M417 Homework 1 Solutions Spring 2004
(1) \#4, p. 23: Let $a=11$ and $b=7$. Then $\operatorname{gcd}(a, b)=1$ and $2 a-3 b=1$. Every possible expression of 1 as a linear combination of a and b is given by $(2+7 t) a-(3+11 t) b=1$, for some integer t.
(2) $\# 5$, p. 23: See the back of the book for the answer.
(3) Let a and b be positive integers. Let $g=g c d(a, b)$, and let $\alpha=a / g$ and $\beta=b / g$. For each of the following statements, if it is false, give a counterexample; otherwise give a proof.
(a) $\operatorname{gcd}(\alpha, \beta)=1$: by Theorem 0.2 we know that $g=a x+b y$ for some integers x and y. Hence, $g=a x+b y=g \alpha x+g \beta y$, so $1=\alpha x+\beta y$. But by Theorem $0.2, \operatorname{gcd}(\alpha, \beta)$ is the least positive linear combination, which must be 1 , since we now know 1 is a linear combination of α and β. Thus $\operatorname{gcd}(\alpha, \beta)=1$.
(b) $\operatorname{gcd}(\alpha, b)=1$: this is false. Take $a=12$ and $b=18$. Then $g=6, \alpha=2$ and $\operatorname{gcd}(\alpha, b)=2$, not 1 .
(c) $\operatorname{gcd}(a, b)=1$ if and only if there are integers x and y such that $a x+b y=1$: By Theorem $0.2, \operatorname{gcd}(a, b)$ is a linear combination of a and b, so if $\operatorname{gcd}(a, b)=1$, then there are integers x and y such that $a x+b y=1$. Conversely, if there are integers x and y such that $a x+b y=1$, then, since $\operatorname{gcd}(a, b)$ divides both a and b, it divides $a x+b y$ and hence 1. Thus $\operatorname{gcd}(a, b)$ is a positive integer which, since it divides 1 , is a most 1 . Thus $\operatorname{gcd}(a, b)=1$.
(4) Let a and b be positive integers. Let $g=\operatorname{gcd}(a, b), m=\operatorname{lcm}(a, b)$, and let $\alpha=a / g$ and $\beta=b / g$ and define a^{\prime} and b^{\prime} such that $m=a a^{\prime}=b b^{\prime}$.
(a) Show that $m \leq g \alpha \beta$. Conclude that $g m \leq a b$: Since $g \alpha \beta=a \beta=b \alpha$, we see that $g \alpha \beta$ is a positive common multiple of a and b. Hence $m \leq g \alpha \beta$ since m is the least common (positive) multiple. Thus $g m \leq g^{2} \alpha \beta=a b$, as claimed.
(b) Show that $a b\left(a^{\prime} x+b^{\prime} y\right)=m(b x+a y)$ holds for all integers x and y and that $m(b x+a y)=g m$ holds for some integers x and y. Conclude that $a b \leq g m$: First, for any x and y we have $a b\left(a^{\prime} x+b^{\prime} y\right)=\left(b a a^{\prime} x+a b b^{\prime} y\right)=$ $(b m x+a m y)=m(b x+a y)$. By Theorem 0.2 (as before), we know $b x+a y=g$ holds for some integers x and y, and hence $m(b x+a y)=g m$ holds for some integers x and y. Thus $a b\left(a^{\prime} x+b^{\prime} y\right)=m(b x+a y)=g m$ holds for some x and y, so $a b \mid g m$, which shows that $a b \leq g m$.
(c) Conclude that $g m=a b$: This is clear, since by (a) we have $g m \leq a b$ and by (b) we have $a b \leq g m$.
(5) Using the error correcting "circle" code discussed in class, determine the correct message encoded by the following code words: 1010101, 1101011, 1100101, 1100011, 1111111: the corrected codewords are 1010100, 0101011, 1100001, 1100001,1111111 . Taking the data bits only, the message is: $1010=10=" J ", 0101=5=" E ", 1100=12=" L ", 1100=12=" L "$, $1111=15=$ "O", or JELLO. (I actually meant it to be HELLO, but I typed the first codeword incorrectly. I was lucky that I still got a recognizable word!)

