
M417 Final Exam Solutions May 7, 2004

(1) Prove that a group G is a union of proper subgroups if and only if G is not cyclic.
Answer: If G is cyclic we must show that G is not the union of proper subgroups. But say G = <g>; if G were then

union of proper subgroups, then g must be in a proper subgroup, but any subgroup of G containing g contains G, hence is
not proper. Conversely, say G is not cyclic. Then <g> is a proper subgroup for every element g ∈ G, and clearly G is the
union, taken over all g ∈ G, of the subgroups <g>.
(2) (a) Define what it means for a subgroup N of a group H to be normal.

(b) Let f : G → H be a homomorphism of groups. Let N be a normal subgroup of H . Prove that f−1(N) is a subgroup
of G and that it is normal in G.

Answer: (a) We say a subgroup N < H is normal if hNh−1 = N for every h ∈ H . (Alternatively, if hnh−1 ∈ N for
every n ∈ N and every h ∈ H .)

(b) First, eG ∈ f−1(N) since f(eG) = eH ∈ N , so f−1(N) 6= ∅. Next, if x, y ∈ f−1(N), then f(xy) = f(x)f(y) =
eHeH = eH , so xy ∈ f−1(N), and finally if x ∈ f−1(N), then f(x−1) = f(x)−1 = e−1

H
= eH , so x−1 ∈ f−1(N). Thus f−1(N)

is a subgroup of G. To see that f−1(N) is normal, let x ∈ f−1(N) and let g ∈ G. Then f(gxg−1) = f(g)f(x)f(g)−1 is in N
since f(x) ∈ N and N is normal, so gxg−1 ∈ f−1(N), hence f−1(N) is normal.
(3) (a) Define the center Z(G) of a group G.

(b) Suppose x ∈ G is an element of order 2 in a group G. If x is the only element of order 2 in G, prove that x is in the
center Z(G) of G.

Answer: (a) Z(G) = {g ∈ G|gx = xg for all x ∈ G}
(b) Say x is the only element of G of order 2. Note that (gxg−1)2 = gxg−1gxg−1 = gxxg−1 = geGg−1 = gg−1 = eG, so

either gxg−1 = eG or gxg−1 has order 2. The first case can’t happen, since gxg−1 = eG implies that x = g−1g = eG, which
doesn’t have order 2. And the second case implies that gxg−1 = x, hence xg = gx for all g ∈ G, so x ∈ Z(G).
(4) (a) Define the centralizer CG(x) of an element x in a group G.

(b) Determine |CG(x)| if G = S5 and |x| = 6. [Hint: determine the order of the orbit of x under conjugation and use
the orbit-stabilizer theorem and use the fact, which you may assume, that stabG(x) = CG(x).]

Answer: (a) CG(x) = {g ∈ G|gx = xg}
(b) If we write x as a product of disjoint cycles, then x must be a product of a 2-cycle and a 3-cycle, since no other

product of disjoint cycles in G has order 6. Now all elements of G which are a product of a disjoint 2-cycle and 3-cycle are
conjugate, and so form a single orbit under the action of G on G by conjugation. There are 2

(

5

3

)

different 3-cycles in G, hence

also 2
(

5

3

)

= 20 elements which are a product of a disjoint 2-cycle and 3-cycle. Thus |orbG(x)| = 20. But stabG(x) = CG(x),
and stabG(x)orbG(x) = |G| = 5! = 120, so |CG(x)| = 120/20 = 6. (Aside: Since we know <x> ∈ CG(x) and since <g> has
order 6, this shows that <g> = CG(x).)
(5) Let a1 = 1 and for k ≥ 1, let ak+1 = ak + 2k. Prove that ak = 2k − 1 for all k ≥ 1.

Answer: First, a1 = 1 = 21 − 1, so the claim is true for k = 1. Now assume that the claim is true for some k. Then
ak+1 = ak + 2k = (2k − 1) + 2k = 2 ∗ 2k − 1 = 2k+1 − 1, which shows that the claim holds for k + 1. This proves the claim
holds for all k ≥ 1 by induction.
(6) For which integers n > 1 is there exactly one homomorphism f : Zn → Zn which is not an isomorphism? You may

assume for each m ∈ Zn, that there is a homomorphism f : Zn → Zn with f(1) = m (and hence that there are exactly
n homomorphisms f : Zn → Zn). Justify your answer.
Answer: There is exactly one homomorphism f : Zn → Zn which is not an isomorphism if and only if n is prime.

Certainly, for every n > 1, we have the homomorphism that sends every element to 0. This is not surjective, hence not an
isomorphism, so there is always at least one nonisomorphic homomorphism. Now note that a homomorphism in our situation
(since we are mapping a finite group to itself) is injective if and only if it is surjective, and f is surjective if and only if
f(1) is a generator of Zn. For there to be exactly one nonisomorphic homomorphism, it must therefore be true that every
nonzero element of Zn generates (if m is nonzero but does not generate Zn, then the homomorphism for which f(1) = m is
not an isomorphism, and thus there are at least two nonisomorphic homomorphisms). Thus every integer from 1 to n − 1
is relatively prime to n, hence n is prime. And if n is prime, then f(1) generates as long as f(1) 6= 0, so there is only one
nonisomorphic homomorphism, this being the one with f(1) = 0.
(7) Define f : Z77 → Z7 ×Z11 by f(x) = (x mod 7, x mod 11). Define g : Z7 ×Z11 → Z77 by g((x, y)) = 11x + 7y mod 77).

Define h : Z7 × Z11 → Z7 × Z11 by h = f ◦ g. Find an element (m, n) ∈ Z7 × Z11 such that h((m, n)) = (1, 1).
Answer: Note that h((m, n)) = (11m mod 7, 7n mod 11), so we are looking for a solution to the equations 11m mod 7 =

1 and 7n mod 11 = 1. The solution is x = 2 and y = 8.
Extra Credit: Let k be a positive integer and let G be a group of order 2(2k + 1). Prove that 2 divides |Z(G)| if and only
if G has a unique element of order 2. (You may assume Problem 3 in doing this problem.)

Answer: If G has a unique element of order 2, then by Problem 3, we know the element is in the center, so by Lagrange’s
Theorem, the order of the center is even. Conversely, say |Z(G)| is even. Then by Cauchy’s Theorem, Z(G) has an element
x of order 2. Since |G| = 2(2k + 1), <x> is a Sylow 2-subgroup. Since it is in the center, <x> is always its own conjugate,
so it is normal. Since by Sylow’s theorems the Sylow 2-subgroups are all conjugate, this means that <x> is the only Sylow
2-subgroup, hence x is the only element of G of order 2 (any other element would generate another subgroup of order 2,
which would then be another Sylow 2-subgroup). Thus x is the only element of G of order 2.


