Master's Comprehensive and Ph.D. Qualifying Exam Algebra: Math 817-818, January 18, 2005

Do 6 problems, 2 from each of the three sections. If you work on more than six problems, or on more than 2 from any section, clearly indicate which you want graded. Different parts of a problem do not necessarily count the same.

Justify everything carefully. You may quote and use well-known theorems, provided they do not make the problem trivial. If you have doubts about the wording of a problem, please ask for clarification. In no case should you interpret a problem or appeal to known results in such a way that the problem becomes trivial.

Do not use calculators or computers on this exam.

Note: \mathbb{Q} , \mathbb{R} and \mathbb{C} denote the fields of rational, real and complex numbers respectively. The ring of integers is denoted by \mathbb{Z} , \mathbb{N} is the set of positive integers, C_n is the cyclic group of order n and I_n is the $n \times n$ identity matrix.

Section I: Groups and Geometry

- **1.** Let G be a finite group and m a positive integer which is relatively prime to |G|. If $b \in G$ and $a^m b = ba^m$ for all $a \in G$, show that b is in the center of G.
- **2.** Let n be a positive integer, and consider the following two subgroups of $G := GL_n(\mathbb{R})$:

$$H = \operatorname{SL}_n(\mathbb{R}) \quad (= \{g \in G \mid \det(g) = 1\})$$

 $N = \{\alpha \operatorname{I}_n \mid \alpha \in \mathbb{R}^{\times}\} \quad (= \text{ the group of non-zero scalar matrices})$

Prove that the following conditions are equivalent:

- (a) $H \cap N = \{I_n\}.$
- (b) HN = G.
- (c) n is odd.
- **3.** Let G be a nonabelian group of order 2p, where p is an odd prime. For each positive integer n, determine the number of conjugacy classes in G of size n.
- **4.** Let \mathbb{R}^+ denote the group of real numbers under addition.
 - (a) Let G be a subgroup of \mathbb{R}^+ containing arbitrarily small positive real numbers. Prove that G is dense in \mathbb{R}^+ . (That is, given real numbers a and b with a < b, prove that there is an element $g \in G$ with a < g < b.)
 - (b) Prove that $\mathbb{Z} + \mathbb{Z}\sqrt{2}$, the subgroup of \mathbb{R}^+ generated by 1 and $\sqrt{2}$, is dense in \mathbb{R}^+ . (One approach is to use (a). Other methods are possible.)

Section II: Linear Algebra

- **5.** Let A be an $n \times n$ matrix all of whose entries are zeros and ones, in a checkerboard pattern. Assume A has 1's on the diagonal. (Note: Part (a) of this problem is probably not relevant for Part (b).)

 - (b) For any $n \geq 2$, show that there is an invertible real $n \times n$ matrix P such that P^tAP is a diagonal matrix all of whose entries are 0 except for two 1's on the diagonal.
- **6.** Recall that the *cokernel* of an $m \times n$ matrix α over \mathbb{Z} is the abelian group \mathbb{Z}^m/C , where C is the subgroup of \mathbb{Z}^m generated by the columns of α . For each of the following, reduce the matrix to diagonal form by doing integer row and column operations, and express the cokernel (up to isomorphism) as a direct sum of cyclic groups:

$$\alpha = \begin{bmatrix} 6 & 10 & 15 \\ 2 & 4 & 6 \\ -2 & 2 & 0 \\ 4 & 6 & 9 \end{bmatrix} \qquad \beta = \alpha^{t} = \begin{bmatrix} 6 & 2 & -2 & 4 \\ 10 & 4 & 2 & 6 \\ 15 & 6 & 0 & 9 \end{bmatrix}$$

- 7. Let A be an 8×8 nilpotent matrix over \mathbb{C} . Assume $\operatorname{rank}(A) = 5$ and $\operatorname{rank}(A^2) = 2$. List all possible Jordan canonical forms for A, and show that knowledge of $\operatorname{rank}(A^3)$ would allow one to determine the Jordan canonical form of A.
- **8.** Let A be an $n \times n$ matrix over \mathbb{Q} . Prove that A is similar to A^{t} .

Section III: Rings and Fields

- **9.** Find, with proof, a polynomial f(x) of degree 3 that is irreducible over the field \mathbb{F}_{81} with 81 elements. (Give an explicit polynomial.)
- **10.** Consider the polynomial rings over the integers and the rationals, $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$.
 - (a) Let f(x) and g(x) be non-zero polynomials in $\mathbb{Z}[x]$, and let I be the ideal of $\mathbb{Z}[x]$ generated by f(x) and g(x). Prove that f(x) and g(x) are relatively prime in $\mathbb{Q}[x]$ if and only if $I \cap \mathbb{Z} \neq (0)$.
 - (b) Find with justification an ideal of $\mathbb{Z}[x]$ that is not principal.
- 11. Let $f \in \mathbb{Z}[x]$, where x is an indeterminate. Prove that $\mathbb{Z}[f] = \mathbb{Z}[x]$ if and only if f is a linear polynomial with leading coefficient ± 1 .
- 12. Let R be a non-zero ring with 1, and assume that the set N of non-invertible elements of R is closed under addition. Prove that N is the unique maximal left ideal of R. (The trickiest part is probably showing that N is a left ideal. The equation xy = (1+x)y y might be useful. You must allow for the fact that having a left inverse does not necessarily make an element invertible; that is, in a general ring with 1, xy = 1 does not necessarily force x and y to be invertible.)