M and the (r+ 1)-st column of AM is the transpose of x = (x1, . . . , xn),
so

AM = [M |xT ].

Then δr+1(AM ) = (L0, . . . , Lt), where t =
(

n
r+1

)
and each Li is a linear homogeneous polynomial

in the variables xi with coefficients taken from the entries of δr(M).
Note that a vector x = a is a solution to the homogeneous system of equations Li = 0 if and

only if no subset of r+ 1 rows of [M | aT ] is linearly independent. This holds if and only if [M | aT ]
has rank less than r+1, and for a matrix M ∈M this is equivalent to [M | aT ] having rank r (since
rank([M | aT ]) ≥ rank(M) = r). But [M | aT ] having rank r just means aT is in the column space
of M . I.e., the column space of M is the solution set of all vectors x = a such that δr+1(AM ) = 0.

Now say p, q ∈ Gr(r, n) and assume that δr(p) = δr(q). Represent p and q by n × r rank r
matrices P,Q ∈M. Thus p is the point corresponding to the column space of P and q is the point
corresponding to the column space of Q. The fact that δr(p) = δr(q) implies that δr(P ) is a scalar
multiple of δr(Q) and hence that δr+1(AP ) is a scalar multiple of δr+1(AQ). Thus δr+1(AP ) and
δr+1(AQ) give the zero vector for the same solutions x = a. Thus P and Q have the same column
space, and hence p = q.



68 BRIAN HARBOURNE

Example 35.1. Suppose in the preceding discussion we have

P =


a b
c d
e f
g h

 ,

so with respect to a lexicographic ordering of the 2 × 2 submatrices of P we have δ2(P ) =
(a0, a1, a2, a3, a4, a5), where

(a0, a1, a2, a3, a4, a5) =
(∣∣∣∣ a b

c d

∣∣∣∣ , ∣∣∣∣ a b
e f

∣∣∣∣ , ∣∣∣∣ a b
g h

∣∣∣∣ , ∣∣∣∣ c d
e f

∣∣∣∣ , ∣∣∣∣ c d
g h

∣∣∣∣ , ∣∣∣∣ e f
g h

∣∣∣∣) .
Then

AP =


a b x1

c d x2

e f x3

g h x4

 ,

and it turns out that δ3(AP ) is defined purely in terms of δ2(P ); in particular, it turns out by direct
calculation that

δ3(AP ) = (a3x1 − a1x2 + a0x3, a4x1 − a2x2 + a0x4, a5x1 − a2x3 + a1x4, a5x2 − a4x3 + a3x4) .

So if [δ2(P )] = [δ2(Q)] ∈ P5, then δ2(Q) = γδ2(P ) for some non-zero scalar γ ∈ C, hence δ3(AP ) =
γδ3(Q), so the linear system of equations given by setting the entries of δ3(AP ) equal to zero has the
same solution set as the system of equations given by the entries of δ3(AQ). But the solution sets
are the 2-dimensional subspaces of C4 corresponding to p and q, hence p = q if [δ2(P )] = [δ2(Q)].

Exercises:

Exercise 35.1. Let f : R→ S be a surjective C-homomorphism, where R = C[y0, . . . , yr] and S =
C[x0, . . . , xs]. For each i, pick an element Fi ∈ R such that f(Fi) = xi. Let Gj(x0, . . . , xs) = f(yj).
Show that the kernel of f is generated by the elements yj −Gj(F0, . . . , Fs).

Solution. Let Q = C[z0, . . . , zr+s+1] and let g : Q → R be defined by zi 7→ Fi for 0 ≤ i ≤ s,
zj 7→ yj−s−1 for s+1 ≤ j ≤ r+s+1. Then generators of the kernel of f ◦g map via g to generators
of the kernel of f . Thus it suffices to show that zs+1+i−Gi(z0, . . . , zs), 0 ≤ i ≤ r, generate ker(f ◦g).

But f ◦ g : zi 7→ xi for 0 ≤ i ≤ s, and f ◦ g : zi 7→ Gi−s−1 for s+ 1 ≤ i ≤ r + s+ 1. This reduces
us to showing that the kernel of Φ : R → S is generated by yi − Gi(x0, . . . , xs) in the case that
R = C[x0, . . . , xs, y0, . . . , yr] with Φ : xi 7→ xi and Φ : yi 7→ Gi(x0, . . . , xs).

Clearly, yi −Gi(x0, . . . , xs) ∈ ker(Φ), so Φ induces a homomorphism

φ : R = R/(y0 −G0(x0, . . . , xs), . . . , yr −Gr(x0, . . . , xs)) → S,

and it is enough to show this is an isomorphism. It’s clearly surjective (since φ(xi) = xi). To see
that it’s injective, note that S occurs as a subring of R and any element h ∈ R is equivalent modulo
the ideal (y0 −G0(x0, . . . , xs), . . . , yr −Gr(x0, . . . , xs)) to an element η ∈ S ⊂ R. But φ(η) = η, so
the only element η in ker(φ) is 0. �

Exercise 35.2. If f : As → Ar is an algebraic map such that f∗ : C[Ar] → C[As] is surjective,
show that f(As) is a Zariski-closed subset of Ar and f is an isomorphism to its image.

Solution. Let V = f(As). Then f induces a mapping h : As → V of algebraic sets (where h = f
except that we restrict the range of h to be V ), so by Corollary 14.2 it suffices to show that
h∗ : C[V ] → C[As] is an isomorphism. In particular, this implies that f maps As onto V , hence
f(As) = V is closed, and isomorphic to As.
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Note ker(f∗) ⊆ I(V ), since g ∈ ker(f∗) implies 0 = f∗(g) = g ◦ f so g(f(b)) = 0 for all b ∈ As,
hence g vanishes on V = f(As), so g ∈ I(V ). Conversely, if g ∈ I(V ), then g vanishes on V = f(As)
so f∗(g) = g ◦ f is identically 0 on As, hence g ∈ ker(f∗). Thus h induces the C-homomorphism
C[V ] = C[Ar]/I(V ) = C[Ar]/ker(f∗) → C[As], which is an isomorphism as we wanted to show,
since f∗ is surjective by hypothesis.

This finishes the solution to this exercise, but it may be of interest to have a direct proof that f
is bijective to its image. Let C[As] = C[x1, . . . , xs]. Say p 6= q for p, q ∈ As. Then there is an i such
that xi(p) 6= xi(q). But f∗ is surjective, so there is a polynomial g ∈ C[Ar] such that f∗(g) = xi

and hence xi(p) = g(f(p)) 6= g(f(q)) = xi(q), so f(p) 6= f(q). Thus f is injective.
Next, we show that f is surjective to V = f(As), and hence f(As) is a Zariski-closed subset of

Ar. Let a ∈ V ⊆ Ar and let Ma ⊂ C[Ar] = C[y1, . . . , yr] be the maximal ideal corresponding to
the point a. Then a ∈ V implies I(V ) ⊆ Ma, so Ma/ker(f∗) ⊂ C[Ar]/ker(f∗) is a maximal ideal
that maps under the isomorphism C[Ar]/ker(f∗) ∼= C[As] induced by f∗ to a maximal ideal Mb

where b ∈ As. Thus, if f(b) = (c1, . . . , cs) and a = (a1, . . . , ar), then yi − ai ∈ Ma for all i, so
yi ◦ f − ai = f∗(yi − ai) ∈Mb vanishes at b, hence 0 = (yi ◦ f − ai)(b) = ci − ai for all i, so ci = ai,
hence f(b) = a. �

Lecture 36. April 13, 2011

The Plücker Relations. The image δr(Gr(r, n)) ⊂ PN , N =
(
n
r

)
− 1, is Zariski-closed, defined

by homogeneous polynomial equations known as the Plücker relations. To see that it is closed, it’s
enough by Exercise 36.1 to find an open cover of PN such the intersection of δr(Gr(r, n)) with each
open set in the open cover is closed. To define the open cover, let C[PN ] = C[y0, . . . , yN ]. The open
cover we will use is {Uy0 , . . . , UyN }.

Consider δr(Gr(r, n)) ∩ Uyi for some i. Recall that each variable yi corresponds to a choice of r
of the n rows of n× r matrices in the set M of all n× r matrices of rank r. We will work through
the case i = 0 and assume that y0 corresponds to the top r rows; other cases are treated similarly.

So let p ∈ Gr(r, n). Let p = [M ] for some M ∈ M. Then δr([M ]) = [(a0, . . . , aN )] ∈ Uy0 if
and only if a0 6= 0. But a0 = det(M0) is the determinant of the top r rows of M . Thus M0 is an
invertible matrix, so for some g ∈ GLr(C) we can write Mg as the block matrix Mg =

(
Ir

B

)
, where

B is an (n− r)× r matrix. The transposed matrix (Mg)T is just the reduced row echelon form of
M , and thus has the same column space as does M and so represents the same point of Gr(r, n);
i.e., [M ] = [Mg] ∈ Gr(r, n). Moreover, by Exercise 36.2, if

(
Ir

B

)
and

(
Ir

C

)
represent the same point

of Gr(r, n), i.e., if [
(
Ir

B

)
] = [

(
Ir

C

)
] or equivalently if

(
Ir

B

)
and

(
Ir

C

)
have the same column space, then

B = C.
Let Uy0

φ−−→ AN be the map φ([(a0, a1, . . . , aN )]) = (a1/a0, . . . , aN/a0); recall φ is an isomor-
phism. Note that if a0 = 1, then φ is just truncation (i.e., drop the leftmost coordinate). Also, think
of A(n−r)r = C(n−r)r as the set of all (n− r)× r matrices, and let ψ : A(n−r)r → Gr(r, n)∩ δ−1

r (Uy0)

be the map B 7→
[(

Ir

B

)]
; by our observations of the previous paragraph, ψ is a bijection. We now

have a map
λ0 : A(n−r)r → Gr(r, n) ∩ δ−1

r (Uy0)
δr−−→ Uy0

φ−−→ AN

defined by

B 7→
[(
Ir
B

)]
7→ [(1, a1, . . . , aN )] 7→ (a1, . . . , aN ),

and the coordinate functions B 7→ ai are given by polynomials in the entries of B (given by taking
determinants of r × r submatrices of

(
Ir

B

)
). Thus λ is an algebraic map.

If we show that the induced C-homomorphism λ∗0 : C[AN ] → C[A(n−r)r] is surjective, then, by
Exercise 35.2, δr(Gr(r, n)) ∩ Uy0 is closed, as we wanted to show, and we will obtain the Plücker
relations by applying Exercise 35.1.
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Exercises:

Exercise 36.1. Let {Ui} be an open cover of a topological space X. Show that a subset C ⊆ X
is closed if and only if C ∩ Ui is closed in Ui for all i.

Solution by Melanie DeVries. Let C be closed in X. Then by definition of the subspace topology,
C ∩ Ui is closed in Ui.

Conversely, let C ∩ Ui be closed for each i. Then Ui \ (C ∩ Ui) is open in each Ui and hence
Ui \ (C ∩Ui) = U ∩Ui for some open subset U of X, and thus Ui \ (C ∩Ui) is open in X. Thus the
union ∪i(Ui \ (C ∩ Ui)) = (∪iUi) \ C = X \ C is open, hence C is closed. �

Exercise 36.2. Let B and C be arbitrary (n−r)×r matrices and let P =
(
Ir

B

)
and Q+

(
Ir

C

)
. Show

that P and Q have rank r and that P and Q have the same column space if and only if B = C.

Solution by Ashley Weatherwax, as retyped (with minor modifications because I hate typing) by moi.
Suppose that P does not have rank r. Then there is a column (say column i) of P that is a linear
combination of the other columns of P . This means the top r rows of column i is a linear combi-
nation of the top r rows of the other columns of P , but this is impossible since the top r rows of
P is a matrix of rank r. Similarly, Q has rank r.

Also, note if B = C, then P = Q and so P and Q will have the same column space. Suppose
that P and Q have the same column space. Let v be the ith column of P , so the top r rows of v
just give the ith standard basis vector ei. Since P and Q have the same column space, v is a linear
combination of the columns of Q. Thus the top r rows of v is a linear combination of the top r
rows of Q; i.e., ei is a linear combination of the columns of Ir. The only such linear combination
is to have ei equal to the ith column of Ir, hence v is the ith column of Q. I.e., P and Q have the
same columns so B = C. �

Lecture 37. April 15, 2011

The Plücker Relations (cont). To show that δr(Gr(r, n)) ∩ Uyi is a closed subset of Uyi for
i = 0 (and in the same way for any i) and hence that δr(Gr(r, n)) is a closed subset of PN

it is enough (as mentioned above) to show that λ∗0 : C[AN ] → C[A(n−r)r] is surjective. Now
C[AN ] = C[y1/y0, . . . , yN/y0] and C[A(n−r)r] = C[x1,1, . . . , xn−r,r], where we think of the elements
of A(n−r)r as (n− r)× r matrices and the variables xi,j correspond to the entries of those matrices.
The homomorphism λ∗0 takes yi/y0 to the determinant of the ith r × r submatrix (with respect to
some fixed enumeration of the submatrices) of the matrix

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1
x1,1 x1,2 · · · x1,r−1 x1,r

x2,1 x2,2 · · · x2,r−1 x2,r
...

...
...

...
...

xn−r,1 xn−r,2 · · · xn−r,r−1 xn−r,r


. (‡)

Each of the variables xj (up to sign) is the determinant of some r× r submatrix of the matrix (‡).
For example, each row of variables of (‡) is of the form (xs,1, xs,2, · · · , xs,r−1, xs,r) for 1 ≤ s ≤ n−r.
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Consider 

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1
xs,1 xs,2 · · · xs,r−1 xs,r


. (††)

Dropping the top row of (††) gives an r × r submatrix of (‡) with determinant ±xs,1. Dropping
the second row gives an r × r submatrix with determinant ±xs,2, etc. In general, delete row k
of the identity matrix Ir to get an (r − 1) × r matrix M ′ and append row j of the (n − r) × r
matrix whose entries are the variables xs,t to the bottom of M ′ to get an r × r matrix M ′′; then
det(M ′′) = (−1)r−kxj,k. Thus the image of λ∗i includes all of the variables of C[A(n−r)r].

Thus λ∗i is surjective as claimed for i = 0 (and also for any i by the analogous argument), and
hence δr(Gr(r, n)) is a closed subset of PN . There is still the question of writing down homogeneous
polynomials which cut out δr(Gr(r, n)) (i.e., whose common zero-locus in PN is δr(Gr(r, n))). These
polynomials are called the Plücker relations.

To write down the Plücker relations, first write down generators for the kernel of λ∗i for each i.
Say the generators for a given i are Hi1, . . . ,Hili , which we can give explicitly by Exercise 35.1.
Each Hij is a polynomial in y0/yi, . . . , yN/yi. If deg(Hij) = d, then H∗

ij = yd
iHij is homogeneous of

degree d in the variables y0, . . . , yN , and by Exercise 37.1, the zero-locus of all of the H∗
ij is precisely

δr(Gr(r, n)).

Example 37.1. Here we find the Plücker relations for δ2(Gr(2, 4)) ⊂ P5. We first consider the
open set Uy0 . The corresponding homomorphism λ∗0 : C[y1/y0, . . . , y5/y0] → C[x1, . . . , x4] has

y1/y0 7→ G1 = det
(

1 0
x1,1 x1,2

)
= x1,2, y2/y0 7→ G2 = det

(
1 0
x2,1 x2,2

)
= x2,2, y3/y0 7→

G3 = det
(

0 1
x1,1 x1,2

)
= −x1,1, y4/y0 7→ G4 = det

(
0 1
x2,1 x2,2

)
= −x2,1, y5/y0 7→ G5 =

det
(
x1,1 x1,2

x2,1 x2,2

)
= x1,1x2,2 − x1,2x2,1. We also have F1 = −y3/y0 7→ x1,1, F2 = y1/y0 7→ x1,2,

F3 = −y4/y0 7→ x2,1, and F4 = y2/y0 7→ x2,2. So now by Exercise 35.1 the kernel of λ∗0 is
generated by y1/y0 −G1(F1, . . . , F4) = 0, y2/y0 −G2(F1, . . . , F4) = 0, y3/y0 −G3(F1, . . . , F4) = 0,
y4/y0 −G4(F1, . . . , F4) = 0, and y5/y0 −G5(F1, . . . , F4) = y5/y0 + (y2/y0)(y3/y0)− (y1/y0)(y4/y0).
I.e., the kernel is generated by y5/y0 + (y2/y0)(y3/y0) − (y1/y0)(y4/y0). Homogenizing gives the
single Plücker relation y0y5 + y2y3 − y1y4. Repeating the same steps for the other open sets Uyi ,
i = 1, 2, 3, 4, 5 gives in each case the same relation y0y5 + y2y3− y1y4. Thus δ2(Gr(2, 4)) is the zero
locus in P5 of the single polynomial y0y5 + y2y3 − y1y4.

Exercises:

Exercise 37.1. Let C[PN ] = C[y0, . . . , yN ], and let C ⊆ PN be closed. Assume Hi1, . . . ,Hili ∈
C[y0/yi, . . . , yN/yi] = OPN (Uyi) have zero-locus C ∩ Uyi , for each i. Let H∗

ij ∈ C[y0, . . . , yN ] be
the homogenization of Hij ; i.e., H∗

ij = yd
iHij where d = deg(Hij). Then C is the zero-locus of the

homogeneous polynomials {H∗
ij}.

Solution. For a fixed i and j, ZPN (H∗
ij) ∩ Uyi = Z(Hij) ⊂ Uyi and hence ZPN ({H∗

ij : 1 ≤ j ≤
li})∩Uyi = Uyi ∩C. Thus the simultaneous zero-locus ZPN ({H∗

ij : 1 ≤ j ≤ li, 0 ≤ i ≤ N}) is C. �

Exercise 37.2. Let X ⊆ Y be topological spaces. If X is irreducible, then show that the closure
X of X in Y is also irreducible.
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Solution. If X is not irreducible, then there are nonempty closed subsets A ( X and B ( X with
X = A ∪ B. Since A ( X, then X 6⊆ A and likewise X 6⊆ B, so X ∩ A and X ∩ B are nonempty
proper closed subsets of X with union X, hence X is not irreducible. �

Lecture 38. April 18, 2011

Dimension and Smoothness.

38.1. Dimension.

Definition 38.1.1. Let X be a topological space. Define dim(X) to be the supremum of all n
such that there exists a chain ∅ ( C0 ( C1 ( · · · ( Cn ⊆ X of closed irreducible subsets.

By Exercise 38.1, dim(An) = 0 if we give An the standard topology. However, if we give An the
Zariski topology with C[An] = C[x1, . . . , xn], take C0 = Z(x1, . . . , xn) ∼= A0, C1 = Z(x2, . . . , xn) ∼=
A1, C2 = Z(x3, . . . , xn) ∼= A2, etc., up to Cn−1 = Z(xn) ∼= An−1 and C0 = Z(0) = An. Each
Ci is irreducible, since C[Ai] is a domain. Thus dim(An) ≥ n now follows, but in fact we have
dim(An) = n. This follows from Theorem 38.1.3 below, since trdegCC(An) = n.

Recall for a ring R that the Krull dimension of R, denoted simply dim(R), is the supremum of
all n such that there is a chain of primes ideals P0 ( P1 ( · · · ( Pn ⊆ R.

We now have:

Proposition 38.1.2. Let X be a closed subset of An. Then dim(X) = dim(C[X]).

Proof. There is a bijective inclusion reversing correspondence between primes ideals of C[X] and
irreducible closed subsets of X. Thus Krull dimension of C[X] coincides with topological dimension
of X. �

If X is a quasi-projective variety we can say more (see p. 6 of Hartshorne’s Algebraic Geometry)
for a version of the following result):

Theorem 38.1.3. Let X be a quasi-projective variety and let U ⊆ X be a nonempty open affine
subset. Then dim(X) = dim(U) = dim(OX(U)) = trdeg(C(X)).

Terminology: If X ⊆ Y , then dim(X) ≤ dim(Y ) by Exercise 38.3. We refer to dim(Y )− dim(X)
as the codimension of X in Y , written codimY (X).

Codimension is related to height. The height of a prime ideal P in a ring R is the supremum
of all n such that there is a chain of primes P0 ( P1 ( · · · ( Pn = P . Thus the Krull dimension
of R is just the supremum of the heights of its prime ideals. If R is a domain which is a finitely
generated C-algebra, then a fundamental fact for any prime ideal P ⊂ R is that

height(P ) + dim(R/P ) = dim(R)

(see Theorem I.1.8A, p. 6 of Hartshorne’s Algebraic Geometry). In geometrical terms this says: if
X ⊆ Y ⊆ Am are closed irreducible subsets, then height(IY (X)) + dim(X) = dim(Y ) and hence
height(IY (X)) = codimY (X).

Krull’s Hauptidealsatz is an important and useful result:

Theorem 38.1.4 (Krull’s Hauptidealsatz). Let A be a Noetherian ring, and let f ∈ A not be a
zero-divisor (and thus not be 0) and not be a unit. Then every minimal prime of f has height 1.
(I.e., if P ⊂ A is a prime with f ∈ P such that any prime Q ⊂ A with f ∈ Q ⊆ P has Q = P (so
P is a minimal prime of f), then P has height 1.)

The following result is a corollary of the Hauptidealsatz:

Corollary 38.1.5. Let f ∈ C[An] be a polynomial of positive degree (i.e., not a constant). Let
Y be an irreducible closed subset of An and assume that Y ∩ Z(f) 6= ∅. Let X be an irreducible
component of Y ∩ Z(f). Then codimY (X) ≤ 1, with equality if X 6= Y .
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Proof. If Y ⊆ Z(f), then X = Y and codimY (X) ≤ 0. So say Y 6⊆ Z(f). Thus the restriction f to
Y gives an element f ∈ C[Y ] which is not 0, and, by assumption, Y ∩Z(f) 6= ∅, so f is not a unit.
Thus the Hauptidealsatz says that any minimal prime P ⊂ C[Y ] of f has height 1. In particular,
IY (X) is a minimal prime (since X is an irreducible component of ZY (f)), so in this case we have
1 = height(IY (X)) = codimY (X). �

38.2. Smoothness. Let X ⊆ An be an affine variety. Let I(X) = (f1, . . . , fr) ⊂ C[An] =
C[x1, . . . , xn]. The Jacobian matrix Jac(f1, . . . , fr) is the r × n matrix J whose entries are Ji,j =
∂fi/∂xj .

Definition 38.2.1. If p ∈ X with X as above, we say p is smooth if the rank of Jac(f1, . . . , fr)(p)
is the codimension of X in An. Otherwise we say p is a singular point of X.

Example 38.2.2. If X is a hypersurface (i.e., defined by a single polynomial f), then p ∈ X is
singular if and only if the gradient vanishes at p; i.e., if and only if ∇f(p) = (fx1(p), . . . , fxn(p)).

Exercises:

Exercise 38.1. For the standard topology on Cn ∼= R2n, show that the only irreducible subsets
are points. [Hint: if a closed subset contains two points, consider the hyperplane in R2n which is
the perpendicular bisector of the line segment between the two points.]

Solution. Let C be a subset closed in the standard topology. Assume C contains distinct points p
and q. Let H be the real hyperplane which is the perpendicular bisector to the real line segment
from p to q. Then H is defined by a linear equation L = 0. Let A be the set of all points a such
that L(a) ≥ 0 and let B be the set of all points b such that L(b) ≤ 0. Then A ∩ B = H while
A∪B = R2n, and may assume p ∈ A and q ∈ B, but then q 6∈ A and p 6∈ B, so A∩C and B∩C are
nonempty proper closed subsets of C with union C. Thus C is not irreducible. Clearly individua
points are irreducible, so they are the only irreducible subsets of R2n. �

Exercise 38.2. Let X be a closed subset of An. Let X1, . . . , Xr be the irreducible components of
X. Show that dim(X) = maxi(dim(Xi)).

Solution. Let X0 be the component of maximum dimension, and say its dimension is d. Then X0

has a chain C0 ( C1 ( · · · ( Cd of closed irreducible subsets. These are necessarily also closed
irreducible subsets of X, so dimX ≥ d = dimX0.

Let D0 ( D1 ( · · · ( De be any chain of closed irreducible subsets of X. Since De is irreducible,
there must be a component Xi of X such that De ⊆ Xi, and hence e ≤ dimXi ≤ dimX0. Thus
dimX ≤ dimX0. Therefore dimX = dimX0. �

Exercise 38.3. Let X ⊆ Y be topological spaces. Show that dim(X) ≤ dim(Y ).

Solution. The closure of an irreducible subset is irreducible by Exercise 37.2, so if C0 ( C1 (
· · · ( Cd is any chain of closed irreducible subsets of X, then their closures Ci in Y give a chain
C0 ( C1 ( · · · ( Cd of closed irreducible subsets of Y . Thus dimX ≤ dimY . �

Exercise 38.4. Let X ⊆ Y ⊆ An be irreducible closed subsets. Show that codimAn(X) =
codimY (X) + codimAn(Y ).

Solution. We have codimAn(X) = dim An−dimX = dim An−dimY+dimY−dimX = codimAn(Y )+
codimY (X). �

Exercise 38.5. Let f1, . . . , fr ∈ C[An]. Let X be an irreducible component of Z(f1, . . . , fr). Show
that codimAn(X) ≤ r.
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Proof. By Corollary 38.1.5, every component of Z(f1) has codimension at most 1. If Y is a com-
ponent of Z(f1, . . . , fr−1), assume by induction that codimAn(Y ) ≤ r− 1. Then again by Corollary
38.1.5, each component X of Z(f1, . . . , fr) has codimY (X) ≤ 1, hence by Exercise 38.4 we have
codimAn(X) = codimY (X) + codimAn(Y ) ≤ r. �

Lecture 39. April 20, 2011

Smoothness (cont.). We can extend the definition of smoothness to points of any closed affine
subset. Let X be a closed subset of An. Let p ∈ X and let I(X) = (f1, . . . , ft). Let r be the
maximum of the dimensions of the irreducible components of X containing p. Then we say that X
is smooth at p if rk((Jac(f1, . . . , ft))(p)) = n− r.

This makes it unclear to what extent smoothness is intrinsic. It seems to depend on n and on
the choice of generators fi. A theorem of Zariski shows that whether or not X is smooth at a point
p ∈ X is independent of the embedding of X in An and of the generators fi:

Theorem 39.1 (Zariski). Let X be an affine algebraic set, p ∈ X, and let r be the maximum of
the dimensions of the irreducible components of X which contain p. Then X is smooth at p if and
only if IX(p)/(IX(p))2, as a vector space over the field C[X]/IX(p), has dimension r.

For the proof of a version of this result, see Theorem I.5.1, p. 32 of Hartshorne’s Algebraic
Geometry.
Aside: This result led to the notion of regular local rings. A Neotherian ring R with a unique
maximal ideal M is defined to be a regular local ring if M/M2 has dimension dim(R) as an R/M -
vector space.

Example 39.2. Let X = Z(f) ⊂ A2 for f = xy ∈ C[A2] = C[x, y]. To find the singular points we
solve ∇f = 0; i.e., 0 = ∂f/∂x = y and 0 = ∂f/∂y = x. Thus the only solution is x = 0, y = 0,
so the origin (0, 0) ∈ X is the only singular point. Alternatively, using Zariski’s criterion, we have
C[X] = C[x, y]/(xy). This ring consists of all polynomials of the form g(x)+h(y) (i.e., polynomials
in x and y with no cross terms). Let p be the origin. The maximal ideal IX(p) consists of all
polynomials of the form g(x) + h(y) such that h(0) = 0 and h(0) = 0. Thus (IX(p))2 consists of all
polynomials of the form g(x) + h(y) and with all terms of degree at least 2. Thus the images of x
and y in IX(p)/(IX(p))2 give a basis; i.e., IX(p)/(IX(p))2 has dimension 2 but both components of
X have dimension 1, so p is singular.

Now let p = (1, 0). The x-axis is the only component of X containing p and it has dimension 1.
Now IX(p) consists of all polynomials of the form g(x)+h(y) such that g(1) = 0 and h(y) = 0; i.e.,
all polynomials of the form (x − 1)l(x) + ym(y). Since y, x − 1 ∈ IX(p) we see that −y(x − 1) =
y ∈ (IX(p))2, so (IX(p))2 consists of all polynomials of the form (x− 1)2l(x) + ym(y), hence x− 1
maps to a basis of IX(p)/(IX(p))2, so IX(p)/(IX(p))2 has vector space dimension 1, hence p is a
smooth point of X.

Example 39.3. Let X = Z(f) ⊂ A2 for f = y2 − x3 ∈ C[A2] = C[x, y]. Thus X is a curve defined
parametrically by (t2, t3) for t ∈ C, which gives the isomorphism C[X] = C[t2, t3]. To find the
singular points we solve ∇f = 0; i.e., 0 = ∂f/∂x = −3x2 and 0 = ∂f/∂y = 2y. Thus the only
solution is x = 0, y = 0, so the origin (0, 0) ∈ X is the only singular point. Alternatively, using
Zariski’s criterion, we have IX(p)/(IX(p))2 = (t2, t3)/(t2, t3)2 = 〈t2, t3, . . .〉/〈t4, t5, . . .〉 hence t2 and
t3 map to a basis of IX(p)/(IX(p))2, so its dimension is 2, versus X which has dimension 1, so p is
a singular point of X.

Lecture 40. April 22 and April 25, 2011

Example 40.4. Here we show that p = (1, 1) is a smooth point of X = Z(f) ⊂ A2 for f =
y2 − x3 ∈ C[A2] = C[x, y], using Zariski’s criterion. We saw above that (0, 0) is the only singular
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point of X using the Jacobian criterion, so now we want to do an example using Zariski’s criterion.
Note that p is indeed a point of X, since p ∈ Z(y2 − x3), and that the dimension of X is 1.

Under the isomorphism C[X] = C[t2, t3], the ideal IX(p) is (t2 − 1, t3 − 1). Thus we must show
that (t2 − 1, t3 − 1)/(t2 − 1, t3 − 1)2 is a 1 dimensional C-vector space.

Note that we have a homomorphism Λ : C[t2, t3] → C[t]/((t − 1)2) given by composing the
inclusion C[t2, t3] ⊂ C[t] with the quotient C[t] → C[t]/((t − 1)2). The kernel of Λ contains
(t2 − 1, t3 − 1)2 since every element of (t2 − 1, t3 − 1) is divisible in C[t] by t− 1. Thus Λ induces
a C-homomorphism λ : C[t2, t3]/(t2 − 1, t3 − 1)2 → C[t]/((t − 1)2). For any polynomial g ∈ C[t],
let g denote its image under the quotient C[t] → C[t]/((t − 1)2). Likewise, for any polynomial
f ∈ C[t2, t3], let f denote its image in C[t2, t3]/(t2 − 1, t3 − 1)2.

We will show that λ is an isomorphism and that it maps (t2 − 1, t3 − 1)/(t2 − 1, t3 − 1)2 iso-
morphically to (t− 1)/((t− 1)2). But note that {1, t− 1, (t− 1)2, (t− 1)3, . . .} is a C-vector space
basis for the ring C[t] (since every polynomial has a unique Taylor series centered at t = 1), with
{t − 1, (t − 1)2, (t − 1)3, . . .} being a basis for (t − 1) and {(t − 1)2, (t − 1)3, . . .} being a basis for
((t− 1)2). Thus the image of t− 1 in (t− 1)/((t− 1)2) is a basis vector for (t− 1)/((t− 1)2); i.e.,
(t− 1)/((t− 1)2) and hence (t2 − 1, t3 − 1)/(t2 − 1, t3 − 1)2 is 1 dimensional.

To show that λ is an isomorphism, first we show that λ is surjective. Note that λ is a C-
homomorphism, so it’s enough to show that t is in the image of λ. But

λ((t2 + 1)/2) = (t2 + 1)/2 = (t2 + 1− (t− 1)2)/2 = t,

so λ is surjective.
Also note that λ−1((t−1)) = (t2−1, t3−1). To see this it’s enough to check that Λ−1((t−1)) =

(t2 − 1, t3 − 1), which itself follows if we show that (C[t2, t3]) ∩ (t− 1) = (t2 − 1, t3 − 1), where the
intersection takes place in C[t]. Clearly, (t2 − 1, t3 − 1) ⊆ (C[t2, t3]) ∩ (t − 1). To see the reverse
containment, let f ∈ (C[t2, t3]) ∩ (t − 1). Writing f = a0 + a1t + · · · + ant

n for constants ai ∈ C,
having f ∈ C[t2, t3] means a1 = 0, while f ∈ (t− 1) means 0 = f(1) = a0 + a2 + · · ·+ an and hence
a0 = −(a2 + · · ·+ an). Thus

f = −(a2 + · · ·+ an) + a2t
2 + · · ·+ ant

n =
∑
i≥2

(ait
i − ai) =

∑
i≥2

ai(ti − 1). (∗)

For i = 2, 3 we have ti − 1 ∈ (t2 − 1, t3 − 1). For i > 3 we have ti − 1 = (ti − t2) + (t2 − 1) =
t2(ti−2−1)+(t2−1) ∈ (t2−1, t3−1). Thus each term of f in (∗) is in (t2−1, t3−1) so f ∈ (t2−1, t3−1).
Thus λ induces a surjective homomorphism (t2 − 1, t3 − 1)/(t2 − 1, t3 − 1)2 → (t− 1)/((t− 1)2).

Aside: This shows that (t2− 1, t3− 1) = Λ−1(t− 1). We might be tempted at this point to claim
that therefore (t2− 1, t3− 1)2 is the kernel of Λ since ((t− 1)2) = (0), and hence that λ is injective
but this is not sound reasoning; see Exercise 40.1.

So we still need to check that λ is injective. But since λ : C[t2, t3]/(t2−1, t3−1)2 → C[t]/((t−1)2)
is surjective and C[t]/((t−1)2) has C-vector space dimension 2 (with basis given by the images of 1
and t−1), we see that C[t2, t3]/(t2−1, t3−1)2 has C-vector space dimension at least 2. On the other
hand, (t2−1, t3−1)2 = ((t2−1)2, (t2−1)(t3−1), (t3−1)2) = (t4−2t2+1, t5−t3−t2+1, t6−2t3+1).
Moreover, (2 + t2)(t4 − 2t2 + 1) − (t6 − 2t3 + 1) = 2t3 − 3t2 + 1 ∈ (t2 − 1, t3 − 1)2. Thus, modulo
(t2 − 1, t3 − 1)2, every polynomial in C[t2, t3] can be reduced to a polynomial of degree at most 2
and hence of the form a+ bt2. Thus C[t2, t3]/(t2− 1, t3− 1)2 has C-vector space dimension at most
2, and hence exactly 2.

Thus λ, being surjective, is also injective as a vector space homomorphism, and thus it is injective,
as we wanted to show.

Here are a few additional facts about smoothness for a closed subset X ⊆ An. Let p ∈ X. Then
we have the following facts.
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(a) The maximum r of the dimensions of the irreducible components of X containing p is a
lower bound on the dimension of the Zariski tangent space of X at p:

dimC IX(p)/IX(p)2 ≥ r.

(See Atiyah-Macdonald, Corollary 11.15, p. 121 for a version of this.)
(b) If X is smooth at p, then C[X]IX(p) is a domain. (See Theorem I.5.4A of Hartshorne’s

Algebraic Geometry.)
(c) If p lies on more than one component of X, then X is singular at p. (See Exercise 40.2.)

Exercises:

Exercise 40.1. Let f : A → B be a homomorphism of rings. Let I ⊆ B be an ideal and let
J = f−1(I). Show by example that it need not be true that J2 = f−1(I2).

Solution. Let f : C[x] → C = C[x]/(x) be the quotient map. Let I = (0) so J = ker(f) = (x).
Then I2 = I = (0), so f−1(I2) = J = (x) 6= (x2) = J2. �

Exercise 40.2. Consider a closed subset X ⊆ An. If p lies on more than one component of X,
show that X is singular at p. [Hint: show that C[X]IX(p) is not a domain.]

Solution. Let Cp be an irreducible component of X containing p and let Dp be a different irreducible
component of X containing p. Let C be the union of Cp with all irreducible components of X except
Dp and let D be the union of Dp with all irreducible components of X except Cp. Thus X = C ∪D
(and hence I(X) ⊆ I(C) ∩ I(D)), where p ∈ C ∩D and where C and D are closed, proper subsets
of X. Thus there are elements f ∈ I(C) \ I(X) and g ∈ I(D) \ I(X) such that fg ∈ I(X). Since
I(C) ⊆ I(p) and I(D) ⊆ I(p), we see f, g ∈ I(p). Modding out by I(X) gives 0 6= f ∈ IX(C) and
0 6= g ∈ IX(D) but fg = 0.

Let ∗ : C[X] → C[X]IX(p) be the localization homomorphism. Then f
∗ 6= 0∗, for if f∗ = 0∗,

there would be an element s ∈ C[An] such that s 6∈ IX(p) (and hence s 6∈ I(p)) but sf = 0 in C[X].
Thus sf vanishes on all of X. However, f ∈ I(C) \ I(X) implies that f does not vanish on Dp so s
vanishes on Dp, which implies s(p) 6= 0 and therefore contradicts s 6∈ I(p). Similarly, g∗ 6= 0∗, yet
f
∗
g∗ = 0∗, so C[X]IX(p) is not a domain and hence X is not smooth at p. �

Exercise 40.3. Let A be a ring, M a maximal ideal of A and I an M -primary ideal. Let B
be the localized ring AM and J = IB the ideal generated by I in B. Show that the canonical
homomorphism F : A → B (induced by a 7→ a

1 ) induces an isomorphism f : A/I → B/J . [Note
that therefore modding out by I has the effect of inverting all elements not in M .]

Solution. Given a ∈ A, let a denote the image of a in A/I, and likewise Given b ∈ B, let b denote
the image of b in B/J . Let S = A \M . Then s is a unit in A/I for every s ∈ S. To see this,
consider I + (s). Since I is M -primary,

√
I = M , so

√
I + (s) =

√
I +

√
(s) = M +

√
s contains

both M and s hence equals (1). Thus 1n = 1 ∈ I + (s), so 1 = i+ us for some u ∈ A and i ∈ I and
hence 1 = us, and therefore s is a unit as claimed.

Clearly F (I) ⊆ J , so F induces a homomorphism f : A/I → B/J . Say f(a) = 0. Then F (a) ∈ J ,
so there is an element s ∈ A \M and an element c ∈ I such that a

1 = F (a) = c
s , hence there is a

t ∈ A \M such that t(sa − c) = 0 in A. Thus tsa = tc = 0 ∈ A/I, and since ts is a unit in A/I,
we see a = 0, so f is injective.

Now consider any b ∈ B/J . Then b = a
s for some a ∈ A and s ∈ S. Let u be the inverse of s.

Then f(s−1a) = f(ua) = F (au) = a
1

u
1 = a

s = b, so f is surjective and hence an isomorphism. �
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Lecture 41. April 27, 2011

We can extend the definition of smoothness to closed subsets of projective space. Let p ∈ X ⊆
PN , where X is closed in PN . Pick an i such that p ∈ Uxi and regard p ∈ X ∩ Uxi ⊆ Uxi

∼= AN . If
p is a smooth point of X ∩Uxi regarded as a closed subset of AN , we say p is a smooth point of X.

Consider X = ZPN (F ) ⊂ PN , where F ∈ C[PN ] = C[x0, . . . , xN ] is non-constant and homoge-
neous. Let d = deg(F ), so d > 0. Let p ∈ PN . If ∂F

∂xi
(p) = 0 for all i, then F (p) = (

∑
i xi

∂F
∂xi

(p))/d =
0 so p ∈ X. By Exercise 41.1, p is a singular point of X.

Example 41.5. Let F = zy2 − x3 ∈ C[P2]. Consider X = ZP2(F ) ⊂ P2. Then ∇(F ) =
(−3x2, 2zy, y2). Thus ∇(F )(p) = 0 if and only if x = y = 0, so the singular locus of X con-
sists of a single point, p = (0, 0, 1).

Divisors: Let X be a smooth, irreducible, quasi-projective variety. A prime divisor is a closed
irreducible subset of X of codimension 1. Define Div(X) to be the free abelian group on the prime
divisors of X.

Each prime divisor D ⊂ X determines a discrete valuation νD. Recall that a discrete valuation
on a field K is a surjective map ν : K → Z ∪ {∞} such that the only element of K mapping to
∞ is 0 ∈ K. The map ν must satisfy ν(ab) = ν(a) + ν(b) and ν(a+ b) ≥ min(ν(a), ν(b)). The set
R of all a ∈ K with ν(a) ≥ 0 is a Noetherian ring, called the valuation ring of ν, and K is the
field of fractions of R. A discrete valuation ring (or DVR) is a ring R occurring in this way. (See
Atiyah-Macdonald, p. 94, for background on DVRs.)

Before explaining where the discrete valuation associated to a prime divisor comes from in
general, we do an example.

Example 41.6. Let X = A1 = C, so C[X] = C[x]. Then the prime divisors on X are just the single
points of X. Thus an element of Div(X) is an expression of the form

∑
p∈X mpp, where mp ∈ Z

for all p ∈ A1, and such that mp = 0 for all but finitely many p. Let K = C(X) so K = C(x) is the
function field of X. A point p ∈ X is just an element of C. Given p ∈ X, the associated discrete
valuation νp is defined as follows. For any f ∈ C[X] = C[x], let νp(f) be the order of vanishing of
f at p; i.e., the largest m such that (x− p)m divides f . If f is the 0 element, we set νp(f) = ∞. If
f, g ∈ C[x] with g not the 0 element, we define νp(f/g) = νp(f)− νp(g); this extends νp to all of K.
The valuation ring R in this case is the localization C[x](x−p) of C[x] at the maximal ideal (x− p),
and for any element 0 6= f ∈ Rwe can regard νp(f) as the largest m such that f ∈Mm, where M is
the unique maximal ideal of R (i.e., the ideal generated in R by x− p). The valuation νp specifies
the order of zero (or pole) that an element f/g ∈ K has at p. If νp(f/g) = −m < 0, then we can
say that f/g has a zero of order −m, but it’s more common to say that f/g has a pole of order m
at p.

Since C[x] is a UFD, it’s easy to see that νp(fg) = νp(f)+νp(g) for f, g ∈ C[x] and this extends to
C(x). The fact that νp(f+g) ≥ min(νp(f), νp(g)) comes from the fact that you can get cancellation
when you add, but when you drop terms the order of zero at a point can go up. For example, if
f = (x − p)5 − 7(x − p)2 and g = (x − p)8 + 7(x − p)2, then νp(f) = 2 and νp(g) = 2, but
νp(f + g) = 5. The valuations of f and g come from their terms of least degree (when regarded
as polynomials in x − p; i.e., as polynomials centered at p), but adding f to g cancels these least
degree terms, leading to f + g having an increased valuation. When cancellation doesn’t occur,
such as for f = (x − p)5 − 7(x − p)2 and g = (x − p)8 + 7(x − p)3, the term of f of least degree
survives in f + g to become the term of f + g of least degree, and the valuation of f + g comes from
this term of least degree, which in this case gives νp(f + g) = min(νp(f), νp(g)) = min(2, 3) = 2.



78 BRIAN HARBOURNE

Exercises:

Exercise 41.1. Let F ∈ C[PN ] be non-constant and homogeneous. Show that p is a singular point
of ZPN (F ) if and only if (∇F )(p) = 0.

Solution. Assume (∇F )(p) = 0; then as we saw above p ∈ X. Say F is the polynomial F (x0, . . . , xN ),
where C[PN ] = C[x0, . . . , xN ]. For some i we have that p ∈ Uxi . Thus p ∈ ZPN (F ) ∩ Uxi =
ZAN (F (x0/xi, . . . , xN/xi)), and p is singular if (∂F/∂(xj/xi))(p) = 0 for all j 6= i. But we have
(∂F/∂(xj/xi))(p) = 0 if and only if (∂F/∂xj)(p) = 0, hence if (∇F )(p) = 0, then p is a singular
point of X.

Conversely, if p is a singular point of X, then p ∈ X, so F (p) = 0. As before, p ∈ Uxi and hence
(∂F/∂(xj/xi))(p) = 0 for all j 6= i, so (∂F/∂xj)(p) = 0 for j 6= i. But F (p) = (

∑
l xl

∂F
∂xl

(p))/d = 0
while xi(p) 6= 0 and ∂F

∂xl
(p) = 0 for l 6= i, so ∂F

∂xi
(p) = 0, hence (∇F )(p) = 0. �

Exercise 41.2. Recall that a valuation ring is a domain R such that for each element r of the field
of fractions K of R we have either x ∈ R or x−1 ∈ R (see Atiyah-Macdonald, p. 65). Show that a
DVR is a valuation ring.

Solution. See Atiyah-Macdonald for the proof. �

Lecture 42. April 29, 2011

Given a smooth quasi-projective variety X and a prime divisor D ⊂ X, let U ⊆ X be any open
affine subset of X such that U ∩ D 6= ∅. Let OX,D be the localization of OX(U) at the prime
ideal IU (D). Then OX,D turns out to be a DVR; denote the corresponding valuation on C(X) by
νD. Given any f ∈ C(X) \ {0}, there are only finitely many prime divisors D such that νD(f) 6= 0
(see Hartshorne’s Algebraic Geometry, Lemma II.6.1, p. 131). Thus the sum div(f) =

∑
D νD(f)D

over all prime divisors D on X is itself a divisor. A divisor coming in this way from a non-trivial
rational function f is called a principal divisor.

Since div(fg) = div(f) + div(g), the set of principal divisors is a subgroup PrDiv(X) of Div(X).
The quotient group Div(X)/PrDiv(X) is called the divisor class group of X, denoted Cl(X). If D1

and D2 are divisors whose images [Di] in Cl(X) are the same (i.e., if there is a rational function f
such that D1 = D2 + div(f)), we say that D1 and D2 are linearly equivalent.

Example 42.7. Let X = AN . Then there is a bijection between the irreducible polynomials in
C[AN ] (modulo scalar multiples) and prime divisors; given an irreducible F ∈ C[AN ], the corre-
sponding prime divisor is Z(F ). Choose such an F for each prime divisor D and denote it FD.
Given any divisor m1D1 + · · · +mrDr, where each Di is a prime divisor, f = ΠiF

mi
Di

∈ C(X) is a
rational function with div(f) = m1D1 + · · ·+mrDr. Thus PrDiv(X) = Div(X) and Cl(X) = 0.

Example 42.8. Let X = PN . Then there is a bijection between the irreducible homogeneous poly-
nomials in C[PN ] (modulo scalar multiples) and prime divisors; given an irreducible homogeneous
F ∈ C[PN ], the corresponding prime divisor is ZPN (F ). If we define the degree deg(D) of D to
be the degree of F , we get a homomorphism deg : Div(X) → Z whose kernel is PrDiv(X); i.e.,
PrDiv(X) is precisely the subgroup of divisors of degree 0. (See Hartshorne’s Algebraic Geometry,
Proposition II.6.4, p. 132.)

Let X be a smooth quasi-projective variety. Let D = m1D1 + · · · + mrDr be a divisor where
D1, . . . , Dr are distinct prime divisors. We say D is effective if mi ≥ 0 for all i. For any divisor
D, effective or not, we write |D| for the set of all effective divisors linearly equivalent to D, and
we write L(D) for the set of rational functions f such that either f = 0 or D + div(f) is effective.
Since for any prime divisor P we have νP (f + g) ≥ min(νP (f), νP (g)), it follows that L(D) is a
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C-vector space, and we can regard |D| as the associated projective space (i..e., as the 1-dimensional
subspaces of L(D)).

A fundamental fact is that if X is a smooth projective variety, L(D) is a finite dimensional vector
space (see Hartshorne’s Algebraic Geometry, Theorem III.5.2, p. 228). Studying the dimension of
L(D) for various D is a major issue in algebraic geometry. One of the most important theorems
in algebraic geometry is the theorem of Riemann-Roch, which bounds the dimension of L(D) by
numerical data related to X and D.
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