
M417 Homework 6 Spring 2004
Instructions: Solutions are due Fri., March 12.

(1) A digraph (i.e., directed graph) is a set of vertices, some of which can be connected by an arrow (i.e., a directed edge).
For example, we can associate to each group G its subgroup digraph, in which each subgroup H ≤ G is represented by
a vertex vH , and there is an arrow from a vertex vH to a vertex vH′ exactly when H ′ properly contains H. A directed
path (of length r) in a digraph is a sequence v0, . . . , vr of vertices such that for each 1 ≤ i ≤ r there is an arrow from
vi−1 to vi.

Show that every directed path in the subgroup digraph of a cyclic group of order N has length at most log2N .

Every directed path in such a digraph corresponds to a sequence H0 < H1 < · · · < Hr of subgroups Hi in G. The longest
path must have < e >= H0 and G = Hr. Let p0 = |H0|, p1 = |H1|/p0, . . ., pr = |Hr|/pr−1. Then |G| = p0 · · · pr, and so
any path for which < e >= H0 and G = Hr gives a factorization of |G|, and any factorization |G| = p0 · · · pr gives a path
corresponding to subgroups H0 < H1 < · · · < Hr, where Hi is the unique subgroup of G of order p0 · · · pi. Thus the length
of the longest path is just the length of the longest factorization |G| = p0 · · · pr. The longest factorization is the one in which
each pi (except p0, since p0 = 1) is prime. If n is the length of the longest path, we know |G| is the product of n primes
p1, . . . , pn, and since 2 is the least prime, we have 2n ≤ p1 · · · pn = |G|, or n = log22n ≤ log2|G|.

(2) Let g, x ∈ Sn. Assume that x = (a1 . . . ar) is an r-cycle. Show that gxg−1 = (g(a1) . . . g(ar)).

For 0 ≤ i < r, (gxg−1)(g(ai)) = gx(ai) = g(ai+1), so gxg−1 takes g(ai) to g(ai+1), while (gxg−1)(g(ar)) = gx(ar) = g(a1).
And if z ∈ {1, 2, . . . , n} − g({a1, . . . , ar}), then z = g(y) for some y which is not among {a1, . . . , ar}, so x(y) = y and
(gxg−1)(z) = (gxg−1)(g(y)) = gx(y) = g(y) = z. This shows that gxg−1 and the cycle (g(a1) . . . g(ar)) permute the elements
of {1, . . . , n} in exactly the same way, so gxg−1 = (g(a1) . . . g(ar)).

(3) Find the centralizer of (1234) in S4.

Let x = (1234) and g ∈ CS4(x). Then gx = xg, hence x = gxg−1. But gxg−1 = (g(1)g(2) · · · g(4)), so we need (1234) =
(g(1)g(2) · · · g(4)). Since we can write the 4-cycle (1234) in only four different ways (i.e., as any of (1234) = (2341) = (3412) =
(4123)), the only thing that g can do is cyclically permute the numbers 1 through 4, it can’t change their relative order (else
(g(1)g(2) · · · g(4)) is not one of the four different ways to write (1234)). But the only cyclic permutations of 1, 2, 3, 4 which
don’t change their relative order is a power of x, hence g ∈< x >. Since < x >⊂ CSn

(x), we see that < x >= CS4(x), hence
|CS4(x)| = |x| = 4. Alternatively, it is not hard to use brute force to find CS4(x), since S4 has only 24 elements.

(4) Let n and N be positive integers.
(a) If f : Zn → ZN is a homomorphism of groups and m = f(1), show that N |mn, and that f(x) = mx mod N , for all

x ∈ Zn.
(b) Conversely, if m is a positive integer such that N |mn, show that f(x) = mx mod N defines a homomorphism

f : Zn → ZN .

(a) Denote + in the group Zn or ZN by ⊕, to distinguish it from ordinary addition. Now take the image of 1 ⊕ · · · ⊕ 1
(i.e., 1 added to itself n times), keeping in mind that this is the identity in Zn; i.e., 0 = f(0) = f(1 ⊕ · · · ⊕ 1). Since f is a
homomorphism, this is 0 = f(1)⊕· · ·⊕f(1) = nf(1) mod N = nm mod N . Thus N |nm, since nm modulo N is 0. But we can
write any x ∈ Zn as a sum 1⊕· · ·⊕1 of 1 with itself x times, so we have f(x) = f(1⊕· · ·⊕1) = f(1)⊕· · ·⊕f(1) = mx mod N .
(b) Let x, y ∈ Zn and let x + y = qn + r, with 0 ≤ r < n. Then f(x ⊕ y) = f(r) = mr mod N . But f(x) ⊕ f(y) =
mx+my mod N . Note that mx+my−mr = m(x+y−r) = mqn, but mn = Nz for some z since N |mn, hence mqn = Nqz,
so mx + my mod N = mr mod N . Thus f(x⊕ y) = f(x)⊕ f(y), so f is a homomorphism.

(5) Let f : G → H be a homomorphism of groups. If G is finite, show that |f(G)| · |ker f | = |G|.

Since every element of G is in f−1({h}) for some h ∈ H, yet inverse images of different elements are disjoint, we see
that |G| = Σh∈H |f−1({h})|, but |f−1({h})| = 0 unless h ∈ f(G), so |G| = Σh∈f(G)|f−1({h})|. And if h = f(g), then
f−1({h}) = gker(f), and we know multiplication by an element in a group is injective, so |gker(f)| = |ker(f)|, hence

|G| = Σh∈f(G)|f−1({h})| = Σh∈f(G)|ker(f)| = |f(G)| · |ker(f)|.


