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LETTER TO THE EDITORS

DO HARES EAT LYNX?

To test a recently developed predator-prey model against reality, I chose
the well-known Canadian hare-lynx system. A measure of the state of this
system for the last 200-odd years is available in the fur catch records of
the Hudson Bay Company (Maclulich 1937; Elton and Nicholson 1942).
Although the accuracy of these data is questionable (see Elton and Nichol-
son 1942 for a full discussion), they represent the only long-term popula-
tion record available to ecologists.

The model T tested is

dH/dt = H (rg + CyrL + SpH - IzH?), (1a)
dL/dt = L(rg + CpgH + StL + I,L?), (1b)

where L and H are state variables that measure, respectively, the densities
of the lynx and hare populations. The parameters have the following signifi-
cance: the r’s (rg > 0 and r; < 0) are low-density single-species growth
rates; the C’s (Cyr < 0 and Cry > 0) are interspecies coupling constants;
the 8’s are intraspecific social interactions (S > 0 is cooperation and S < 0
is disoperation) ; and the I’s (<0) are intraspecific interference.

To perform the test, the derivatives in equations (la) and (1b) were
approximated by the per year changes in lynx and hare densities. Next, the
parameters in these equations were adjusted so that the sum of the squares
of the error between the observed growth rate and the predicted growth
rate (that is, the right-hand sides of eqq. [1a] and [1b] with the observed
initial values substituted for L and H) is minimized.

The methodology and philosophy of this approach are fully explained by
Ayala, Gilpin, and Ehrenfeld (1973). The idea is not to explain away a
real phenomenon. Rather, it is to test the generality and efficiency of a
theoretical model. The correlation between the model and the empirical data
gives some idea about the general worth of the model. The level of signifi-
cance of the individual parameters indicates the efficiency of the model. If a
model satisfies both of these requirements, and if the parameters have a
plausible biological interpretation, then the model may be useful for sug-
gesting additional observations or experimental manipulations. Furthermore,
the model would be expected to be of some relevance to similar ecological
systems.

To test my model, I used some lynx-hare population data that Leigh
(1968) tabulated; these data run from 1847 to 1903. He used these data to
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test the Lotka-Volterra model of predation, which is equations (la) and
(1b) with the S and I values set identically equal to zero. His fit was poor.
And since he also showed that over this 56-year period the peak lynx
abundance occurred, on the average, a year before the peak hare abundance,
he concluded that the lynx-hare oscillation was not a predator-prey oscilla-
tion (i.e., a neutrally stable Lotka-Volterra oscillation).

Since my model has greater flexibility than the Lotka-Volterra model and
permits, for instance, stable limit cycle oscillations, I felt that it might fit
the data better. But the regression fit was equally poor. In fact, it was worse
than poor; it was impossibly bad. The signs of the interspecies coupling
constants were reversed. Mathematically, the hare was the predator.

To help me understand this, I used graphical predation theory (Rosen-
zwelg and MacArthur 1963) to analyze the system. I plotted the data on
the lynx-hare phase plane. The last three 10-year oscillations were very
revealing (fig. 1). When the prey is plotted on the abscissa and the predator
on the ordinate, any oscillations must run counterclockwise. In other words,
the phase of the predator oscillation should be delayed behind the phase of
the prey oscillation. As is clear from figure 1, the overall tendency of these
three oscillations is clockwise. While other 10-year lynx-hare oscillations
have the expected phase relationship, the existence of this anomalous rela-
tionship over a 30-year period is curious and stimulates efforts toward its
comprehension.

80} »1885
5 1904
x 1894
b4
>=
-~ 1875
40}
J
0 i | 1 1 1 i J
0 40 80 120
HARE

F1a. 1.—Yearly states of the Canadian lynx-hare system from 1875 to 1906.
The numbers on the axes represent the numbers of the respective animals in
thousands.
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Some have suggested (e.g., Lack 1954) that the cause of the oscillation
lies in the relationship of the hare to its food. And Keith (1963) has shown
that on certain islands hares oscillate in the absence of lynx. A realistic
model of the lynx population, then, would be that it depends on a time-
varying carrying capacity, that is, the level of its food resource, the hare
population. This is mathematically formulated as follows:

rL

AL/dt = o

[K(t) — L], (2)

where » is an intrinsic growth rate and K (¢) is proportional to the hare
population density. Analysis of this model shows that the phase of lynx
population oscillations must lag behind the phase of externally produced
hare population oscillations. Thus, the nature of the oscillations in figure 1
remains unexplained.

The oscillations in figure 1 are ‘‘figure eights.’” If the small loops near the
origin are ignored, the oscillations conform to graphical predation theory
(Rosenzweig and MacArthur 1963), with the hare assumed to ‘‘eat,’” or
prey upon, the Iynx. It is, of course, nonsense to assume that hares actually
eat lynx. Nonetheless, an abundance of hares could indirectly kill lynx by
vectoring a disease to them.

To test this theoretical possibility, I constructed a computer model in
which a classical epidemic (see Watt 1968) passes through the hare popula-
tion when a certain threshold density of hares is reached. The epidemic is
assumed to be nonfatal to the hares, but the interaction between lynx and
diseased hares causes a certain percentage mortality to the lynx. By postulat-
ing a disease reservoir, requiring the hares to oscillate sinusoidally and
adjusting other parameters in a not unreasonable manner, I was able to
obtain ‘‘figure eight’’ oscillations that resembled those in figure 1.

Chitty (1948) observed an epidemic in a hare population when it was
increasing and near one of its 10-year peaks. This is a possible candidate
for the proposed pathogenic organism. But several associates who read an
carlier draft of this letter suggested a more probable candidate: Homo
sapiens, the ecological race Canadian trappers. Trappers might sit out poor
years and return to the woods only when the hare again became abundant.
Then, once in the field, they could turn a disproportionately large share of
their efforts toward catching the more profitable lynx.
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