(1) Prove that a group G is a union of proper subgroups if and only if G is not cyclic.

Answer: If G is cyclic we must show that G is not the union of proper subgroups. But say $G = \langle g \rangle$; if G were then union of proper subgroups, then g must be in a proper subgroup, but any subgroup of G containing g contains G, hence is not proper. Conversely, say G is not cyclic. Then $\langle g \rangle$ is a proper subgroup for every element $g \in G$, and clearly G is the union, taken over all $g \in G$, of the subgroups $\langle g \rangle$.

- (2) (a) Define what it means for a subgroup N of a group H to be normal.
- (b) Let $f: G \to H$ be a homomorphism of groups. Let N be a normal subgroup of H. Prove that $f^{-1}(N)$ is a subgroup of G and that it is normal in G.

Answer: (a) We say a subgroup N < H is normal if $hNh^{-1} = N$ for every $h \in H$. (Alternatively, if $hnh^{-1} \in N$ for every $n \in N$ and every $h \in H$.)

- (b) First, $e_G \in f^{-1}(N)$ since $f(e_G) = e_H \in N$, so $f^{-1}(N) \neq \emptyset$. Next, if $x, y \in f^{-1}(N)$, then $f(xy) = f(x)f(y) = e_H e_H = e_H$, so $xy \in f^{-1}(N)$, and finally if $x \in f^{-1}(N)$, then $f(x^{-1}) = f(x)^{-1} = e_H^{-1} = e_H$, so $x^{-1} \in f^{-1}(N)$. Thus $f^{-1}(N)$ is a subgroup of G. To see that $f^{-1}(N)$ is normal, let $x \in f^{-1}(N)$ and let $g \in G$. Then $f(gxg^{-1}) = f(g)f(x)f(g)^{-1}$ is in N since $f(x) \in N$ and N is normal, so $gxg^{-1} \in f^{-1}(N)$, hence $f^{-1}(N)$ is normal.
- (3) (a) Define the center Z(G) of a group G.
- (b) Suppose $x \in G$ is an element of order 2 in a group G. If x is the only element of order 2 in G, prove that x is in the center Z(G) of G.

Answer: (a) $Z(G) = \{g \in G | gx = xg \text{ for all } x \in G\}$

- (b) Say x is the only element of G of order 2. Note that $(gxg^{-1})^2 = gxg^{-1}gxg^{-1} = gxxg^{-1} = ge_Gg^{-1} = gg^{-1} = e_G$, so either $gxg^{-1} = e_G$ or gxg^{-1} has order 2. The first case can't happen, since $gxg^{-1} = e_G$ implies that $x = g^{-1}g = e_G$, which doesn't have order 2. And the second case implies that $gxg^{-1} = x$, hence xg = gx for all $g \in G$, so $x \in Z(G)$.
- (4) (a) Define the centralizer $C_G(x)$ of an element x in a group G.
- (b) Determine $|C_G(x)|$ if $G = S_5$ and |x| = 6. [Hint: determine the order of the orbit of x under conjugation and use the orbit-stabilizer theorem and use the fact, which you may assume, that $\operatorname{stab}_G(x) = C_G(x)$.]

Answer: (a) $C_G(x) = \{g \in G | gx = xg\}$

- (b) If we write x as a product of disjoint cycles, then x must be a product of a 2-cycle and a 3-cycle, since no other product of disjoint cycles in G has order 6. Now all elements of G which are a product of a disjoint 2-cycle and 3-cycle are conjugate, and so form a single orbit under the action of G on G by conjugation. There are $2\binom{5}{3}$ different 3-cycles in G, hence also $2\binom{5}{3} = 20$ elements which are a product of a disjoint 2-cycle and 3-cycle. Thus $|\operatorname{orb}_G(x)| = 20$. But $\operatorname{stab}_G(x) = C_G(x)$, and $\operatorname{stab}_G(x)\operatorname{orb}_G(x) = |G| = 5! = 120$, so $|C_G(x)| = 120/20 = 6$. (Aside: Since we know $\langle x \rangle \in C_G(x)$ and since $\langle g \rangle$ has order 6, this shows that $\langle g \rangle = C_G(x)$.)
- (5) Let $a_1 = 1$ and for $k \ge 1$, let $a_{k+1} = a_k + 2^k$. Prove that $a_k = 2^k 1$ for all $k \ge 1$.

Answer: First, $a_1 = 1 = 2^1 - 1$, so the claim is true for k = 1. Now assume that the claim is true for some k. Then $a_{k+1} = a_k + 2^k = (2^k - 1) + 2^k = 2 * 2^k - 1 = 2^{k+1} - 1$, which shows that the claim holds for k + 1. This proves the claim holds for all $k \ge 1$ by induction.

(6) For which integers n > 1 is there exactly one homomorphism $f : \mathbf{Z}_n \to \mathbf{Z}_n$ which is not an isomorphism? You may assume for each $m \in \mathbf{Z}_n$, that there is a homomorphism $f : \mathbf{Z}_n \to \mathbf{Z}_n$ with f(1) = m (and hence that there are exactly n homomorphisms $f : \mathbf{Z}_n \to \mathbf{Z}_n$). Justify your answer.

Answer: There is exactly one homomorphism $f: \mathbf{Z}_n \to \mathbf{Z}_n$ which is not an isomorphism if and only if n is prime. Certainly, for every n > 1, we have the homomorphism that sends every element to 0. This is not surjective, hence not an isomorphism, so there is always at least one nonisomorphic homomorphism. Now note that a homomorphism in our situation (since we are mapping a finite group to itself) is injective if and only if it is surjective, and f is surjective if and only if f(1) is a generator of \mathbf{Z}_n . For there to be exactly one nonisomorphic homomorphism, it must therefore be true that every nonzero element of \mathbf{Z}_n generates (if m is nonzero but does not generate \mathbf{Z}_n , then the homomorphism for which f(1) = m is not an isomorphism, and thus there are at least two nonisomorphic homomorphisms). Thus every integer from 1 to n-1 is relatively prime to n, hence n is prime. And if n is prime, then f(1) generates as long as $f(1) \neq 0$, so there is only one nonisomorphic homomorphism, this being the one with f(1) = 0.

(7) Define $f: \mathbf{Z}_{77} \to \mathbf{Z}_7 \times \mathbf{Z}_{11}$ by $f(x) = (x \mod 7, x \mod 11)$. Define $g: \mathbf{Z}_7 \times \mathbf{Z}_{11} \to \mathbf{Z}_{77}$ by $g((x,y)) = 11x + 7y \mod 77$. Define $h: \mathbf{Z}_7 \times \mathbf{Z}_{11} \to \mathbf{Z}_7 \times \mathbf{Z}_{11}$ by $h = f \circ g$. Find an element $(m, n) \in \mathbf{Z}_7 \times \mathbf{Z}_{11}$ such that h((m, n)) = (1, 1).

Answer: Note that $h((m, n)) = (11m \mod 7, 7n \mod 11)$, so we are looking for a solution to the equations $11m \mod 7 = 1$ and $7n \mod 11 = 1$. The solution is x = 2 and y = 8.

Extra Credit: Let k be a positive integer and let G be a group of order 2(2k+1). Prove that 2 divides |Z(G)| if and only if G has a unique element of order 2. (You may assume Problem 3 in doing this problem.)

Answer: If G has a unique element of order 2, then by Problem 3, we know the element is in the center, so by Lagrange's Theorem, the order of the center is even. Conversely, say |Z(G)| is even. Then by Cauchy's Theorem, Z(G) has an element x of order 2. Since |G| = 2(2k+1), $\langle x \rangle$ is a Sylow 2-subgroup. Since it is in the center, $\langle x \rangle$ is always its own conjugate, so it is normal. Since by Sylow's theorems the Sylow 2-subgroups are all conjugate, this means that $\langle x \rangle$ is the only Sylow 2-subgroup, hence x is the only element of G of order 2 (any other element would generate another subgroup of order 2, which would then be another Sylow 2-subgroup). Thus x is the only element of G of order 2.