M417 Homework 4 Solutions Spring 2004

(1) Determine the orders of the groups of symmetries of the Platonic solids: The tetrahedron, as we found in class, has symmetry group of order 12. Likewise, the cube's has order 24 . The octahedron has 6 vertices, with 4 faces at each vertex, so the order is $6 \times 4=24$. The dodecahedron has 20 vertices, with 3 faces at each vertex, so the order is $20 \times 3=60$. The icosahedron has 12 vertices, with 5 faces at each vertex, so the order is $12 \times 5=60$.
(2) If $x^{2}=e$ for every element x of a group G, show that G is abelian: given $a, b \in G$, we must show $a b=b a$. But $a a b b=a^{2} b^{2}=e e=e=(a b)^{2}=a b a b$, so cancelling gives $a b=b a$.
(3) \# 16, p. 38: Label the H's, in order, by the integers, using subscripts. Let t_{d} be the translation $t_{d}\left(H_{i}\right)=H_{i+d}$. Let h be the reflection across the horizontal line through the center of the H's. Let r_{d} be the rotation by 180°, centered on H_{d}, let r_{d}^{\prime} be the rotation by 180°, centered between H_{d} and H_{d+1}, let v_{d} be the reflection across the vertical line through the center of H_{d}, and let v_{d}^{\prime} be the reflection across the vertical line midway between H_{d} and H_{d+1}. Any symmetry takes H_{0} somewhere, say to H_{d}, first either rotating H_{0} by a half turn, or flipping H_{0} across either its horizontal or vertical axis of symmetry. And once you know how H_{0} was moved, you know how all the other H's were moved too. Thus every symmetry is either $t_{d} r_{0}, t_{d} v_{0}$, or $t_{d} h$. (These are just the symmetries we found above, since $t_{2 d} r_{0}=r_{d}, t_{2 d+1} r_{0}=r_{d}^{\prime}$, $t_{2 d} v_{0}=v_{d}, t_{2 d+1} v_{0}=v_{d}^{\prime}$, and $v_{0}=h r_{0}$. Thus every symmetry can be obtained using just r_{0}, h, and $t_{d}, d \in \mathbf{Z}$.) But $r_{0} t_{2 d}=r_{-d}$ while $t_{2 d} r_{0}=r_{d}$, so the symmetries don't always commute.
(4) \# 50, p. 71: if a subgroup contains positive integers, a and b then it contains every integer linear combination of a and b, hence it contains $k=\operatorname{gcd}(a, b)$. Since $<k>$ contains a and $b,<k>$ is the smallest subgroup of \mathbf{Z} containing a and b. Thus the answer for: (a) is $k=\operatorname{gcd}(8,14)=2$; (b) is $k=\operatorname{gcd}(8,13)=1$; and (c) is $k=\operatorname{gcd}(6,15)=3$. For (d), the same reasoning gives $k=\operatorname{gcd}(|m|,|n|)$, unless $m=n=0$, in which case $g c d(|m|,|n|)$ is undefined but we can take $k=0$. For (e), any subgroup that contains 12 and 18 contains 6 , and any subgroup that contains 6 and 45 contains 3 , while $<3>$ contains 12,18 and 45 , so the answer is $k=3$. Note that again $k=\operatorname{gcd}(2,18,45)$.
(5) \# 52, p. 71: Consider $e \neq x \in G$. Since G is finite, we know there exist integers $m<n$ such that $x^{m}=x^{n}$. Cancelling gives $e=x^{k}$, for $k=n-m>1$ (since $k=1$ implies $x=e$). This shows that $x^{k}=e$ has solutions $k>1$. Replace k by the least such solution. Thus we may assume that $k>1$ and that $x^{k}=e$, but that $x^{i} \neq e$ for $1 \leq i<k$. Let p be any prime dividing k, and define m by $p m=k$. Let $y=x^{m}$. Then $y^{p}=x^{p m}=x^{k}=e$, but for $0<j<p, y^{j}=x^{j m}$ is not e since $0<j m<k$. Thus $|y|=p$.

