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Article Title: The Dynamics of War between Benign and Malignant cells  

 

Abstract 

This article provides a mathematical dynamic description of the interaction of two types of 

cells, malignant cells (cancer) and benign cells. Considering a living tissue at the system 

theoretical level as a collection of these two types of cells, we analyse the dynamics of cell 

interaction using ordinary differential equations. We show that in a living tissue equilibrium 

between the two types of cells is possible. Cyclic oscillations are not possible. Suitably 

adjusting the mitosis ratio or the death ratio for benign and malignant cells, the article 

demonstrates the dynamics by which malignant cells can be completely removed by chemical 

treatment. 
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1 Introduction 

This article conceptualizes a war between benign and malignant cells within a living tissue. 

The benign cells may be supported by killer agents. There is a growing realization in cancer 

research that the attack on malignant cells by so-called “killers”, most recently suggested in 

the form of engineered bacteria, may “represent a new weapon in the war against cancer” 

(Jain and Forbes 2001:1).1 A considerable amount of experiments have been carried out to 

test the growth and proliferation of benign and malignant cells. Although this literature is 

quantitative and technical in nature, with suggested polynomials describing the cell growth 

and cell proliferation, lacking is to our knowledge the operational approach to this type of 

problem.2 By considering a living tissue at the system theoretical level as a collection of only 

these two types of cells (benign and malignant), we analyse the dynamics of cell interaction 

using ordinary differential equations. This approach is to our knowledge new within the field 

oncology, but has been quite common in other fields of science. Generally, differential 

equations have over the last centuries gained a prominent position within mathematics mainly 

due to many physical, chemical, biological, and also social laws and relations appearing on 

this form. Differential equations are believed to explain, in principle, all phenomena where at 

least one variable varies with respect to another variable. The lesson from nature is that 

complex time relations are constituted such that values of the different variables at a given 

time are exclusively given by the values at the previous time when the intervening time 

interval approaches zero. This phenomenon has today been built into mathematical models by 

using differential equations, providing mathematical models with more predictive power than 

algebraic relations. In this sense differential equations are more foundational than algebraic 

expressions. The approach in this article is similar to the approach of Braun (1983) who 

applies differential equations in fascinating manners to a variety of different phenomena 

(war, ecology, population, disease, pollution, spread of technological innovations, atomic 

waste disposal problems). Braun (1983:52ff) also analyzes the growth of a tumor 

(Gompertzian relation), but without focusing on how the tumor cells interact with benign 

                                                           
1 Dang et al. (2001:) describe how such killers localize and proliferate in the hypoxic regions of tumors. 
2 See Panetta (1995, 1997) for an analysis of the logistic model. 
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cells, which is the focus of this article. 

 

This article addresses the following problems. 1. What is the nature of the equilibrium 

between benign and malignant cells? Defining cancer as the presence of malignant cells, 

what kinds of changes in parameters cause the tissue to move from being cancer-free to 

acquire cancer with possible subsequent death? How are the acquisition and proliferation of 

cancer controlled by benign natural and engineered agents? Which parameters typically 

change during chemical treatment and X-ray radiation? 

 

We show that in a living tissue equilibrium between the two types of cells is possible. Cyclic 

oscillations are not possible. Suitably adjusting the mitosis (birth) ratio or the death ratio for 

benign and malignant cells, the article demonstrates the dynamics by which malignant cells 

can be completely removed by chemical treatment. 

 

Section 2 provides the theoretical model. Section 3 discusses the effect of various clinical 

treatments. Section 4 concludes. 

 

2 The model 

Let ρ 1(t) be the density of the benign living cells defined as the expected number of benign 

living cells pr unit volume, and ρ 2(t) be the density of the malignant living cells defined as the 

expected number of malignant living cells pr unit volume in a tissue at time t. This section 

applies expected values for all variables and we suppress the word expectation hereafter. 

Generally we assume that 

 

( )i i 1 2

mod
(t) f (t), (t) , i 1, 2,ρ = ρ ρ =�  (2.1) 

 

Taylor expansion up to the second order gives3 

 

                                                           
3 The constant term in the Taylor expansion is removed since we cannot give it any population dynamic 
interpretation.  
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= − − − −

�
�

 (2.2) 

 

where we now proceed to argue for the chosen signs of the parameters ai, bi, ci, di, ei. 

 

Empirics from in vitro experiments (Haux et al. 1999, and many others) shows unequivocally 

that the density of living cells left by themselves under favourable constant external 

circumstances (constant temperature and constant supply/availability of oxygen and other 

nutrients) grow or decrease exponentially when the density is low. The explanation is as 

follows: Consider an arbitrary cell. Let pib and pid be the probabilities that the cell of type i 

divides (causing birth of two new cells) and dies, respectively, in the time interval from t to 

t+∆t. It seems reasonable to let both the probability of division and the probability of death be 

proportional to ∆t, i.e. 

 

mod
, 1, 2, , ,ij ijp c t i j b d= ∆ = =  (2.3) 

 

where mod means that this is a model assumption, and j and d denotes birth and death 

respectively. For a large group the relative increase of type i cells is 

 

( ) , , 1, 2,i
ib id ib id ib id i

i

def
p p c c t c c a iρ

ρ
∆

= − = − ∆ − = =   (2.4) 

 

which gives exponential increase when  ai is positive. After some time the exponential 

growth slows down and the density approaches an asymptote. Also in a tissue there is an 

upper bound on the density ρ i(t) of living cells. This negative impact in (2.2) is caused by the 

contact inhibition which gets initiated when the density is so high that the cells are more or 

less in contact at all time. The inhibition is furnished by a reduction in the mitosis (birth) rate 

of the cells, i.e. a reduction in the parameter ibc . This phenomenon can be taken into account 



 6

by subtracting a logistic dampening term4 of the kind biρ i(t)2 with negative impact in (2.4). 

This gives the equation 2( ) ( ) ( ) ( )i ib id i i it c c t b tρ ρ ρ= − −� . This equation can be written as 

( ) ( )[1 ( ) ]i i i i i it a t t b aρ ρ ρ= −� . The well known solution is that the density of cells increases in 

an S-shaped manner from ρ i(0) toward the asymptote ai/bi.  

 

Benign cells also feel a contact inhibition against malignant cells, while malignant cells do 

not feel any contact inhibition against benign cells. A simple equation that takes this into 

account for the benign cells is ( )1 1 1 1 1 1 2 1 1( ) ( ) 1 ( ) ( ) ( )t a t t c b t b aρ ρ ρ ρ= − +  � . By expanding 

the term on the right hand side, parts of (2.2) follows. Usually the malignant cells have 

approximately the same dimension as the benign cells, and therefore c1≈b1. 

 

Within a tissue we denote 1'ρ (t) as the density of a relatively small but special subgroup of 

benign killer agents, i.e. killers.  These special killers interact directly with the malignant 

cells, attempting to eliminate the latter. If the malignant cells become numerous they inhibit 

the normal functioning of the benign cells and the tissue acquires a cancer condition. If the 

density of benign cells gets sufficiently reduced, the tissue may stop to function properly. 

Observe the analogy between this interaction between malignant cells and Lanchester (1914) 

linear warfare.5 Analogous to Lanchester linear warfare, the following interpretation can be 

given based on Lotka’s (1924) theory. Consider a malignant cell. Define p2a as the probability 

that this cell gets attacked by the killers during the time interval from t to t+∆t. It seems 

reasonable to let this probability be proportional to ∆t and proportional to the number of 

killers where we assume that all killers operate independently of each other. Hence 

 

                                                           
4 For a discussion of the history of the logistic hypothesis, first presented by Verhulst (1845) and developed by 
Lotka (1924), in population ecology see Kingsland (1985:64-97). Logistic increase has found its application in 
many fields. 
5 In Lanchester linear (guerilla) warfare agents in one group shoot into an area where they do not know where 
the agents in the other group are located, and thus cannot know when a hit has been made. The loss rate for 
group 1 with n1 members is proportional to the number n2 of members in group 2, since a larger group 2 is 
likely to produce a larger number of n1-casualties. It is further reasonable to let the loss rate for group 1 be 
proportional to n1, since the larger is n1, the larger is the point probability that a shot from group 2 will hit. This 
gives dρ 1/dt=-µ1ρ 2ρ 1, dρ 2/dt=-µ2ρ 1ρ 2. In other words, the loss rate of group 1 depends on the number of 
contacts between groups 1 and 2, where a larger ρ 2 is likely to produce a larger number of shots against group 
1, and a larger ρ 1 is likely to absorb a larger number of these shots from group 2. 
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2 1

mod
~ ' .∆ap tρ  (2.5) 

 

For a large number of killers the law of large numbers allows us to state that 

 

2
2

2

~ ,ap
ρ
ρ
∆  (2.6) 

 

which gives 

 

2
1 2 2 1

2

~ ' ' .tρ ρ ρ ρ ρ
ρ
∆

∆ ⇔ � ∼    (2.7) 

 

A loss term of the kind '
2 1 2( ) ( )c t tρ ρ  thus appear, where c2 is a positive constant. 

 

The parameters di and ei do not have a straightforward population dynamic interpretation and 

we set di=0=ei which, when inserted into (2.2), gives 

 

( ) ( )'
1 1 1 1 1 1 2 2 2 2 2 2 2 1( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) .t t a b t c t t t a b t c tρ ρ ρ ρ ρ ρ ρ ρ= − − = − −� �  (2.8) 

 

The model of the density 1'ρ (t) of the killers is important to establish. It is well known that 

in a tissue an amount of so-called natural killer cells appears. Recent developments in cancer 

research suggest injecting engineered bacteria into a tissue with the objective of attacking 

malignant cells (Dang et al. 2001, Jain and Forbes 2001). The remainder of the article 

considers the simple model 1 1'( ) ( )kt a tρ ρ= , where ak is a constant. Inserting into (2.8) gives 

 

( ) ( )1 1 1 1 1 1 2 2 2 2 2 2 2 1( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ) ,t t a b t c t t t a b t c tρ ρ ρ ρ ρ ρ ρ ρ= − − = − −� �  (2.9) 

 

where c2 is redefined. (2.9) is mathematically equivalent to the equations presented by 

Volterra (1931) for two species competing for the same limited food supply. Although these 
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equations have been analyzed in the literature (Braun 1983:449-456), section 3 uses phase 

diagrams to analyze the equations in a manner that we believe is brief and sufficient to 

understand the interaction between benign and malignant cells. 

 

3 Interpretation of the model 

We define the following two lines labelled l1 and l2 in the phase diagram ρ 1 versus ρ 2, 

 

1 1 1 1 1 2 2 2 2 2 2 1: 0, : 0.l a b c l a b cρ ρ ρ ρ− − = − − =  (3.1) 

 

Inserting 1 2( ) ( ) 0t tρ ρ= =� �  into (3.1) gives the equilibrium solutions 

 

1 2 1 2 1 2 2 1 2 1

1 2 1 2 1 2 1 2 1 2

(0,0), ,0 , ,0 , , .a a a b c a a b c a
b b b b c c b b c c

     − −
     − −     

 (3.2) 

 

The equilibrium solutions are interesting since these represent steady state values for the 

densities of benign and malignant cells in the tissue. Figs. 1-4 show the lines l1 described by 

ρ 2=a1/c1-b1ρ 1/c1 and l2 described by ρ 2=a2/c2-c2ρ 1/b2 in the phase diagram ρ 1 versus ρ 2 

for these four topologically different cases. Fig. 1 assumes a1/b1>a2/c2 and a1/c1>a2/b2, where 

the phase diagram is divided into the three areas (a): 1( ) 0tρ <� , 2 ( ) 0tρ <� , (b): 1( ) 0tρ >� , 

2 ( ) 0tρ <� , (c): 1( ) 0tρ >� , 2 ( ) 0tρ >� . 
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2

2
b
a                                                 (a) 

             l2                                   1 0ρ <�  
        (c)           (b)                        2 0ρ <�  
       1 0ρ >�        1 0ρ >�  
        2 0ρ >�       2 0ρ <�  
                                                                                 1ρ  

                       
2

2
c
a                            

1

1
b
a                            

Fig. 1. Phase diagram when a1/b1>a2/c2 and a1/c1>a2/b2. 
 

Fig. 1 reveals the three equilibria (0,0), (a1/b1,0), and (0,a2/b2), where the first and third are 

unstable. Observe that any starting point (ρ 1,ρ 2) outside the equilibrium points causes 

movement toward (a1/b1,0). Assuming that the partial derivatives of ( )1 2( ), ( )if t tρ ρ  in (2.1) 

are continuous it possible to show that the phase lines do not cross each other except in the 

equilibrium points. This implies that phase lines from starting points outside the axes ρ 1=0 

and ρ 2=0 cannot touch any of the axes outside the equilibria (0,0), (a1/b1,0), and (0,a2/b2) 

since such a phase line would coincide with another phase line along one of the axes. 

 

The instability of the equilibria (0,0) and (0,a2/b2) means that any small perturbation from 

those equilibrium points causes movement toward (a1/b1,0). Hence all the malignant cells die 

(ρ 2=0) with subsequent healing of the tissue. Fig. 1 thus represents the preferable situation 

where the tissue gets healed for all initial values of the malignant cells.  

 

Fig. 2 assumes a1/b1>a2/b2 and a1/c1>a2/b2, where the phase diagram is divided into the four 

areas (a): 1( ) 0tρ <� , 2 ( ) 0tρ <� , (b): 1( ) 0tρ >� , 2 ( ) 0tρ <� , (c): 1( ) 0tρ >� , 2 ( ) 0tρ >� , (d): 

1( ) 0tρ <� , 2 ( ) 0tρ >� . 
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Fig. 2. Phase diagram when a1/b1>a2/c2 and a1/c1<a2/b2. 
 

Fig. 2 reveals the four equilibria (0,0), (a1/b1,0), (0,a2/b2) and 1 2 1 2 2 1 2 1

1 2 1 2 1 2 1 2

a b c a a b c a,
b b c c b b c c

 − −
 − − 

, 

where the first and fourth are unstable. Any starting point (ρ 1,ρ 2) outside the two equilibria 

(a1/b1,0) and (0,a2/b2) causes, dependent on the starting point, movement toward (a1/b1,0) or 

(0,a2/b2), as time approaches infinity. The stapled “indifference line” in Fig. 2 delimiting the 

two regions of attraction, defined as the line where the phase lines are indifferent between 

making a rightward turn toward the equilibrium (0,a2/b2) and a leftward turn toward the 

equilibrium (a1/b1,0), is approximately given by a straight line through the origin and the 

crossing point between the two lines l1 and l2. The functional form is 

 

( ) ).()( 2
2121

1212
2 t

acba
acbatf ρρ

−
−

=  (3.3) 

 

The cancer-free equilibrium (a1/b1,0) where the tissue is free from malignant cells (ρ 2=0) is 

the preferable equilibrium. The equilibrium (0,a2/b2) where the malignant cells eventually 

take over the entire tissue causing it to die (ρ 1=0), is not preferable. 

 

Fig. 3 assumes a1/b1<a2/b2 and a1/c1<a2/b2, where the phase diagram is divided into the three 

areas (a): 1( ) 0tρ <� , 2 ( ) 0tρ <� , (b): 1(t) 0ρ <� , 2 (t) 0ρ >� , (c): 1( ) 0tρ >� , 2 ( ) 0tρ >�  
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Fig. 3. Phase diagram when a1/b1<a2/c2 and a1/c1<a2/b2. 
 

Observing that the two equilibra (0,0), (a1/b1,0) are unstable, any starting point (ρ 1,ρ 2) 

outside the equilibrium (0,a2/b2) in Fig. 3 causes movement to the unbeneficial unique 

equilibrium (0,a2/b2) where the tissue dies of cancer since the density of begin cells 

approaches zero. 

 

Fig. 4 assumes a1/b1<a2/b2 and a1/c1>a2/b2, where the phase diagram is divided into the four 

areas (a): 1( ) 0tρ <� , 2 ( ) 0tρ <� , (b): 1(t) 0ρ <� , 2 (t) 0ρ >� , (c): 1( ) 0tρ >� , 2 ( ) 0tρ >� , (d): 

1(t) 0ρ >� , 2 (t) 0ρ <� . 
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Fig. 4. Phase diagram when a1/b1<a2/c2 and a1/c1>a2/b2. 
 

Observing that the three equilibria (0,0), (a1/b1,0), (0,a2/b2) are unstable. Hence any starting 

different from those equilibrium points causes movement to the unique equilibrium 

1 2 1 2 2 1 2 1

1 2 1 2 1 2 1 2

a b c a a b c a,
b b c c b b c c

 − −
 − − 

, where the tissue is alive in an equilibrated state with both benign 

and malignant cells as time approaches infinity. Comparing with Fig. 2, the manner in which 

the lines l1 and l2 cross causes a stable interior equilibrium in Fig. 4, and an unstable interior 

equilibrium in Fig. 2. 

 

Observe that decline of c2 toward zero does not necessarily mean that the tissue dies since the 

topological case in Fig. 4 may arise if a1/a2<c1/b2. Assuming a sufficiently low c2 such that 

a2/c2>a1/b1 makes only Figs. 3 and 4 possible. Surgery may drastically reduce the ratio a1/a2 

due to wounds, reduced healing capacity, etc. Such a reduction of a1/a2 may cause a switch 

from the partly beneficial case in Fig. 4 to the unbeneficial case in Fig. 3 where a1/a2>c1/b2 

and the tissue dies. 

 

4 Simulations of treatment 

This section focuses on which parameters ai, bi, ci, i=1,2 in (2.8) are crucial in attempts, 

through chemotherapy (chemical treatment), surgery, and X-ray treatment, to treat a tissue 

where the density of malignant cells tends to increase causing the density of benign cells to 
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decrease. In chemotherapy malignant cells are attempted attacked by the use of drugs. The 

drawback of this procedure is the difficulty of avoiding impact also on benign cells. Benign 

cells and malignant cells have many common features. The challenge in chemotherapy is to 

design drugs equipped with the targeted or selective ability of reducing the density of 

malignant cells without affecting the benign cells. 

 

The majority of cytostatica today attack the cells by reducing the mitosis rate, but some also 

affect the death rate by increasing the apoptosis of the cells (programmed cell death). It 

seems reasonable to describe chemotherapy mathematically by subtracting a term of the type 

f1ρ 1(t) and f2ρ 2(t), respectively, in the two equations in (2.2). Mathematically this simply 

amounts to redefining ai to ai’=ai-fi, i=1,2. Observe that regardless of the state of the tissue an 

increase of the ratio a1’/a2’= (a1-f1)/(a2-f2) is beneficial. The challenge in chemotherapy is 

thus to ensure f1>f2. Graphically this means moving the crossing point between the lines l1 

and l2 in Fig. 2 upwards changing the regions of attraction such that some of the phase lines 

that make a rightward turn toward the equilibrium (0,a2/b2) instead make a leftward turn 

toward the equilibrium (a1/b1,0). If the crossing point is moved sufficiently high up, a 

transition from the topological case in Fig. 2 to the topological case in Fig. 1 occurs. Observe 

that the density of malignant cells may decline also when a2 is positive given that, in 

accordance with (2.8), that 2 2 1 2 2( ) ( )< +a c t b tρ ρ . In vitro experiments where the malignant 

cells are separated from the benign cells may thus cause an increase in the density of 

malignant cells for this a2. This means that a categorical requirement that the density of 

malignant cells needs to decrease (a2 is negative) is not necessary to cure the tissue. The 

presence of the benign cells and the influence of these through the immune system on the 

malignant cells may facilitate curing the tissue despite a2 being positive. 

 

In surgery the area infected by malignant cells is attempted removed physically from the 

tissue. When successful this means reducing a2. The risk is that other factors may cause an 

increase in a2 that outweighs the reduction in a2 achieved by the surgical removal. One such 

factor may be the inadvertent or unavoidable introduction of wounds which may not heal 

properly. Another factor may be that surgery does not succeed in removing the entire affected 

area causing a bleeding area which may give extra nourishment to the malignant cells with 

concomitant increase of a2. This may cause a transition from the partly beneficial topological 

case in Fig. 4, or the “unstable” topological case in Fig. 2, to the unbeneficial topological 
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case in Fig. 3 where the tissue dies. The maximal density of the cells of a given type (benign 

or malignant) operating in isolation is given by the ratio ai/bi, which is the asymptote of the 

logistic equation 2)()()( tbtat iiiii ρρρ −=�  given by the first two terms on the right hand side 

in (2.8). We interpret the inverse of the maximal density ai/bi, i.e. bi/ai, as the minimum 

volume for a given cell. Defining ri as the radius of this cell, we express this minimum 

volume as 

 

.
3

4 3
i

i

i r
a
b π

=  (4.1) 

 

Lets say that a typical cell dimension is ri = 5 10^(-6) metres which gives bi/ai= 2 10^9/ml. 

We consider the topological case in Fig. 2 to be the most typical situation since almost every 

tissue eventually acquires a cancer-condition if the initial density ρ 2(t) of malignant cells is 

sufficiently large. Following the discussion in section 2 we set c1≈b1 for benign cells which 

causes a1/c1≈a1/b1 describing where l1 crosses the two axes in Fig. 2. From the assumption 

that the sizes of benign and malignant cells are approximately equal, it follows that 

a1/b1≈a2/b2, which causes l1 and l2 in Fig. 2 to be close to parallel. To the extent l1 and l2 are 

not parallel, they cross each other either at the upper left or the lower-right part of the first 

quadrant in Fig. 2. Given excessive proliferation of malignant cells and possible pessimistic 

prospects for the tissue, we believe a crossing point in the lower-right part in Fig. 2 is the 

most realistic assumption. As an example lets say that malignant cells have proliferation rates 

of a2=10/month, while typical values for benign cells could be a1 = 2/month. Figs. 5-7 

illustrate a typical situation where the tissue dies of cancer after 23 months. Observe the 

dramatic worsening of the disease after approximately 20 months. The solution starts in 

region (c) of the topological case in Fig. 2 and moves into region (d). ρ 2 (0)/ρ 1(0) is only 

0.01, which illustrates that a very small initial “jump” in ρ 2(t) is sufficient to initiate an 

unstable situation. 
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10 20 30 40
Time @month D5×108

1×109
1.5×109

2×109
Living benign cell density

 
Fig. 5: Benign cells, a1=4.4/month, a2=11/month, b1=2.2 10^(-9)/month/ml, b2=5.5 10^(-

9)/month/ml, c1=3.3 10^(-9)/month/ml, c2=5.50028 10^(-9)/month/ml, ρ 1(0)=1.98 10^9/ml, 

ρ 2(0)=1.9997 10^7/ml.  

10 20 30 40
Time@month D5×108

1×109
1.5×109
2×109

Living malignant cell density

 
Fig. 6: Malignant cells, a1=4.4/month, a2=11/month, b1=2.2 10^(-9)/month/ml, b2=5.5 10^(-

9)/month/ml, c1=3.3 10^(-9)/month/ml, c2=5.50028 10^(-9)/month/ml, ρ 1(0)=1.98 10^9/ml, 

ρ 2(0)=1.9997 10^7/ml.  

 

Assume that the tissue is treated with chemotherapy after 22.5 months. It is convenient to 

interpret such treatment mathematically as reducing the parameter a2. It follows from (2.8) 

that a necessary condition for reducing the density of malignant cells at a specific time is 

 

2 2 1 2 2( ) ( )< +a c t b tρ ρ =a2c. (4.2) 

 

Fig. 7 shows a2c/a2, i.e. the necessary relative reduction of a2 as a function of time required to 

initiate a reduction in the density of malignant cell. Note that according to the model the 

reduction has a maximum approximately at the time when the decease initiates its worsening.  
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10 20 30 40
Time @month D0.01

0.02

0.03
0.04
0.05

0.06
0.07

Critical a2

 
Fig. 7: Necessary relative reduction in the parameter a2 in order to reduce the density of 

malignant cells. 

 

Figs. 8-10 illustrate a situation where the parameter a2 is reduced with 50 percent after 22.5 

months. Observe the increasing density of benign cells.  

10 20 30 40
Time @month D

2.5×108

7.5×108
1×109

1.25×109
1.5×109

1.75×109
2×109

Living benign cell density

 
Fig. 8: Benign cells, a1=4.4/month, a2=11/month, b1=2.2 10^(-9)/month/ml, b2=5.5 10^(-

9)/month/ml, c1=3.3 10^(-9)/month/ml, c2=5.50028 10^(-9)/month/ml, ρ 1(0)=1.98 10^9/ml, 

ρ 2(0)=1.9997 10^7/ml, a2=5.5/month after 22.5 months. 
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Fig. 9: Malignant cells, a1=4.4/month, a2=11/month, b1=2.2 10^(-9)/month/ml, b2=5.5 10^(-

9)/month/ml, c1=3.3 10^(-9)/month/ml, c2=5.50028 10^(-9)/month/ml, ρ 1(0)=1.98 10^9/ml, 

ρ 2(0)=1.9997 10^7/ml, a2=5.5/month after 22.5 months 

0.2 0.4 0.6 0.8
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Fig. 10: Benign cells-Malignant cells, a1=4.4/month, a2=11/month, b1=2.2 10^(-9)/month/ml, 

b2=5.5 10^(-9)/month/ml, c1=3.3 10^(-9)/month/ml, c2=5.50028 10^(-9)/month/ml, 

ρ 1(0)=1.98 10^9/ml, ρ 2(0)=1.9997 10^7/ml, a2=5.5/month after 22.5 month. 

 

From the indifference line defined in (3.3) as the straight line through the origin and the cross 

point between the two lines l1 and l2, the restriction 2 2( ) ( ( ))<t f tρ ρ  follows to ensure a cure 

of the tissue. 

 

Fig. 11 shows 2 2[ ( ) / ( ( ))]Log t f tρ ρ as a function of time. The path crosses the horizontal axis 

downwards at time 25 months. Consequently, chemotherapy initiated after 22.5 months, 

causing a reduction in a2 with 50%, must proceed for at least 2.5 months in order to complete 

cure the tissue. 
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Fig. 11: 2 2[ ( ) / ( ( ))]Log t f tρ ρ  as a function of time. 

 

5 Conclusion 

The article provides a mathematical description based on the theory of differential equations 

for one of mankind’s greatest problem, cell proliferation of malignant cells (cancer). A model 

is developed enabling us to describe the relation between benign and malignant cells at an 

overall operational level. The model is studied in some detail when the density of killer 

agents is proportional to the density of benign cells in a given tissue. The theoretical results 

and considerations are in agreement with clinical experiences. We find that in a living tissue 

there can exist a static equilibrium between the two types of cells, and that cyclic oscillations 

are never possible. By changing the proliferation ratio between the two different types of 

cells, the malignant cells in a tissue can be completely removed. 
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