M417 Homework 6 Spring 2004

Instructions: Solutions are due Fri., March 12.

(1) A digraph (i.e., directed graph) is a set of vertices, some of which can be connected by an arrow (i.e., a directed edge). For example, we can associate to each group G its subgroup digraph, in which each subgroup $H \leq G$ is represented by a vertex v_H , and there is an arrow from a vertex v_H to a vertex $v_{H'}$ exactly when H' properly contains H. A directed path (of length r) in a digraph is a sequence v_0, \ldots, v_r of vertices such that for each $1 \leq i \leq r$ there is an arrow from v_{i-1} to v_i .

Show that every directed path in the subgroup digraph of a cyclic group of order N has length at most $\log_2 N$.

Every directed path in such a digraph corresponds to a sequence $H_0 < H_1 < \cdots < H_r$ of subgroups H_i in G. The longest path must have $< e >= H_0$ and $G = H_r$. Let $p_0 = |H_0|$, $p_1 = |H_1|/p_0$, ..., $p_r = |H_r|/p_{r-1}$. Then $|G| = p_0 \cdots p_r$, and so any path for which $< e >= H_0$ and $G = H_r$ gives a factorization of |G|, and any factorization $|G| = p_0 \cdots p_r$ gives a path corresponding to subgroups $H_0 < H_1 < \cdots < H_r$, where H_i is the unique subgroup of G of order $p_0 \cdots p_i$. Thus the length of the longest path is just the length of the longest factorization $|G| = p_0 \cdots p_r$. The longest factorization is the one in which each p_i (except p_0 , since $p_0 = 1$) is prime. If $p_0 = 1$ is the length of the longest path, we know |G| is the product of $p_1 = 1$, ..., $p_n = 1$, and since $p_0 = 1$ is the least prime, we have $p_0 = 1$, or $p_0 = 1$.

(2) Let $g, x \in S_n$. Assume that $x = (a_1 \dots a_r)$ is an r-cycle. Show that $gxg^{-1} = (g(a_1) \dots g(a_r))$.

For $0 \le i < r$, $(gxg^{-1})(g(a_i)) = gx(a_i) = g(a_{i+1})$, so gxg^{-1} takes $g(a_i)$ to $g(a_{i+1})$, while $(gxg^{-1})(g(a_r)) = gx(a_r) = g(a_1)$. And if $z \in \{1, 2, ..., n\} - g(\{a_1, ..., a_r\})$, then z = g(y) for some y which is not among $\{a_1, ..., a_r\}$, so x(y) = y and $(gxg^{-1})(z) = (gxg^{-1})(g(y)) = gx(y) = g(y) = z$. This shows that gxg^{-1} and the cycle $(g(a_1) ... g(a_r))$ permute the elements of $\{1, ..., n\}$ in exactly the same way, so $gxg^{-1} = (g(a_1) ... g(a_r))$.

(3) Find the centralizer of (1234) in S_4 .

Let x=(1234) and $g\in C_{S_4}(x)$. Then gx=xg, hence $x=gxg^{-1}$. But $gxg^{-1}=(g(1)g(2)\cdots g(4))$, so we need $(1234)=(g(1)g(2)\cdots g(4))$. Since we can write the 4-cycle (1234) in only four different ways (i.e., as any of (1234)=(2341)=(3412)=(4123)), the only thing that g can do is cyclically permute the numbers 1 through 4, it can't change their relative order (else $(g(1)g(2)\cdots g(4))$) is not one of the four different ways to write (1234)). But the only cyclic permutations of 1, 2, 3, 4 which don't change their relative order is a power of x, hence $g\in x> C_{S_n}(x)$, we see that $x> C_{S_4}(x)$, hence $|C_{S_4}(x)|=|x|=4$. Alternatively, it is not hard to use brute force to find $C_{S_4}(x)$, since S_4 has only 24 elements.

- (4) Let n and N be positive integers.
 - (a) If $f: \mathbf{Z}_n \to \mathbf{Z}_N$ is a homomorphism of groups and m = f(1), show that N|mn, and that $f(x) = mx \mod N$, for all $x \in \mathbf{Z}_n$.
 - (b) Conversely, if m is a positive integer such that N|mn, show that $f(x) = mx \mod N$ defines a homomorphism $f: \mathbf{Z}_n \to \mathbf{Z}_N$.
- (a) Denote + in the group \mathbb{Z}_n or \mathbb{Z}_N by \oplus , to distinguish it from ordinary addition. Now take the image of $1 \oplus \cdots \oplus 1$ (i.e., 1 added to itself n times), keeping in mind that this is the identity in \mathbb{Z}_n ; i.e., $0 = f(0) = f(1 \oplus \cdots \oplus 1)$. Since f is a homomorphism, this is $0 = f(1) \oplus \cdots \oplus f(1) = nf(1) \mod N = nm \mod N$. Thus $N \mid nm$, since nm modulo N is 0. But we can write any $x \in \mathbb{Z}_n$ as a sum $1 \oplus \cdots \oplus 1$ of 1 with itself x times, so we have $f(x) = f(1 \oplus \cdots \oplus 1) = f(1) \oplus \cdots \oplus f(1) = mx \mod N$. (b) Let $x, y \in \mathbb{Z}_n$ and let x + y = qn + r, with $0 \le r < n$. Then $f(x \oplus y) = f(r) = mr \mod N$. But $f(x) \oplus f(y) = mx + my \mod N$. Note that mx + my mr = m(x + y r) = mqn, but mn = Nz for some z since $N \mid mn$, hence mqn = Nqz, so $mx + my \mod N = mr \mod N$. Thus $f(x \oplus y) = f(x) \oplus f(y)$, so f is a homomorphism.
- (5) Let $f: G \to H$ be a homomorphism of groups. If G is finite, show that $|f(G)| \cdot |\ker f| = |G|$.

Since every element of G is in $f^{-1}(\{h\})$ for some $h \in H$, yet inverse images of different elements are disjoint, we see that $|G| = \sum_{h \in H} |f^{-1}(\{h\})|$, but $|f^{-1}(\{h\})| = 0$ unless $h \in f(G)$, so $|G| = \sum_{h \in f(G)} |f^{-1}(\{h\})|$. And if h = f(g), then $f^{-1}(\{h\}) = g\ker(f)$, and we know multiplication by an element in a group is injective, so $|g\ker(f)| = |\ker(f)|$, hence

$$|G| = \sum_{h \in f(G)} |f^{-1}(\{h\})| = \sum_{h \in f(G)} |\ker(f)| = |f(G)| \cdot |\ker(f)|.$$