Instructions: Do any four of the seven problems. Don't forget to put your name on your answer sheets.
[1] Let G be a cyclic group. Let S be the union of all of the proper subgroups of G.
(a) If G is infinite, show that $|G-S|=2$ (i.e., show that there are only two elements in G that are not in S).
(b) If G is finite, show that $|G-S|=\phi(|G|)$ (i.e., show that there are $\phi(|G|)$ elements in G that are not in S).
(c) Prove that a cyclic group G is never a union of proper subgroups.

Answer: (a) If $G=<g>$ is an infinite cyclic group, then it has only two generators: g, which is given, and g^{-1}. (Clearly, any subgroup that has either g or g^{-1} has the other, so one generates if and only if the other does. But if n is an integer but not either 1 or -1 , then $<g^{n}>$ can't contain g, since then $\left(g^{n}\right)^{m}=g$ implies that $g^{n m-1}=e_{G}$, and hence that g, and so G, has finite order. A similar argument shows that $<g^{n}>$ can't contain g^{-1}.) Every element $x \in G$ that is not a generator of G is in S, since $<x>$ is a proper subgroup. Thus $G-S=\left\{g, g^{-1}\right\}$, so $|G-S|=2$.
Answer: (b) As in (a), $G-S$ is the set of elements of G which are generators of G; if G is a finite cyclic group of order n, then it is isomorphic to \mathbf{Z}_{n}, and hence has $\phi(n)$ generators. So $|G-S|=\phi(n)$.
Answer: (c) Since $|G-S|>0$, we see that G is never the union S of its proper subgroups.
[2] Let G be a group.
(a) Let F and H be subgroups of G, and assume that F does not contain H and that H does not contain F. Let f be an element of F that is not in H and let h be an element of H that is not in F. Show that $f h$ is not in either F nor H (i.e., show that $f h$ is not in $F \cup H$).
(b) Show that G is not the union of any two proper subgroups.

Answer: (a) If $f h \in F$, then $f h=g$ for some $g \in F$, so $h=f^{-1} g \in F$, contradicting our assumption. Similarly, if $f h \in H$, then $f \in H$, which is a contradiction. This means that $f h$ is in neither F nor H.
Answer: (b) Say G were the union of two proper subgroups; call them F and H. If $F \subset H$, then $G=F \cup H=H$, which contradicts H being proper. Likewise, we can't have $H \subset F$. Thus neither of F and H contains the other, so there is an $f \in F-H$ and an $h \in H-F$, so $f h$ is in neither F nor H, which means that G can't be the union of F and H.
[3] Let F_{0}, F_{1}, \ldots be the Fibonacci sequence (thus $F_{0}=1, F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for every $n \geq 1$). Prove that $F_{n} \geq 1.5^{n}$ for all $n \geq 5$.
Answer: Clearly, $F_{5}=8 \geq 8(243 / 256)=243 / 32=1.5^{5}$, and $F_{6}=13 \geq 12(243 / 256)=1.5^{6}$. And if $F_{k} \geq 1.5^{k}$ and $F_{k-1} \geq 1.5^{k-1}$ for some $k \geq 6$, then $F_{k+1}=F_{k}+F_{k-1} \geq 1.5^{k}+1.5^{k-1}=1.5^{k-1}(2.5)>1.5^{k-1}(2.25)=1.5^{k+1}$. Now $F_{n} \geq 1.5^{n}$ for all $n \geq 5$ follows by induction.
[4] Prove that $\mathbf{Z}_{12} \oplus \mathbf{Z}_{30}$ is isomorphic to $\mathbf{Z}_{60} \oplus \mathbf{Z}_{6}$, but not to $\mathbf{Z}_{24} \oplus \mathbf{Z}_{15}$.
Answer: First, by the Chinese Remainder Theorem, $\mathbf{Z}_{12} \oplus \mathbf{Z}_{30}=\mathbf{Z}_{12} \oplus \mathbf{Z}_{5 * 6} \cong \mathbf{Z}_{12} \oplus \mathbf{Z}_{5} \oplus \mathbf{Z}_{6} \cong \mathbf{Z}_{12 * 5} \oplus \mathbf{Z}_{6}=\mathbf{Z}_{60} \oplus \mathbf{Z}_{6}$. But no element of $\mathbf{Z}_{12} \oplus \mathbf{Z}_{30}$ has order more than 60 , since 60 is the lcm of 12 and 30, whereas $(1,1) \in \mathbf{Z}_{24} \oplus \mathbf{Z}_{15}$ has order 120 , so $\mathbf{Z}_{12} \oplus \mathbf{Z}_{30}$ is not isomorphic to $\mathbf{Z}_{24} \oplus \mathbf{Z}_{15}$.
[5] Let $f: G \rightarrow H$ be a homomorphism of groups.
(a) Define the kernel of f.
(b) Prove that the kernel of f is a subgroup of G.
(c) Prove that the kernel of f is a normal subgroup of G.

Answer: (a) ker $f=\left\{x \in G \mid f(x)=e_{H}\right\}$
Answer: (b) Since $e_{G} \in \operatorname{ker} f$, we know ker f is not empty. If $x, y \in \operatorname{ker} f$, then $f(x y)=f(x) f(y)=e_{H} e_{H}=e_{H}$, so $x y \in \operatorname{ker} f$, so $\operatorname{ker} f$ is closed under the group operation. And if $x \in \operatorname{ker} f$, then $f\left(x^{-1}\right)=(f(x))^{-1}=e_{H}^{-1}=e_{H}$, so $x^{-1} \in \operatorname{ker} f$, hence $\operatorname{ker} f$ is closed under taking inverses. Thus ker f is a subgroup.
Answer: (c) Let $x \in \operatorname{ker} f$ and let $g \in G$. Then $f\left(g x g^{-1}\right)=f(g) f(x) f(g)^{-1}=f(g) e_{H} f(g)^{-1}=f(g) f(g)^{-1}=e_{H}$, so $g x g^{-1} \in \operatorname{ker} f$, hence ker f is normal.
[6] Let $n>1$ be a positive integer.
(a) Prove that the number of elements of order n in S_{n} is at least $(n-1)$!. [Hint: look at n-cycles.]
(b) Prove that S_{n} has an element of order n that is not an n-cycle if and only if n is not a power of a prime.

Answer: (a) There are n ! ways to write down an n-cycle (since this is the number of ways of ordering the numbers 1 to n). But these can be grouped into sets of n orderings which define the same n-cycle, so there are $n!/ n=(n-1)!n$-cycles in S_{n}. Answer: (b) If n is not a power of a prime, then we can factor n so that $n=k m$, where $1<k<m<n, \operatorname{gcd}(k, m)=1$, but $n=k m$. Now $k+m<2 m \leq k m=n$, so we can find a disjoint k-cycle (call it σ) and m-cycle (call it τ) in S_{n}. Then $\sigma \tau$ has order n, since n is the lcm of k and m. Conversely, assume S_{n} has an element τ of order n but that τ is not an n-cycle. If τ is a cycle, it must be an r-cycle with $r<n$, but then it has order $r<n$. Thus τ is a product of disjoint cycles, and the lcm of the lengths of the cycles is n. If n were a power of a prime, then since each length divides n, the lengths are powers of the same prime. Thus the lcm is the length which is the largest power, but all of the lengths are less than n, so the order would be less than n, contrary to assumption. Thus n can't be a power of a prime.

