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While the results of this note are known, there seems to be no written account taking the biregular point
of view we present here (as opposed to the usual local and birational point of view). Since our interest in
complete ideals is related to making sense of fat point subschemes involving possibly infinitely near points,
we begin by discussing how to use complete ideals to extend the usual treatment of fat points.

A fat point subscheme Z = m1p1 + · · ·+ mrpr usually is considered in the case that the points {pi} are
distinct points. For example, let π : X → P2 be the birational morphism obtained by blowing up distinct
points p1, . . . , pr of P2. Given nonnegative integers mi and the fat point subscheme Z = m1p1 + · · ·+ mrpr,
let IZ be the sheaf of ideals defining Z as a subscheme of P2. Let e0 be the pullback to X of the class
of a line on P2, and let e1, . . . , er be the classes of the exceptional divisors of the blow ups of p1, . . . , pr.
Given a divisor class f we will denote the corresponding line bundle by OX(f). With this convention, then
IZ = π∗(OX(−m1e1 − · · · −mrer)) and the stalks of IZ are complete ideals (as defined in [Z] and [ZS]) in
the local rings of the structure sheaf of P2.

However, the assumption that the points are distinct is not necessary. In particular, let p1 ∈ X0 = P2,
and let p2 ∈ X1, . . ., pr ∈ Xr−1, where, for 0 ≤ i ≤ r − 1, πi : Xi+1 → Xi is the blow up of pi+1. We will
denote Xr by X and the composition X → P2 by π. We call the points p1, . . . , pr essentially distinct points of
P2; note that pj for j > i may be infinitely near pi. Denoting the class of the 1-dimensional scheme-theoretic
fiber Ei of Xr → Xi by ei and the pullback to X = Xr of the class of a line in P2 by e0, we have what we
call the exceptional configuration e0, . . . , er corresponding to p1, . . . , pr. Then π∗(OX(−m1e1 − · · · −mrer))
is a coherent sheaf of ideals on P2 defining a 0-dimensional subscheme Z generalizing the usual notion of
fat point subscheme. In analogy with the notation used above, we will denote Z by m1p1 + · · ·+ mrpr and
refer to Z as a fat point subscheme. Moreover, the stalks of π∗(OX(−m1e1 − . . . − mrer)) are complete
ideals in the stalks of the local rings of the structure sheaf of P2, and conversely if I is a coherent sheaf
of ideals on P2 whose stalks are complete ideals and if I defines a 0-dimensional subscheme, then there
are essentially distinct points p1, . . . , pr of P2 and integers mi such that with respect to the corresponding
exceptional configuration we have I = π∗(OX(−m1e1 − · · · − mrer)). Thus our generalized notion of fat
points is precisely what is obtained by considering 0-dimensional subschemes defined by coherent sheaves of
ideals whose stalks are complete ideals (see Remark 18); justifying this statement is the main purpose of this
appendix.

The subscheme Z does not uniquely determine −m1e1 − · · · − mrer. For example, if p1 and p2 are
distinct points of P2, then π∗(OX(−e1 + e2)) = π∗(OX(−e1)) both give the sheaf of ideals defining the
subscheme Z = p1. To get uniqueness, we recall that the divisor class group Cl(X) supports an intersection
form, with respect to which the exceptional configuration e0, . . . , er is an orthogonal basis of Cl(X) with
−1 = −e2

0 = e2
1 = · · · = e2

r. The inequalities (−m1e1 − · · · − mrer) · Cij ≥ 0, where i indexes the divisors
Ei and j indexes the components Cij of Ei, correspond to what older terminology called the proximity
inequalities. Thus we will say that a class f ∈ Cl(X) satisfies the proximity inequalities if f ·C ≥ 0 for every
component C of each divisor Ei. Moreover, given essentially distinct points p1, . . . , pr and a subscheme
Z = m1p1 + · · · + mrpr, we will abbreviate saying that the class −m1e1 − · · · − mrer coming from the
coefficients m1, . . . ,mr used to define Z satisfies the proximity inequalities by simply saying that Z satisfies
the proximity inequalities. In case p1, . . . , pr are distinct points, we note that m1p1 + · · ·+mrpr satisfies the
proximity inequalities if and only if mi ≥ 0 for all i.

From one point of view, the significance of the proximity inequalities is given by an old and well-known
result saying that de0 − m1e1 − · · · − mrer is fixed component free for d sufficiently large if and only if
−m1e1 − · · · −mrer satisfies the proximity inequalities. Another manifestation of the proximity inequalities
is the fact that if π∗(OX(−a1e1 − · · · − arer)) = π∗(OX(−b1e1 − · · · − brer)), where −a1e1 − · · · − arer and
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−b1e1 − · · · − brer both satisfy the proximity inequalities, then ai = bi for each i. In particular, we have a
bijection between subschemes of generalized fat points in P2 and 0-cycles m1p1+ · · ·+mrpr, where p1, . . . , pr

are essentially distinct points of P2 and m1p1 + · · ·+ mrpr satisfies the proximity inequalities.
We use divisorial methods on X to obtain results about IZ . In particular, let fd denote de0−m1e1−· · ·−

mrer (and let Fd denote the corresponding line bundle OX(fd)). Since OX(e0) is the pullback π∗(OP2(1)) of
the class of a line, using Lemma II.1 of [H] and the projection formula [Ha, Ex. II.5.1(d)], we have for each d
and i a natural isomorphism of Hi(X,Fd) with Hi(P2, π∗(OX(−m1e1−· · ·−mrer))⊗O(d)) = Hi(P2, IZ(d)),
where Z = m1p1 + · · ·+ mrpr. In particular, the homogeneous coordinate ring k[P2] =

⊕
d≥0 H0(P2,O(d))

can be identified with
⊕

d≥0 H0(X,OX(de0)), and the homogeneous ideal IZ =
⊕

d≥0 H0(P2, IZ(d)) for
Z = m1p1 + · · ·+ mrpr in k[P2] can be identified with

⊕
d≥0 H0(X,Fd).

We now begin with a lemma which we will apply later.

Lemma 1: Let p1, . . . , pr be essentially distinct points of P2, X the surface obtained by blowing them up,
e0, . . . , er the corresponding exceptional configuration. Then, for d sufficiently large, fd = de0 − (m1e1 +
· · ·+ mrer) is the class of an effective divisor moving in a complete linear system which is fixed component
free if and only if −(m1e1 + · · ·+ mrer) satisfies the proximity inequalities.

Proof: By Lemmas II.7 and II.9 of [H], effectivity and being fixed component free follows for d ≥ m1 + · · ·+
mr, if −(m1e1 + · · · + mrer) satisfies the proximity inequalities. If −(m1e1 + · · · + mrer) does not satisfy
the proximity inequalities, then there is an irreducible divisor C which is a component of ei for some i > 0
such that fd · C = −(m1e1 + · · ·+ mrer) · C < 0, and hence the complete linear system |fd| either is empty
or has C as a fixed component. ♦

Given an exceptional configuration e0, . . . , er on some (necessarily smooth projective rational) surface
X, consider the cone S ⊂ Cl(X) of all elements f of Cl(X) meeting every component of each ei, i > 0
nonnegatively and satisfying f · e0 = 0. Thus S consists precisely of those nonpositive linear combinations
−(m1e1 + · · ·+ mrer) satisfying the proximity inequalities.

Certain elements of S will be of particular interest, corresponding as we will eventually show to simple
complete ideals primary with respect to maximal ideals. To define these elements, note that altogether there
are r irreducible components Qj occurring among the exceptional divisors Ei, 1 ≤ i ≤ r. Let [Qj ], 1 ≤ j ≤ r,
be an enumeration of the classes of these irreducible components. Let qij be the uniquely determined
nonnegative integers with ei =

∑
j qij [Qj ]. For each j, let fj = −

∑
i qijei. Given any essentially distinct

points p1, . . . , pr, or, alternatively, any exceptional configuration e0, . . . , er, we will refer to e0, f1, . . . , fr as
the dual configuration. This terminology is justified by the following long-known result. (For the statement,
recall Kronecker’s δij , which is equal to 1 if i = j, and 0 otherwise.)

Proposition 2: Let e0, . . . , er be an exceptional configuration on a surface X, let e0, f1, . . . , fr be the dual
configuration and let [Qj ], 1 ≤ j ≤ r, be the classes of the irreducible components of the exceptional loci Ei.

(a) The classes f1, . . . , fr form a basis for the subgroup of Cl(X) generated by e1, . . . , er.

(b) For every 1 ≤ i, j ≤ r, we have fi · [Qj ] = δij . (In particular, the classes fi satisfy the proximity
inequalities).

(c) S is the free commutative monoid on f1, . . . , fr (i.e., every element of the monoid S is a nonnegative
linear combination of the elements f1, . . . , fr in a unique way).

Proof: Since the classes e1, . . . , er are orthogonal of self-intersection −1 and since e0 · [Qj ] = 0 for every j,
we have [Qj ] =

∑
i>0 aijei for aij = −[Qj ] · ei. The proof is now a short matrix calculation.

Note that the transpose of the matrix (aij) is inverse to (qij): by definition, ei =
∑

j qij [Qj ], hence ei =∑
j qij

∑
l aljel, so

∑
j qijalj = δil. Thus f1, . . . , fr and e1, . . . , er are related by an invertible transformation,

hence both give bases, as claimed in (a). Moreover, since a matrix commutes with its inverse, we now have∑
i qijail = δjl and thus fi · [Qj ] = −(

∑
l qliel) · (

∑
t atjet) =

∑
l qlialj = δij , as claimed in (b).

As for (c), (b) shows that fi ∈ S for each i, while uniqueness follows since f1, . . . , fr are linearly
independent in Cl(X), so we only need to check that every element f of S is a nonnegative linear combination
of the fi. Now, S lies in the subgroup of Cl(X) generated by e1, . . . , er, but f1, . . . , fr is a basis for the
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same subgroup. Thus for some integers bi we have f =
∑

i bifi, and by (b) intersecting with [Qj ] gives
f · [Qj ] = bj , nonnegative since f ∈ S. ♦

We now recall the notion of a complete ideal [ZS, p. 353]. We restrict our attention to complete ideals
in local rings which occur as stalks of the structure sheaf on a smooth projective surface.

Definition 3: : Let x ∈ X be a closed point of a smooth projective surface X, OX,x the stalk of the
structure sheaf at x. An ideal I ⊂ OX,x is called a valuation ideal if there is an ideal I ′ in a valuation ring
R of the function field k(X) of X such that R contains OX,x and I = I ′ ∩OX,x. An ideal J ⊂ OX,x is called
complete if it is any intersection of valuation ideals.

We will denote the maximal ideal of OX,x by mx. The following result, showing that understanding
complete ideals which are primary for mx is the key to understanding them in general, justifies confining
our attention to complete ideals which are primary for mx.

Proposition 4: Let I 6= (1) be a complete ideal. Then I = fJ for some element f ∈ OX,x and some
complete ideal J ⊂ OX,x primary for mx.

Proof: See p. 362, [ZS, Appendix 5]. ♦

The reader may find a few examples helpful. In these examples R denotes the localization at the maximal
ideal (x, y) of the polynomial ring k[x, y].

Example 5: Let f ∈ (x, y) be an irreducible polynomial. Assigning to a polynomial g the largest t such
that f t divides g determines a valuation on k(x, y), and the corresponding valuation ideals in R are the
powers of the ideal (f). More generally, let C be any integral curve on a smooth quasi-projective surface
X. Then C determines a discrete valuation νC on the function field k(X) of X, whose valuation ring is the
local ring OX,C with maximal ideal corresponding to the generic point of C. (Such a valuation is called in
older terminology a prime divisor of the first kind.)

Example 6: Let I = (x, y)R be the maximal ideal. Assigning to a nonzero polynomial f ∈ k[x, y] ⊂ R the
degree of its term of least total degree in x and y determines a valuation on k(x, y), the I-adic valuation.
(A valuation of this sort is the simplest example of what is called in older terminology a prime divisor of
the second kind.) The resulting valuation ideals are precisely the ideals In, n ≥ 0. Regarding k[x, y] as
the coordinate ring of A2 and p ∈ A2 as the zero locus of I ∩ k[x, y], it is convenient to also refer to this
valuation as the p-adic valuation.

Our goal is to interpret Zariski’s results in the following situation. We have a coherent sheaf I of ideals
on a smooth surface X and we assume the stalks Ix ⊂ OX,x are complete ideals, either primary for mx or
Ix = (1), for every x ∈ X; in this situation we will simply say I is complete. Since I is coherent, we have
for all but finitely many points x that Ix = OX,x. In particular, I is the sheaf of ideals of a 0-dimensional
(possibly nonreduced) subscheme ZI ⊂ X.

We now want to show that each complete sheaf I on P2 corresponds to a 0-cycle
∑

i tipi for some set of
essentially distinct points p1, . . . , pr of P2, and that, if π : X → P2 is the blowing up of the points p1, . . . , pr

and e0, . . . , er the associated exceptional configuration, then I = π∗(OX(−t1e1 − · · · − trer)).
We begin by recalling Zariski’s results about factorization of complete ideals.

Theorem 7: Let OX,x be the local ring of an algebraic surface X at a smooth (closed) point x and let mx

be the maximal ideal. If I and J are complete ideals in OX,x primary for mx, then IJ is a complete ideal
primary for mx.

Proof: See Theorem 2’, p. 385, [ZS, Appendix 5]. ♦

Definition 8: If, as in Theorem 7, I is a complete ideal in OX,x primary for mx, we say I is simple if it is
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not a product of two or more complete ideals primary for mx.

Theorem 9: Let OX,x be the local ring of an algebraic surface X at a smooth (closed) point x and let mx

be the maximal ideal. Any complete ideal in OX,x primary for mx is in a unique way a product of simple
complete ideals primary for mx.

Proof: See Theorem 3, p. 386, [ZS, Appendix 5]. ♦

We now consider more examples. As before, R denotes the localization of k[x, y] at (x, y).

Example 10: Zariski [Z, p. 172] shows that while (x, y2) and (x2, y) are valuation ideals (see Example
V.12 below), I = (x, y2)(x2, y) is not. Since products of complete deals are complete, I is a complete ideal
which is not a valuation ideal.

Example 11: The ideal I = (x2, y2) is not a complete ideal. For suppose I is contained in a valuation
ideal J corresponding to some valuation ν of k(x, y) nonnegative on R. Either ν(x) ≥ ν(y) or ν(y) ≥ ν(x);
say ν(x) ≥ ν(y). Then ν(xy) ≥ ν(y2) so xy ∈ J . Since this holds for any valuation ideal containing I we see
that I cannot be a complete ideal (that is, not an intersection of valuation ideals) since xy is not an element
of I.

Example 12: Suppose we blow up the point p = (0, 0) ∈ A2. The points of the exceptional locus of the
blowing up correspond bijectively to linear forms l = ax + by, with a, b ∈ k. Choose such an l, and let q be
the corresponding point of the exceptional locus; thus p, q are essentially distinct points of A2. If l 6= x, then
k[x, l/x] ⊂ k(x, y) is the coordinate ring of an affine neighborhood U of q on the blowing up of A2 at p. Let
R′ be the localization of k[x, l/x] at the maximal ideal (x, l/x); then R ⊂ R′. The powers (x, l/x)nR′ of the
maximal ideal (x, l/x)R′ give valuation ideals in R′ with respect to the (x, l/x)-adic valuation. (In analogy
with the terminology introduced in Example 6, we shall refer to this valuation as the q-adic valuation.) Their
restrictions to R give valuation ideals in R; the nontrivial ones are precisely the ideals I1 = (x, l) = (x, y),
I2 = (x2, l), I3 = I1I2, I4 = I2

2 , I5 = I1I
2
2 , etc. The ideals I1 and I2 are simple complete ideals, and we

have the explicit factorizations I2l+1 = I1I
2
l and I2l = I2

l . In fact, for any nonnegative integers a and b,
Ia
1 Ib

2 is also a complete ideal; by Zariski’s unique factorization result, different values of a and b always give
different ideals. Moreover, the ideal Ia

1 Ib
2 defines a coherent sheaf I of ideals on P2 which on the blowing up

X of P2 at p and q becomes the divisorial sheaf of ideals OX(−(a + b)e1 − be2). (Thus the multiplicative
submonoid generated by I1 and I2 in the monoid of all complete ideals in R corresponds isomorphically to
the additive monoid generated in Cl(X) by −e1 and −e1 − e2.) The polynomials in Ia

1 Ib
2 of degree at most

n can be naturally identified with H0(X,OX(ne0 − (a + b)e1 − be2)).

Example 13: By iterating the procedure outlined in Example 12, given any set p1, . . . , pr of essentially
distinct points we can define the pr-adic valuation. In particular, let s = p1, . . . , pr = p be essentially distinct
points of a smooth surface S with p infinitely near s, let X = Xr−1 → · · · → X0 = S be the morphisms
obtained by blowing up p1, . . . , pr−1, and, in turn, let e1, . . . , er−1 be the corresponding exceptional classes.
We have the maximal ideal mp ⊂ OX,p in the stalk of the stucture sheaf of X at p, from which we obtain the
mp-adic valuation νp, defined by associating to any f ∈ OX,p the least integer t such that f ∈ mt

p−mt+1
p . We

denote the corresponding valuation ring by Rνp . The ideals mt
p ∩ OS,s are then valuation ideals (consisting

of those elements of OS,s of mp-adic value at least t), and in particular are complete ideals.

Example 13 is typical; every simple complete ideal arises in this way:

Theorem 14: Let OS,s be the local ring of an algebraic surface at a smooth (closed) point s, and let
I ⊂ OS,s be a simple complete ideal primary to the maximal ideal ms. Then there are essentially distinct
points s = p1, . . . , pr = p of S such that, in the notation of Example 13, I = mt

p ∩ OS,s for some t > 0.

Proof: By 5(C) of Appendix 5, p. 389, [ZS], I is a valuation ideal for the mp-adic valuation with respect
to some essentially distinct points p1, . . . , pr = p of S. But, in the notation of Example 13, the ideals of the
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associated valuation ring Rνp clearly contract in OX,p to the powers of the maximal ideal mp, and thus I
is an intersection of some power mt

p with OS,s, where the intersection is defined with respect to the natural
inclusion OS,s ⊂ OX,p. ♦

We pause for a moment to consider Theorem 14 and its proof in case S = P2. Let X = Xr → · · · →
X0 = S be the morphisms obtained by blowing up the essentially distinct points p1, . . . , pr = p of the proof of
Theorem 14, and, in turn, let e0, e1, . . . , er be the corresponding exceptional configuration. The stalk OX,x

at the generic point x of the curve Er (whose class is er) is a discrete valuation ring in k(X) = k(S). It is
easy to see that this ring and the associated valuation are exactly the same as in the mp-adic valuation, and
from this perspective the ideal mt

p ∩OS,s is just the stalk π∗(OX(−ter))s at s of π∗(OX(−ter)), regarded as
an ideal of OS,s via π∗(OX(−ter)) ⊂ π∗OX = OS .

Suppose pr is infinitely near to but is not itself a point of S; after reindexing we may assume that pr is
infinitely near to p1 ∈ S. Then e1 − er is the class of an effective divisor. Since (e1 − er) · (ne0 − ter) < 0,
one of the irreducible components, call it C1, of the exceptional locus of p1 is a fixed component of the linear
system |ne0− ter|, for every n > 0 for which it is nonempty. In particular, π∗(OX(−ter))s = π∗(OX(−ter)⊗
OX(−C1))s. But again −ter− [C1] may meet a component C2 of e1 negatively and again we may subtract it
off and still obtain the same complete ideal π∗(OX(−ter))p = π∗(OX(−ter)⊗OX(−C1 −C2))p. Eventually
we obtain a class −t1e1 − · · · − trer which meets every component of e1 nonnegatively (hence meets each ei

nonnegatively, so each ti is nonnegative) but also satisfies π∗(OX(−ter))p = π∗(OX(−t1e1 − · · · − trer))p.
Thus −t1e1 − · · · − trer is in the dual cone S generated by the dual configuration f1, . . . , fr. In particular,
every valuation ideal mt

p ∩OS,s is of the form π∗(OX(a1f1 + . . . + arfr)), with respect to some nonnegative
integers ai and some dual configuration coming from some essentially distinct points p1, . . . , pr. We now
have a converse, and more.

Theorem 15: Let s = p1, . . . , pr be essentially distinct points of S = P2, each pi being infinitely near p1.
Let e0, . . . , er be the corresponding exceptional configuration on the blowing up π : X → S of the points,
and let f1, . . . , fr be the dual classes. Then π∗OX(fi) is a simple complete ideal of OS,s for each i, and π∗
induces an injective homomorphism from the additive submonoid of Cl(X) generated by f1, . . . , fr to the
multiplicative monoid of complete ideals in OS,s.

Proof: First we show that the ideals π∗OX(fi), 1 ≤ i ≤ r are complete. Let [Qji], 1 ≤ j ≤ i, be the class
of the proper transform Qji of Ej ⊂ Xj on Xi, where X = Xr → · · · → X0 = S is the factorization of π
corresponding to our given exceptional configuration. For each j < i, let qji be the multiplicity of Qii = Ei

as a component of (the total transform of) Ej on Xi. From the remarks preceding Proposition 2 we know
fi =

∑
1≤j≤i−qjiej . Clearly,

∑
1≤j<i qji(ej − qjiei) is a nonegative linear combination of the classes [Qji],

1 ≤ j < i, and we have −(
∑

1≤j≤i q2
ji)ei = fi +

∑
1≤j<i qji(ej − qjiei). Moreover, since the span in Cl(X)

of the classes [Qji] is negative definite, any nontrivial nonnegative linear combination of them meets one of
them negatively. Since [Qji], 1 ≤ j < i, is, by Proposition 2(b), perpendicular to fi, we see that subtracting
off classes [Qji], 1 ≤ j < i, which meet −(

∑
1≤j≤i q2

ji)ei = fi +
∑

1≤j<i qji(ej − qjiei) negatively leaves fi.
In particular, (π∗OX(fi))s = (π∗(OX(−(

∑
1≤j≤i q2

ji)ei)))s, and, as we saw in Theorem 14 and the following
remarks, the latter is a complete ideal, since it is a valuation ideal for the pi-adic valuation.

Next we show that π∗ induces an injective homomorphism from the additive submonoid of Cl(X)
generated by f1, . . . , fr to the multiplicative monoid of complete ideals in OS,s. First we check for any
nonnegative integers ti that (π∗OX(f1))t1

s · · · (π∗OX(fr))tr
s = (π∗(OX(t1f1 + · · · + trfr)))s. By Theorem

7, (π∗OX(f1))t1
s · · · (π∗OX(fr))tr

s is complete; since the containment ⊂ is clear, it is enough to show that
any valuation ideal in OS,s which contains (π∗OX(f1))t1

s · · · (π∗OX(fr))tr
s also contains (π∗(OX(t1f1 + · · ·+

trfr)))s. In fact, by Theorem 3 of [ZS, Appendix 4] and its proof, it suffices to consider essential valuations,
and so, given any p-adic valuation νp for a point p infinitely near to s, it suffices to show that νp((π∗(OX(t1f1+
· · ·+ trfr)))s) = νp((π∗OX(f1))t1

s · · · (π∗OX(fr))tr
s ).

By blowing up more points if necessary we may assume that p is pi for some 1 ≤ i ≤ r. Clearly,
νp((π∗OX(f1))t1

s · · · (π∗OX(fr))tr
s ) =

∑
j tjνp((π∗OX(fj))s), and νp((π∗OX(fj))s) =

∑
1≤l≤i qliel · fj . Like-

wise, νp((π∗(OX(t1f1 + · · · + trfr)))s) =
∑

1≤l≤i qliel · (t1f1 + · · · + trfr). But the latter simplifies to∑
1≤l≤i

∑
1≤j≤r tjqliel ·fj , while νp((π∗OX(f1))t1

s · · · (π∗OX(fr))tr
s ) =

∑
1≤j≤r

∑
1≤l≤i tjqliel ·fj , as desired.

We also now see that the homomorphism is injective, since different linear combinations of the fi never



6 Brian Harbourne

have the same valuations for all valuations. Finally, to see that each π∗OX(fi) is a simple complete ideal,
recall for each i that all pi-adic valuation ideals are in the image under π∗ of the monoid generated by
f1, . . . , fr. By 5(E) of [ZS, Appendix 5], there is a bijection between the simple complete ideals in OS,s

primary to ms and the points infinitely near to s, and if p is infinitely near to s, then the simple ideal
corresponding to p is a p-adic valuation ideal. Thus the image of the monoid generated by f1, . . . , fr has at
least r simple ideals, but clearly only the images of f1, . . . , fr themselves can be simple, and so are in fact
precisely the set of simple ideals in the image monoid. ♦

Remark 16: In the course of the proof of Theorem 15 we saw that

(π∗OX(fi))s = (π∗(OX(−(
∑

1≤j≤i

q2
ji)ei)))s;

i.e., that (π∗OX(fi))s = mt
i∩OS,s for t =

∑
1≤j≤i q2

ji is the simple ideal corresponding to fi. More generally,
for i ≤ l, a minor modification shows that (π∗OX(fi))s = mt

l ∩ OS,s for t =
∑

1≤j≤i qjiqjl. ♦

We now characterize the complete ideals in the local ring of a point in P2.

Corollary 17: Let OS,s be the local ring of S = P2 at a (closed) point s, and let I ⊂ OS,s be a complete
ideal primary to the maximal ideal ms. Then there are essentially distinct points s = p1, . . . , pr = p of S
such that, in the notation of Theorem 15, I = π∗(OX(

∑
1≤i≤r aifi)), for uniquely determined nonnegative

integers ai.

Proof: By Theorem 9, we know there are simple ideals Jl, 1 ≤ l ≤ t, and positive integers bi such that
I = Jb1

1 · · · Jbt
t . By Theorem 15, Theorem 14, and the remarks following Theorem 14, for each Ji there are

essentially distinct points such that Ji is π∗ applied to the line bundle corresponding to some element of the
cone generated by the dual configuration corresponding to the points. Taking p1, . . . , pr to be essentially
distinct points comprising those required for each Ji, and as usual taking {fi} to be the dual configuration
corresponding to the points, we thus have I = π∗OX(

∑
1≤i≤r aifi) for appropriate nonnegative integers ai;

uniqueness follows by Theorem 15. ♦

Remark 18: Let p1, . . . , pr be essentially distinct points of P2. Let π : X → S be the blowing up of the
points, and let e0, f1, . . . , fr be the corresponding dual configuration. Let ai be nonnegative integers, not all
0; then a1f1 + · · ·+ arfr meets every component of every exceptional divisor E1, . . . , Er nonnegatively. By
Theorem 15, π∗OX(a1f1+· · ·+arfr) is a sheaf of complete ideals, clearly defining a 0-dimensional subscheme
Z ⊂ S; by Corollary 17 every sheaf of complete ideals defining a 0-dimensional subscheme is of this form.
Rewriting a1f1 + · · · + arfr in terms of the exceptional classes as −α1e1 − · · · − αrer, we can denote Z as
α1p1 + · · · + αrpr; i.e., any 0-dimensional subscheme Z defined by a sheaf of complete ideals is uniquely of
the form α1p1 + · · ·+ αrpr, where p1, . . . , pr are essentially distinct points of P2 and α1, . . . , αr are negative
integers satisfying the proximity inequalities (i.e., such that α1e1 + · · · + αrer meets every component of
each ei nonnegatively). This shows that our generalized notion of fat point subscheme coincides with that
of 0-dimensional subschemes defined by coherent sheaves of complete ideals.

Remark 19: Let I be a sheaf of complete ideals on the affine plane A2 ⊂ P2 defining a 0-dimensional
zero-locus Z. Then I is the sheaf corresponding to some ideal I ⊂ k[A2] and I is complete (i.e., the
intersection in k(A2) of k[A2] with valuation ideals in the local rings of k[A2]). It follows from Corollary
17, since this is a local question, that I = π∗OX(−a1e1 − · · · − arer) for some essentially distinct points
p1, . . . , pr of A2, where π : X → A2 is the blowing up of the points p1, . . . , pr and ei, i > 0, is the class of the
total transform on X of pi. But the polynomials in k[A2] of degree at most n correspond bijectively to the
homogeneous polynomials H0(P2,O(n)) of degree n, and under this correspondence the polynomials in I of
degree at most n carry over to the elements of H0(X,OX(ne0− a1e1− · · ·− arer)) (where e0 is the pullback
of the class of a line in P2). I.e., the homogenization of the ideal of polynomials vanishing on Z is just⊕

n≥0 H0(X,OX(ne0 − a1e1 − · · · − arer)) ⊂
⊕

n≥0 H0(X,OX(ne0)) =
⊕

n≥0 H0(P2,O(n)) = k[P2]. This
reflects Zariski’s original formulation [Z, p. 193] of complete ideals in a polynomial ring in 2 indeterminates
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as “. . . those and only those ideals whose elements are subject to given base conditions, and to no other
conditions. In other words, the polynomials which belong to a complete ideal and whose degree is not greater
than a given integer n, form, for any n, a complete linear system.”
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