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While the results of this note are known, there seems to be no written account taking the biregular point
of view we present here (as opposed to the usual local and birational point of view). Since our interest in
complete ideals is related to making sense of fat point subschemes involving possibly infinitely near points,
we begin by discussing how to use complete ideals to extend the usual treatment of fat points.

A fat point subscheme Z = mp; + - - - + m,p, usually is considered in the case that the points {p;} are
distinct points. For example, let 7 : X — P2 be the birational morphism obtained by blowing up distinct
points pi, ..., p, of P2. Given nonnegative integers m; and the fat point subscheme Z = mp; + - - - +m,p,,
let T, be the sheaf of ideals defining Z as a subscheme of P2. Let ey be the pullback to X of the class
of a line on P2, and let ey,...,e, be the classes of the exceptional divisors of the blow ups of pi,...,pr.
Given a divisor class f we will denote the corresponding line bundle by Ox (f). With this convention, then
Iz =7.(Ox(—mie; — -+ —mye,)) and the stalks of 7z are complete ideals (as defined in [Z] and [ZS]) in
the local rings of the structure sheaf of P2.

However, the assumption that the points are distinct is not necessary. In particular, let p; € Xy = P2,
and let po € X4, ..., pr € X,—1, where, for 0 < i <r —1, m : X;11 — X, is the blow up of p;11. We will
denote X, by X and the composition X — P? by m. We call the points py, . .., p, essentially distinct points of
PZ; note that p; for j > i may be infinitely near p;. Denoting the class of the 1-dimensional scheme-theoretic
fiber E; of X, — X; by e; and the pullback to X = X, of the class of a line in P2 by ey, we have what we
call the exceptional configuration eq, ..., e, corresponding to p1,...,p,. Then 1. (Ox(—mies — - —mye;.))
is a coherent sheaf of ideals on P? defining a 0-dimensional subscheme Z generalizing the usual notion of
fat point subscheme. In analogy with the notation used above, we will denote Z by myp1 + - -+ + m,.p, and
refer to Z as a fat point subscheme. Moreover, the stalks of m.(Ox(—mie; — ... — m,e,.)) are complete
ideals in the stalks of the local rings of the structure sheaf of P2, and conversely if Z is a coherent sheaf
of ideals on P? whose stalks are complete ideals and if Z defines a 0-dimensional subscheme, then there
are essentially distinct points ps,...,p, of P? and integers m; such that with respect to the corresponding
exceptional configuration we have Z = m.(Ox(—mie; — -+ — mye,)). Thus our generalized notion of fat
points is precisely what is obtained by considering 0-dimensional subschemes defined by coherent sheaves of
ideals whose stalks are complete ideals (see Remark 18); justifying this statement is the main purpose of this
appendix.

The subscheme Z does not uniquely determine —mje; — --- — mye,.. For example, if p; and p, are
distinet points of P2, then m.(Ox(—e; + e2)) = m(Ox(—e1)) both give the sheaf of ideals defining the
subscheme Z = p;. To get uniqueness, we recall that the divisor class group C1(X) supports an intersection

form, with respect to which the exceptional configuration ey, ..., e, is an orthogonal basis of C1(X) with
-1 = —6(2) = e% =... = e%. The inequalities (—mie; — -+ — mye;) - C;; > 0, where ¢ indexes the divisors

E; and j indexes the components Cj; of E;, correspond to what older terminology called the prozimity
inequalities. Thus we will say that a class f € Cl(X) satisfies the proximity inequalities if f-C > 0 for every
component C of each divisor E;. Moreover, given essentially distinct points pi,...,p, and a subscheme
Z = mip1 + -+ + m;p,, we will abbreviate saying that the class —mje; — -+ — m,e, coming from the
coeficients mq, ..., m, used to define Z satisfies the proximity inequalities by simply saying that Z satisfies
the proximity inequalities. In case p1, ..., p, are distinct points, we note that mip; + - - - +m,.p, satisfies the
proximity inequalities if and only if m; > 0 for all 4.

From one point of view, the significance of the proximity inequalities is given by an old and well-known
result saying that deg — mie; — -+ — my e, is fixed component free for d sufficiently large if and only if
—mye; — - -+ — mye, satisfies the proximity inequalities. Another manifestation of the proximity inequalities
is the fact that if 7.(Ox(—aje; — -+ —are,.)) = m (Ox(—=brey — - -+ — bre,.)), where —aje; — -+ - — ae, and
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—bie; — - -+ — bre, both satisfy the proximity inequalities, then a; = b; for each i. In particular, we have a
bijection between subschemes of generalized fat points in P2 and 0-cycles mipy +- - - +m,.p,, where p1, ..., pr
are essentially distinct points of P2 and mp; + - - - + m,.p, satisfies the proximity inequalities.

We use divisorial methods on X to obtain results about Iz. In particular, let f3 denote deg—mqieq—---—
mye; (and let Fq denote the corresponding line bundle Ox (fa)). Since Ox (eo) is the pullback 7*(Op2(1)) of
the class of a line, using Lemma II.1 of [H] and the projection formula [Ha, Ex. I1.5.1(d)], we have for each d
and i a natural isomorphism of H*(X, Fy) with H(P? 7, (Ox(—mje;— - -—mye,))20(d)) = H(P%,Zz(d)),
where Z = mip;y + -+ - + m,p,. In particular, the homogeneous coordinate ring k[P?] = @, H°(P?, O(d))
can be identified with @ -, H°(X,Ox(dey)), and the homogeneous ideal Iz = @ -, HO(P2,T4(d)) for
Z = mip1 + - - + mepr in k[P2] can be identified with Do H' (X, Fa). -

We now begin with a lemma which we will apply later.

Lemma 1: Let pq,...,p, be essentially distinct points of P2, X the surface obtained by blowing them up,
€o, - - -, € the corresponding exceptional configuration. Then, for d sufficiently large, fq = deg — (myeq +
-+« +mye,) is the class of an effective divisor moving in a complete linear system which is fixed component
free if and only if —(mie; + - -+ mye,) satisfies the proximity inequalities.

Proof: By Lemmas I1.7 and I1.9 of [H], effectivity and being fixed component free follows for d > mq +---+
my, if —(mie; + -+ + mye,) satisfies the proximity inequalities. If —(mie; + --- + mye,.) does not satisfy
the proximity inequalities, then there is an irreducible divisor C' which is a component of e; for some i > 0
such that fy-C = —(myey + - +mye.) - C <0, and hence the complete linear system |f4| either is empty
or has C as a fixed component. &

Given an exceptional configuration e, ..., e, on some (necessarily smooth projective rational) surface
X, consider the cone & C Cl(X) of all elements f of Cl(X) meeting every component of each e;, i > 0
nonnegatively and satisfying f - eg = 0. Thus S consists precisely of those nonpositive linear combinations
—(myie; + - -+ + mye,) satisfying the proximity inequalities.

Certain elements of S will be of particular interest, corresponding as we will eventually show to simple
complete ideals primary with respect to maximal ideals. To define these elements, note that altogether there
are r irreducible components @); occurring among the exceptional divisors E;, 1 < i <r. Let [Q;], 1 < j <,
be an enumeration of the classes of these irreducible components. Let g;; be the uniquely determined
nonnegative integers with e; = >, ¢;;[Q;]. For each j, let f; = — 3, ¢;je;. Given any essentially distinct
points p1,...,p,, or, alternatively, any exceptional configuration eg,...,e,., we will refer to eg, f1,..., f» as
the dual configuration. This terminology is justified by the following long-known result. (For the statement,
recall Kronecker’s ¢;;, which is equal to 1 if ¢ = j, and 0 otherwise.)

Proposition 2: Let eg, ..., e, be an exceptional configuration on a surface X, let eq, f1,..., fr be the dual
configuration and let [Q;], 1 < j <r, be the classes of the irreducible components of the exceptional loci E;.
(a) The classes f1,..., [, form a basis for the subgroup of CI(X) generated by ey, ..., e,.

(b) For every 1 < 4,5 < r, we have f; - [Q;] = d;;. (In particular, the classes f; satisfy the proximity

inequalities).
(c) S is the free commutative monoid on fi,..., f, (i.e., every element of the monoid S is a nonnegative
linear combination of the elements f1,..., f, in a unique way).
Proof: Since the classes ey, ..., e, are orthogonal of self-intersection —1 and since e - [Q;] = 0 for every j,
we have [Q;] = >_,.aije; for a;; = —[Q;] - e;. The proof is now a short matrix calculation.
Note that the transpose of the matrix (a;;) is inverse to (g;;): by definition, e; = Ej ¢i;1Q;], hence e; =
Zj Qij Y, aijeq, SO Zj gijar; = 0. Thus f1,..., fr and eq, ..., e, are related by an invertible transformation,

hence both give bases, as claimed in (a). Moreover, since a matrix commutes with its inverse, we now have
> @ijaq = 0j; and thus f; - [Q;] = — (30, quer) - (O, ajer) = >, quiarj = 0i5, as claimed in (b).

As for (c), (b) shows that f; € S for each 4, while uniqueness follows since fi,..., f, are linearly
independent in C1(X), so we only need to check that every element f of S is a nonnegative linear combination
of the f;. Now, S lies in the subgroup of Cl(X) generated by ei,...,e., but fi,..., f. is a basis for the
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same subgroup. Thus for some integers b; we have f = > b;f;, and by (b) intersecting with [Q;] gives
f-1Qj;] = b;, nonnegative since f € S. O

We now recall the notion of a complete ideal [ZS, p. 353]. We restrict our attention to complete ideals
in local rings which occur as stalks of the structure sheaf on a smooth projective surface.

Definition 3: : Let x € X be a closed point of a smooth projective surface X, Ox , the stalk of the
structure sheaf at «. An ideal I C Ox , is called a valuation ideal if there is an ideal I’ in a valuation ring
R of the function field k(X) of X such that R contains Ox , and I = I'NOx ,. Anideal J C Ox , is called
complete if it is any intersection of valuation ideals.

We will denote the maximal ideal of Ox , by m,. The following result, showing that understanding
complete ideals which are primary for m, is the key to understanding them in general, justifies confining
our attention to complete ideals which are primary for m,.

Proposition 4: Let I # (1) be a complete ideal. Then I = fJ for some element f € Ox, and some
complete ideal J C Ox , primary for m,.

Proof: See p. 362, [ZS, Appendix 5]. &

The reader may find a few examples helpful. In these examples R denotes the localization at the maximal
ideal (z,y) of the polynomial ring k[, y].

Example 5: Let f € (z,y) be an irreducible polynomial. Assigning to a polynomial g the largest ¢ such
that f! divides g determines a valuation on k(z,y), and the corresponding valuation ideals in R are the
powers of the ideal (f). More generally, let C' be any integral curve on a smooth quasi-projective surface
X. Then C determines a discrete valuation v¢ on the function field k(X) of X, whose valuation ring is the
local ring Ox ¢ with maximal ideal corresponding to the generic point of C. (Such a valuation is called in
older terminology a prime divisor of the first kind.)

Example 6: Let I = (z,y)R be the maximal ideal. Assigning to a nonzero polynomial f € k[x,y] C R the
degree of its term of least total degree in x and y determines a valuation on k(z,y), the I-adic valuation.
(A valuation of this sort is the simplest example of what is called in older terminology a prime divisor of
the second kind.) The resulting valuation ideals are precisely the ideals I™, n > 0. Regarding k[z,y] as
the coordinate ring of A% and p € A? as the zero locus of I N k[x,y], it is convenient to also refer to this
valuation as the p-adic valuation.

Our goal is to interpret Zariski’s results in the following situation. We have a coherent sheaf 7 of ideals
on a smooth surface X and we assume the stalks Z, C Ox , are complete ideals, either primary for m, or
Z. = (1), for every x € X; in this situation we will simply say Z is complete. Since T is coherent, we have
for all but finitely many points x that 7, = Ox . In particular, 7 is the sheaf of ideals of a 0-dimensional
(possibly nonreduced) subscheme Z7 C X.

We now want to show that each complete sheaf Z on P? corresponds to a 0-cycle >, tip; for some set of
essentially distinct points p1,. .., p, of P2, and that, if 7 : X — P2 is the blowing up of the points p1, ..., pr
and eq, ..., e, the associated exceptional configuration, then 7 = 7, (Ox (—t1e1 — -+ — trey)).

We begin by recalling Zariski’s results about factorization of complete ideals.

Theorem 7: Let Ox , be the local ring of an algebraic surface X at a smooth (closed) point x and let my
be the maximal ideal. If I and J are complete ideals in Ox , primary for m,, then I.J is a complete ideal
primary for m;.

Proof: See Theorem 2’, p. 385, [ZS, Appendix 5]. &

Definition 8: If, as in Theorem 7, I is a complete ideal in Ox , primary for m,, we say I is simple if it is
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not a product of two or more complete ideals primary for m,,.

Theorem 9: Let Ox ., be the local ring of an algebraic surface X at a smooth (closed) point = and let m,
be the maximal ideal. Any complete ideal in Ox , primary for m, is in a unique way a product of simple
complete ideals primary for my,.

Proof: See Theorem 3, p. 386, [ZS, Appendix 5]. &
We now consider more examples. As before, R denotes the localization of k[z,y] at (x,y).

Example 10: Zariski [Z, p. 172] shows that while (z,y?) and (22, y) are valuation ideals (see Example
V.12 below), I = (x,9%)(2?,y) is not. Since products of complete deals are complete, I is a complete ideal
which is not a valuation ideal.

Example 11: The ideal I = (22,y?) is not a complete ideal. For suppose I is contained in a valuation
ideal J corresponding to some valuation v of k(x,y) nonnegative on R. Either v(z) > v(y) or v(y) > v(z);
say v(z) > v(y). Then v(zy) > v(y?) so zy € J. Since this holds for any valuation ideal containing I we see
that I cannot be a complete ideal (that is, not an intersection of valuation ideals) since xy is not an element
of I.

Example 12: Suppose we blow up the point p = (0,0) € A2. The points of the exceptional locus of the
blowing up correspond bijectively to linear forms [ = ax + by, with a,b € k. Choose such an [, and let ¢ be
the corresponding point of the exceptional locus; thus p, ¢ are essentially distinct points of A2. If [ # z, then
k[z,1/x] C k(x,y) is the coordinate ring of an affine neighborhood U of ¢ on the blowing up of A? at p. Let
R’ be the localization of k[z,l/x] at the maximal ideal (z,l/x); then R C R’. The powers (x,l/x)" R’ of the
maximal ideal (z,l/x)R’ give valuation ideals in R’ with respect to the (x,!/z)-adic valuation. (In analogy
with the terminology introduced in Example 6, we shall refer to this valuation as the g-adic valuation.) Their
restrictions to R give valuation ideals in R; the nontrivial ones are precisely the ideals I = (z,1) = (,y),
I, = (22,1), I3 = 115, Iy = I3, Iy = 1113, etc. The ideals I; and Iy are simple complete ideals, and we
have the explicit factorizations Io 41 = I1I? and Iy = I?. In fact, for any nonnegative integers a and b,
I¢18 is also a complete ideal; by Zariski’s unique factorization result, different values of a and b always give
different ideals. Moreover, the ideal I{I5 defines a coherent sheaf Z of ideals on P? which on the blowing up
X of P2 at p and ¢ becomes the divisorial sheaf of ideals Ox(—(a + b)e; — bes). (Thus the multiplicative
submonoid generated by I; and I> in the monoid of all complete ideals in R corresponds isomorphically to
the additive monoid generated in Cl(X) by —e; and —e; — e3.) The polynomials in I¢ 1Y of degree at most
n can be naturally identified with H°(X, Ox (neg — (a + b)e; — bes)).

Example 13: By iterating the procedure outlined in Example 12, given any set pq,...,p, of essentially

distinct points we can define the p,.-adic valuation. In particular, let s = p1, ..., p, = p be essentially distinct
points of a smooth surface S with p infinitely near s, let X = X,._y — -+ — Xy = S be the morphisms
obtained by blowing up p1,...,pr—1, and, in turn, let e1,...,e,—1 be the corresponding exceptional classes.

We have the maximal ideal m, C Ox, in the stalk of the stucture sheaf of X at p, from which we obtain the
mp-adic valuation v, defined by associating to any f € Ox , the least integer ¢ such that f € mfg —mf,“‘l. We
denote the corresponding valuation ring by R, . The ideals m; N Og s are then valuation ideals (consisting
of those elements of Og ; of m,-adic value at least t), and in particular are complete ideals.

Example 13 is typical; every simple complete ideal arises in this way:
Theorem 14: Let Og s be the local ring of an algebraic surface at a smooth (closed) point s, and let
I C Og,s be a simple complete ideal primary to the maximal ideal ms. Then there are essentially distinct

points s = p1,...,p, = p of S such that, in the notation of Example 13, I = m'; N Og,s for some t > 0.

Proof: By 5(C) of Appendix 5, p. 389, [ZS], I is a valuation ideal for the m,-adic valuation with respect
to some essentially distinct points p1,...,p, = p of S. But, in the notation of Example 13, the ideals of the
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associated valuation ring R, clearly contract in Ox , to the powers of the maximal ideal m,, and thus I
is an intersection of some power m; with Og s, where the intersection is defined with respect to the natural
inclusion Og s C Ox p. &

We pause for a moment to consider Theorem 14 and its proof in case S = P2, Let X = X, — --- —
Xo = S be the morphisms obtained by blowing up the essentially distinct points py, ..., p, = p of the proof of
Theorem 14, and, in turn, let eg,eq,..., e, be the corresponding exceptional configuration. The stalk Ox ,
at the generic point x of the curve E, (whose class is e,) is a discrete valuation ring in k(X) = k(S). Tt is
easy to see that this ring and the associated valuation are exactly the same as in the m,-adic valuation, and
from this perspective the ideal mj, N Og ; is just the stalk 7.(Ox(—te,))s at s of m.(Ox (—te,)), regarded as
an ideal of Og s via 7. (Ox(—te,)) C m.Ox = Og.

Suppose p, is infinitely near to but is not itself a point of S; after reindexing we may assume that p,. is
infinitely near to p; € S. Then e; — e, is the class of an effective divisor. Since (e; — e,) - (neg — te,) < 0,
one of the irreducible components, call it C', of the exceptional locus of p; is a fixed component of the linear
system |neg — te,|, for every n > 0 for which it is nonempty. In particular, m.(Ox(—te,))s = m(Ox (—te,) ®
Ox(—C1))s. But again —te, — [C1] may meet a component Cy of e; negatively and again we may subtract it
off and still obtain the same complete ideal 7, (Ox (—te,))p, = (O x(—te;) ® Ox(—C1 — C3)),p. Eventually
we obtain a class —t1e; — - - - — t,.e, which meets every component of e; nonnegatively (hence meets each e;
nonnegatively, so each t; is nonnegative) but also satisfies 7. (Ox (—te,))p, = T (Ox(—tie1 — -+ — trep)),p.
Thus —tye7 — - -+ — t,e, is in the dual cone S generated by the dual configuration fi,..., f... In particular,
every valuation ideal m;, N Og , is of the form 7.(Ox (a1 fi + ...+ a,fr)), with respect to some nonnegative
integers a; and some dual configuration coming from some essentially distinct points pi,...,p,.. We now
have a converse, and more.

Theorem 15: Let s = p1,...,p, be essentially distinct points of S = P?, each p; being infinitely near p;.
Let eg, . ..,e, be the corresponding exceptional configuration on the blowing up m : X — S of the points,
and let f1,..., f; be the dual classes. Then m,.Ox(f;) is a simple complete ideal of Og ¢ for each i, and 7,
induces an injective homomorphism from the additive submonoid of CI(X) generated by fi,..., f. to the
multiplicative monoid of complete ideals in Og 5.

Proof: First we show that the ideals m,Ox(f;), 1 < i < r are complete. Let [Qj;], 1 < j < i, be the class
of the proper transform @j; of E; C X; on X;, where X = X, — --- — Xy = S is the factorization of =
corresponding to our given exceptional configuration. For each j < i, let g;; be the multiplicity of Qs = E;
as a component of (the total transform of) E; on X;. From the remarks preceding Proposition 2 we know
fi =2 1<j<i —ajie;. Clearly, 37, qji(ej — gjie;) is a nonegative linear combination of the classes [Q;i],
1 <j <, and we have —(3_,,<; aei = fi+ > 1<j<i Gji(ej — gjie;). Moreover, since the span in Cl(X)
of the classes [Q;;] is negative definite, any nontrivial nonnegative linear combination of them meets one of
them negatively. Since [Q;;], 1 < j < i, is, by Proposition 2(b), perpendicular to f;, we see that subtracting
off classes [Qji], 1 < j < 4, which meet —(3_,;<; aei = fi + > 1<j<i Gji(€j — gjie;) negatively leaves f;.
In particular, (m.Ox(fi))s = (m(Ox(—(X1<j<; q3)ei)))s, and, as we saw in Theorem 14 and the following
remarks, the latter is a complete ideal, since it is a valuation ideal for the p;-adic valuation.

Next we show that . induces an injective homomorphism from the additive submonoid of Cl(X)
generated by fi,..., fr to the multiplicative monoid of complete ideals in Og,. First we check for any
nonnegative integers t; that (m.Ox(f1))% - (mOx(f)i = (7 (Ox(t1f1 + - + trfr)))s. By Theorem
7, (mOx(f1))i -+ (m«Ox (fr))ir is complete; since the containment C is clear, it is enough to show that
any valuation ideal in Og s which contains (7. Ox (f1))% -+ (. Ox (f))% also contains (7. (Ox (t1f1 + -+
t.fr)))s. In fact, by Theorem 3 of [ZS, Appendix 4] and its proof, it suffices to consider essential valuations,
and so, given any p-adic valuation v, for a point p infinitely near to s, it suffices to show that v, ((m. (Ox (t1 f1+
et f)s) = p(mOx (F)E -+ (maOx ().

By blowing up more points if necessary we may assume that p is p; for some 1 < i < r. Clearly,
vp((mOx (f1))et - (mOx(fr))er) = Zj tivp(mOx (f5))s), and vp((m.O0x(f5))s) = Z1§l§i qiier - fj. Like-
wise, Vp((m(Ox(tifi + -+t fr)))s) = Do1<i<; @ier - (t1fr + -+ + t.fr). But the latter simplifies to

Doici<i 21<j<r titiier- fi, while v (mOx (f1))5t - (mOx (fr))5) = Xi<jcr 2r<i<i Liduier - fj, as desired.
We also now see that the homomorphism is injective, since different linear combinations of the f; never
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have the same valuations for all valuations. Finally, to see that each m,Ox(f;) is a simple complete ideal,
recall for each i that all p;,-adic valuation ideals are in the image under 7, of the monoid generated by
fi,..., fr. By 5(E) of [ZS, Appendix 5], there is a bijection between the simple complete ideals in Og s
primary to m, and the points infinitely near to s, and if p is infinitely near to s, then the simple ideal

corresponding to p is a p-adic valuation ideal. Thus the image of the monoid generated by f1,..., f. has at
least r simple ideals, but clearly only the images of f1,..., f, themselves can be simple, and so are in fact
precisely the set of simple ideals in the image monoid. &

Remark 16: In the course of the proof of Theorem 15 we saw that

(mOx (fi)s = (m(Ox(=( D di)en))s;

1<5<i

ie., that (m.Ox(fi))s = miNOg s for t = Zl<j<i qu-i is the simple ideal corresponding to f;. More generally,
for ¢ <, a minor modification shows that (7.Ox (f;))s = miNOg s for t = Zl<j<i qjiqji- &

We now characterize the complete ideals in the local ring of a point in P2.

Corollary 17: Let Og s be the local ring of S = P? at a (closed) point s, and let I C Og s be a complete
ideal primary to the maximal ideal ms. Then there are essentially distinct points s = p1,...,p, = p of S
such that, in the notation of Theorem 15, I = 7,(Ox (3} ,<;<, @i fi)), for uniquely determined nonnegative
integers a;. o

Proof: By Theorem 9, we know there are simple ideals J;, 1 < [ < ¢, and positive integers b; such that
I = Jfl ~~th. By Theorem 15, Theorem 14, and the remarks following Theorem 14, for each J; there are
essentially distinct points such that J; is 7, applied to the line bundle corresponding to some element of the
cone generated by the dual configuration corresponding to the points. Taking pi,...,p, to be essentially
distinct points comprising those required for each J;, and as usual taking {f;} to be the dual configuration
corresponding to the points, we thus have I = m,Ox (3, ,, a:f;) for appropriate nonnegative integers a;;
uniqueness follows by Theorem 15. &

Remark 18: Let p1,...,p, be essentially distinct points of P2. Let 7 : X — S be the blowing up of the
points, and let eq, f1,..., fr be the corresponding dual configuration. Let a; be nonnegative integers, not all
0; then ay f1 + - - + a. f meets every component of every exceptional divisor F1, ..., E, nonnegatively. By
Theorem 15, m.Ox (a1 f1+- - -+a, fr) is a sheaf of complete ideals, clearly defining a 0-dimensional subscheme
Z C S; by Corollary 17 every sheaf of complete ideals defining a 0-dimensional subscheme is of this form.

Rewriting aq f1 + - -+ + a,-f, in terms of the exceptional classes as —a1e; — -+ — €., we can denote Z as
a1p1 + -+ + appy; ie., any 0-dimensional subscheme Z defined by a sheaf of complete ideals is uniquely of
the form a1p; + - - - + a,-p,., where p1, ..., p, are essentially distinct points of P2 and a1, ..., a, are negative

integers satisfying the proximity inequalities (i.e., such that aje; + -+ + o€, meets every component of
each e; nonnegatively). This shows that our generalized notion of fat point subscheme coincides with that
of 0-dimensional subschemes defined by coherent sheaves of complete ideals.

Remark 19: Let 7 be a sheaf of complete ideals on the affine plane A%2 C P? defining a 0-dimensional
zero-locus Z. Then Z is the sheaf corresponding to some ideal I C k[A?] and I is complete (i.e., the
intersection in k(A?) of k[A?] with valuation ideals in the local rings of k[AZ]). It follows from Corollary
17, since this is a local question, that 7 = m.Ox(—aje; — -+ — are,) for some essentially distinct points
p1,...,pr of A2 where 7 : X — A? is the blowing up of the points p1,...,p, and e;, i > 0, is the class of the
total transform on X of p;. But the polynomials in k[A?] of degree at most n correspond bijectively to the
homogeneous polynomials H(P2,O(n)) of degree n, and under this correspondence the polynomials in I of

degree at most n carry over to the elements of H(X, Ox(ney —aje; —- -+ —are,)) (where eq is the pullback
of the class of a line in P?). Le., the homogenization of the ideal of polynomials vanishing on Z is just
B> H(X,Ox(neg — arer — -+ — arer)) C @, H(X, Ox (neo)) = B,,50 H*(P?,0(n)) = k[P?]. This

reflects Zariski’s original formulation [Z, p. 193] of complete ideals in a polynomial ring in 2 indeterminates
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as “... those and only those ideals whose elements are subject to given base conditions, and to no other
conditions. In other words, the polynomials which belong to a complete ideal and whose degree is not greater
than a given integer n, form, for any n, a complete linear system.”
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