M417 Homework 3 Solutions Spring 2004

(1) (a) For any subsets $C_{1}, C_{2} \subset A$, show that $f\left(C_{1} \cup C_{2}\right)=f\left(C_{1}\right) \cup f\left(C_{2}\right)$: We must show that any element of $f\left(C_{1} \cup C_{2}\right)$ is an element of $f\left(C_{1}\right) \cup f\left(C_{2}\right)$, and vice versa. So let $y \in f\left(C_{1} \cup C_{2}\right)$. Then $y=f(x)$ for some $x \in C_{1} \cup C_{2}$. If $x \in C_{1}$, then $y \in f\left(C_{1}\right) \subset f\left(C_{1} \cup C_{2}\right)$, and if $x \in C_{2}$, then $y \in f\left(C_{2}\right) \subset f\left(C_{1} \cup C_{2}\right)$. This shows that $f\left(C_{1} \cup C_{2}\right) \subset f\left(C_{1}\right) \cup f\left(C_{2}\right)$. To see that $f\left(C_{1}\right) \cup f\left(C_{2}\right) \subset f\left(C_{1} \cup C_{2}\right)$, let $y \in f\left(C_{1}\right) \cup f\left(C_{2}\right)$. Then either $y \in f\left(C_{1}\right) \subset f\left(C_{1} \cup C_{2}\right)$ or $y \in f\left(C_{2}\right) \subset f\left(C_{1} \cup C_{2}\right)$. Hence $y \in f\left(C_{1} \cup C_{2}\right)$, so $f\left(C_{1}\right) \cup f\left(C_{2}\right) \subset f\left(C_{1} \cup C_{2}\right)$. Since each of $f\left(C_{1}\right) \cup f\left(C_{2}\right)$ and $f\left(C_{1} \cup C_{2}\right)$ contains the other, we have $f\left(C_{1}\right) \cup f\left(C_{2}\right)=f\left(C_{1} \cup C_{2}\right)$.

Here's an alternative proof: $f\left(C_{1} \cup C_{2}\right)=\left\{f(x): x \in C_{1} \cup C_{2}\right\}=\left\{f(x): x \in C_{1}\right\} \cup\left\{f(x): x \in C_{2}\right\}=$ $f\left(C_{1}\right) \cup f\left(C_{2}\right)$.
(b) For any subsets $D_{1}, D_{2} \subset B$, show that $f^{-1}\left(D_{1} \cup D_{2}\right)=f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$: if $x \in f^{-1}\left(D_{1} \cup D_{2}\right)$, then $f(x) \in D_{1} \cup D_{2}$, so either $f(x) \in D_{1}$ (and hence $x \in f^{-1}\left(D_{1}\right)$), or $f(x) \in D_{2}$ (and hence $\left.x \in f^{-1}\left(D_{2}\right)\right)$. Thus $x \in f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$, so $f^{-1}\left(D_{1} \cup D_{2}\right) \subset f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$. On the other hand, if $x \in f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$, then either $x \in f^{-1}\left(D_{1}\right)$ (and hence $f(x) \in D_{1} \subset$ $D_{1} \cup D_{2}$) or $x \in f^{-1}\left(D_{2}\right)$ (and hence $\left.f(x) \in D_{2} \subset D_{1} \cup D_{2}\right)$. Thus $x \in f^{-1}\left(D_{1} \cup D_{2}\right)$, so $f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right) \subset f^{-1}\left(D_{1} \cup D_{2}\right)$. Thus each of $f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$ and $f^{-1}\left(D_{1} \cup D_{2}\right)$ contains the other, so $f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)=f^{-1}\left(D_{1} \cup D_{2}\right)$.

Here's an alternative proof: $f^{-1}\left(D_{1} \cup D_{2}\right)=\left\{x: f(x) \in D_{1} \cup D_{2}\right\}=\left\{x: f(x) \in D_{1}\right\} \cup\left\{x: f(x) \in D_{2}\right\}=$ $f^{-1}\left(D_{1}\right) \cup f^{-1}\left(D_{2}\right)$.
(2) For any subsets $C_{1}, C_{2} \subset A$, show that $f\left(C_{1} \cap C_{2}\right) \subset f\left(C_{1}\right) \cap f\left(C_{2}\right)$. Give an example to show that $f\left(C_{1} \cap C_{2}\right)=f\left(C_{1}\right) \cap f\left(C_{2}\right)$ can fail: sets C_{1} and C_{2} can be found to make this fail whenever f is not injective. Say $a \neq b$, but $f(a)=f(b)$. Take $C_{1}=\{a\}, C_{2}=\{b\}$. Then $f\left(C_{1} \cap C_{2}\right)=f(\emptyset)=\emptyset$, but $f\left(C_{1}\right) \cap f\left(C_{2}\right)=\{f(a)\}$. To see that $f\left(C_{1} \cap C_{2}\right) \subset f\left(C_{1}\right) \cap f\left(C_{2}\right)$, let $y \in f\left(C_{1} \cap C_{2}\right)$. Then $y=f(x)$ for some $x \in C_{1} \cap C_{2}$. Since x is in both C_{1} and C_{2}, y is in both $f\left(C_{1}\right)$ and $f\left(C_{2}\right)$, so $y \in f\left(C_{1}\right) \cap f\left(C_{2}\right)$, hence $f\left(C_{1} \cap C_{2}\right) \subset f\left(C_{1}\right) \cap f\left(C_{2}\right)$.

Here's an alternative proof: Since $C_{1} \cap C_{2} \subset C_{1}$, certainly, $f\left(C_{1} \cap C_{2}\right) \subset f\left(C_{1}\right)$. Similarly, $f\left(C_{1} \cap C_{2}\right) \subset f\left(C_{2}\right)$, so $f\left(C_{1} \cap C_{2}\right) \subset f\left(C_{1}\right) \cap f\left(C_{2}\right)$, as we wanted to show.
(3) For any subsets $D_{1}, D_{2} \subset B$, show that $f^{-1}\left(D_{1} \cap D_{2}\right)=f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)$: if $x \in f^{-1}\left(D_{1} \cap D_{2}\right)$, then $f(x) \in D_{1} \cap D_{2}$, so $f(x)$ is in both D_{1} and D_{2}, hence x is in both $f^{-1}\left(D_{1}\right)$ and $f^{-1}\left(D_{2}\right)$, so $x \in f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)$, which shows $f^{-1}\left(D_{1} \cap D_{2}\right) \subset f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)$. To see $f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right) \subset$ $f^{-1}\left(D_{1} \cap D_{2}\right)$, let $x \in f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)$. Then $f(x)$ is in both D_{1} and D_{2}; i.e., $f(x) \in D_{1} \cap D_{2}$, so $x \in f^{-1}\left(D_{1} \cap D_{2}\right)$. Thus $f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right) \subset f^{-1}\left(D_{1} \cap D_{2}\right)$, hence $f^{-1}\left(D_{1} \cap D_{2}\right)=f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)$.

Here's an alternative proof: $f^{-1}\left(D_{1} \cap D_{2}\right)=\left\{x: f(x) \in D_{1} \cap D_{2}\right\}=\left\{x: f(x) \in D_{1}\right\} \cap\left\{x: f(x) \in D_{2}\right\}=$ $f^{-1}\left(D_{1}\right) \cap f^{-1}\left(D_{2}\right)$.
(4) Show that $C \subset f^{-1}(f(C))$ for every subset $C \subset A$, and that equality always holds if and only if f is injective: let $x \in C$. Then $y=f(x) \in f(C)$, so $x \in f^{-1}(f(C))$, hence $C \subset f^{-1}(f(C))$.

Now we show that $C=f^{-1}(f(C))$ for every subset $C \subset A$ if and only if f is injective: If f is not injective, then we can find $a \neq b$ where $f(a)=f(b)$, hence $\{a, b\} \subset f^{-1}(f(\{a\}))$, so $C=f^{-1}(f(C))$ fails for $C=\{a\}$. This shows that if $C=f^{-1}(f(C))$ always holds, then f is injective. Conversely, if f is injective, let $x \in f^{-1}(f(C))$. Then $f(x) \in f(C)$, so $f(x)=f(a)$ for some $a \in C$. Hence $x=a \in C$, which means $f^{-1}(f(C)) \subset C$. We already know that $C \subset f^{-1}(f(C))$, so this means $C=f^{-1}(f(C))$.
(5) Show that $f\left(f^{-1}(D)\right) \subset D$ for every subset $D \subset B$, and that equality always holds if and only if f is surjective: let $y \in f\left(f^{-1}(D)\right)$. Then $y=f(x)$ for some $x \in f^{-1}(D)$, so $y=f(x) \in D$, which shows that $f\left(f^{-1}(D)\right) \subset D$.

Now we show that $f\left(f^{-1}(D)\right)=D$ for every subset $D \subset B$ if and only if f is surjective: If f is not surjective, then there is a $y \in B-f(A)$. Taking $D=\{y\}$, we see that $f^{-1}(D)=\emptyset$, hence $f\left(f^{-1}(D)\right)=\emptyset \neq D$. This shows that if $f\left(f^{-1}(D)\right)=D$ always holds, then f must be surjective. Now suppose f is surjective. Let $y \in D$. Surjectivity guarantees $y=f(x)$ for some x, hence $x \in f^{-1}(D)$, so $y=f(x) \in f\left(f^{-1}(D)\right)$, which shows that $D \subset f\left(f^{-1}(D)\right)$, and hence $f\left(f^{-1}(D)\right)=D$.

