M417 Homework 2 Spring 2004

(1) Let a, b and c be positive integers such that $a \mid c$ and $b \mid c$.
(a) If $\operatorname{gcd}(a, b)=1$, prove that $a b \mid c$: Since $a \mid c$ and $b \mid c$, we can write $a s=c$ and $b t=c$ for some integers s and t. But we know there exist x and y such that $g c d(a, b)=a x+b y$, so we have $1=a x+b y$ and hence $c=c(a x+b y)=$ $c a x+c b y=b t a x+a s b y=a b(t x+s y)$, so $a b \mid c$.
(b) Give a counterexample to the statement: If $(\operatorname{gcd}(a, b))^{2}$ divides c, prove that $a b \mid c$. Let $a=12, b=18$ and $c=36$. Then $\operatorname{gcd}(a, b)=6$, so $(\operatorname{gcd}(a, b))^{2}$ divides c, but $a b=216$ does not divide c.
(2) Prove that there are infinitely many primes: Suppose there are only finitely many primes. List them: $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$. Let $P=P_{1} P_{2} \ldots P_{n}+1$. By the Fundamental Theorem of Arithmetic, P is either a prime or a product of primes. In any case, P is divisible by some prime, and hence $P_{i} \mid P$ for some i. But in fact none of the primes in the list $\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ can divide P, since each leaves a remainder of 1 . This contradicts there being a finite list of primes. Hence the set of primes is infinite.
(3) \# 26, p. 24: We want to prove that $f_{n}<2^{n}$, where f_{1}, f_{2}, \ldots is the Fibonacci sequence (defined recursively by $f_{1}=1$, $f_{2}=1$, and $f_{k+1}=f_{k}+f_{k-1}$ for each $k \geq 2$). Clearly $f_{n}<2^{n}$ holds for $n=1$ and $n=2$. Now suppose $n>2$ and that $f_{k}<2^{k}$ holds for all $1 \leq k<n$. Then $f_{n}=f_{n-1}+f_{n-2}<2^{n-1}+2^{n-2}<2^{n-1}+2^{n-1}=2\left(2^{n-1}\right)=2^{n}$. By induction, this shows that $f_{n}<2^{n}$ holds for all positive integers n.
(4) Let R be the relation on the set of integers defined by $a R b$ exactly when $a-b$ is odd. Determine with justification whether or not R is: reflexive; symmetric; transitive. Answer: First, R is not reflexive, since $a R a$ holds exactly when $a-a$ is odd, but $a-a$ is always even. Nor is R transitive, since if $a R b$ and $b R c$ hold, then $a-b$ and $b-c$ are odd, hence $a-c=(a-b)+(b-c)$ is even, so $a R c$ does not hold. But R is symmetric, since if $a R b$ holds, then $a-b$ is odd, hence $b-a=-(a-b)$ is odd too, so $b R a$ holds.
(5) Answer: For me, the string is 011 , so I must find a relation R on a set S which is not reflexive, but which is symmetric and transitive. Let R be any relation which is symmetric and transitive. If there are any two related elements of S, say $a R b$, then $b R a$ by symmetry and hence $a R a$ by transitivity. For R to fail to be reflexive, there must be some element $a \in S$ such that $a R a$ fails to hold. By what we just saw, a thus cannot be related to any element of S. So let S be any nonempty set and take R to be empty; i.e., no element is related to any element. Then R is not reflexive (since S is nonempty, there is some $a \in S$ for which $a R a$ fails), but R is symmetric (since whenever $a R b$ holds-which is never-we always have $b R a$) and transitive (since whenever $a R b$ and $a R c$ hold, we always have $a R c$).

