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ABSTRACT 

A system of differential equations for the control of tumor cells growth in a cycle 
nonspecific chemotherapy is presented. First-order drug kinetics and drug resistance 
are taken into account in a class of optimal control problems. The results show that 
the strategy corresponding to the maximum rate of drug injection is optimal for the 
Malthusian model of cell growth (which is a relatively good model for the initial 
phase of tumor growth). For more general models of cell growth, this strategy proved 
to be suboptimal under certain conditions. 

1. I N T R O D U C T I O N  

In several practical situations it is necessary to control the growth of 
certain populations by using some sort of  chemical treatment.  In cancer 
chemotherapy,  for example, one aims to control the number  of tumor 
cells in patients, and for reasons of health safety, some sort of  optimal 
use of  the involved drugs would be desirable. However,  among the 
several aspects that make difficult to obtain a satisfactory answer to this 
problem are the lack of detailed knowledge about the kill rates of the 
drugs, drug resistance, and cell growth models. 

The modeling of the origin and t reatment  of tumors containing drug 
resistant cells can be addressed by means of probabilistic models (see 
[2,3,10-12] where the parameters  possess biological interpretation and 
their values can be estimated. Therefore,  these models can have their 
predictions tested against clinical data, providing quantitative informa- 
tion for chemotherapeut ic  protocols. 
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From another modeling standpoint, in this work (as well as in [5, 
6]) deterministic models are utilized to describe the evolution and 
treatment of tumor containing drug resistance cells. Unlike their proba- 
bilistic counterparts some of their parameters may lack biological inter- 
pretation. However, one of the reasons for resorting to them is that they 
can be seen as an average behavior of the erratic nature of tumor cells 
growth. Furthermore they may serve as a guide to a qualitative compre- 
hension of the phenomena involved in chemotherapeutic protocols and 
growth of tumor cells and may show the relevant aspects captured by 
the model. 

Specifically, the model utilized in this analysis consists of a system of 
differential equations based on the work of Goldie and Coldman [8, p. 
1732] which describes the dynamics of tumor cells (resistant and drug 
sensitive). Adding to this system a perturbation term to account for the 
effect of the drug on the tumor cells and an objective function to be 
optimized, optimal control theory is applied in order to provide chemo- 
therapeutic protocols in qualitative terms. We point out that the first 
paper to utilize engineering optimal control theory for a chemothera- 
peutic problem involving a human tumor is due to Swan and Vincent 
[16], and in Swan [15] there is an extensive review of optimal control 
theory in cancer chemotherapy. 

The procedure of optimal control theory was taken up in [5], where 
an optimal chemotherapeutic treatment considering drug resistant cells 
was devised. There the control variable was cast as the drug con- 
Centration at the tumor site. The kill rate of the cells was assumed to be 
linearly proportional to the drug concentration and within this frame, 
the optimal strategy was proved to be the administration of the maxi- 
mum allowed concentration of the drug. 

On the other hand, the inclusion of the kill rate of saturation type 
imparted a much more intricate dynamics as compared to that found in 
[5]. As a consequence, drug concentrations other than its maximum 
value proved to be also optimal under certain conditions on the param- 
eters of the problem and the initial tumor levels (see [6]). 

In the analysis of the previous models of chemotherapeutic treat- 
ment it was assumed that drug injection rate and drug concentration at 
the tumor site were approximately equal. This assumption implies an 
instantaneous spreading of the drug and the absence of drug decay in 
the body. 

In practice, however, there is a relationship which describes the 
behavior of the drug concentration once it enters the body. Such a 
relationship may be expressed in terms of a proper pharmacokinetic 
equation for the case of continuous injection, treating the body as one 
compartment. 
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The objective of this work is to contribute to a qualitative under- 
standing of the interplay between the drug decay and drug resistance 
and the influence of this interplay in the determination of an optimal 
chemotherapeutic treatment. 

The equation to be used that relates the drug concentration at the 
plasma to the actual administered dosage of the drug will consist of 
a first-order pharmacokinetics dynamics. The drug resistance will be 
assumed to be acquired by spontaneous mutation, at a certain rate (like 
in [5, 6]; see also the next section for more details). 

In Section 2 we formulate the mathematical optimal chemotherapy 
problem we will work with. We stress that in this work the control 
variable will be the concentration of drug injection instead of the 
concentration at the tumor site. Some general preparatory results 
independent of the specific tumor growth rates used in the model are 
also presented in this section. They are used in Section 3 to prove that 
maximum allowed drug injection is the optimal treatment strategy in the 
case of Malthusian (exponential) model of cell growth (Theorem 3.1). In 
Section 4 we prove that this strategy is suboptimal (see Section 4 for 
details) in the case of more general models of cell growth. 

In Section 5 the results found in this work are compared with 
previous ones obtained in [5] and [6] concerning the effect of drug 
resistance, toxicity, saturation, and pharmacokinetics. 

To close this section we point out that throughout this work we did 
not include in the objective function the cumulative toxicity criterion 
(fd: pudt-used in [5,6]) due to the major difficulties that appear in the 
mathematical analysis of the problem. This subject is still under investi- 
gation and we state some of the related mathematical difficulties also in 
Section 5. 

2. A MATHEMATICAL MODEL WITH DRUG KINETICS 

In order to carry out the analysis of tumor growth submitted to 
chemotherapy including drug kinetics, some assumptions are made: 

(1) The tumor will be viewed as a cell population undergoing homo- 
geneous growth, that is, it does not depend on the cell position within 
the tumor. 

(2) The tumor will consist also of drug-resistant cells whose growth 
rate depends not only on the size of its own population, but on the size 
of the sensitive cells as well. This latter dependence is due to a 
randomly spontaneous mutation during mitosis toward drug resistance, 
which will occur according to a constant probability, In this way, no 
sensitive cell becomes drug resistant during its life time; only their 
daughter cells may acquire drug resistance by spontaneous mutation 
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during mitosis. A biological validation of this kind of drug resistance 
was performed by "in vitro" experiments with T-cell lymphoblastic cell 
line CCRF-CEM. A description of these experiments can be found in 
Vendite [18] (the importance of drug resistance in designing chemother- 
apeutic protocols is also emphasized in Skipper [14]). 

(3) The kill rate of the drug (number of cells killed/unit drug 
concentration) will be considered as a function of the size of the 
sensitive cells population. 

(4) The drug concentration at the tumor site is related to the 
injected drug concentration by means of a first-order kinetics. 

The following system is a model for the behavior of tumoral cells 
submitted to chemotherapy when the assumptions mentioned above are 
taken into account. 

dx 
d---{ = x f ( y )  + o~f(y) (y  - x)  

-~t = Yf (Y)  - c ( t ) g ( y  - x)  (2.1) 

dc 
d--[ = - y c  + u ( t )  

x(0) =x0, y(0) =Y0, c(0) = c  0. 

Here, t >i 0 represents the elapsed time; y ( t ) ~  R stands for the total 
number of tumor cells at time t, while x(t)  ~ R stands for the number 
of drug-resistant cells within the tumor; c(t) is the drug concentration 
at the tumor site; c o >/0 is the initial drug concentration at the tumor 
site. Clearly, any initial condition (x0, Y0) is such that 0 < x0 < Y0; f (Y)  
is the specific growth rate, which can depend on the total number of 
cells; 0 < a < 1 is the fraction per unit of time of the drug sensitive cells 
that mutates into drug resistant cells; 0 ~< u(t) <~ um is the injected drug 
concentration in the body (assumed to be limited, i.e., u m < +~); g 
gives the kill rate of the drug per unit of rate of drug concentration at 
the tumor site as function of the drug-sensitive cells; y > 0 is the decay 
rate of the drug in the body. 

As in [5,6] f and g are taken to be C 1-functions and we will be 
interested in solving the following free end-time optimal control prob- 
lem associated with (2.1): 

Find a time 0 ~< t~ < + ~ and a BV[O, t~ ]-function u* :[0,; t~ ] --* R 
(here BV[O, t~] indicates the class of bounded variation functions de- 
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fined in [0,t~ ]), 0 ~< u*(t)<<, u m almost everywhere in [0,t~], that will be 
the optimal drug concentration in the sense that 

= minimum{J~(u,tf) ,  u ~ BV[O,Q], t£ > 0; 0 ~< u( t )  ~< u m a.e.}, 

(2.2) 

where the function Jc is defined by 

Jc(U,tf )= y(tf  ). (2.3) 

This functional represents the number of tumor cells at the end of 
the treatment. 

As to the functions f and g that appear in (2.1), we will consider the 
following natural assumptions: 

f ,  g are cl-functions. 
Moreover, g (O)=O,g(s )>Oand  g ' ( s ) > O w h e n s > O  (2.4) 

and 

there exists Ym > 0 such that f (ym)  = 0 and f ( y )  > 0 for 0 ~< y < Ym 
(2.5) 

o r  

f ( y )  > 0 for y/> 0 and f , g  are globally Lipschitz. (2.6) 

In (2.4) the first two expressions indicate that the drug effect is 
strictly related to the existence of sensitive cells and the third one states 
that the drug effect increases as the level of sensitive cells increases. 

In (2.5) it is stated that the tumor exhibits a density dependent 
growth, where Ym is the maximum attainable level of tumor cells. 

In (2.6) it is assumed that there is no maximum attainable level of 
tumor cells and that the relative increment of kill rate per unit concen- 
tration is bounded. 

The behavior of system (2.1) without drug injection for all t(c(t) = O, 
Vt >~ 0) corresponds to the dynamics obtained in [8, p. 1732], describing 
the evolution of resistant cells in relation to the number of total 
tumoral cells. 



196 

Now we define an open set II in •2 as 
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(i) l ) = { ( x , y ) ~ 2 : O < x , O < y , x < y }  
if assumptions (2.4) and (2.6) hold. 

(ii) ~ = { ( x , y ) ~ R 2 : O < x , O < y < y m ,  X<y}  
if assumptions (2.4) and (2.5) hold. 

Before proceeding to the analysis of the optimal control problem, we 
enunciate a lemma that can be proved in exactly 1;he same way as in 
Lemma 2 in [5]. (It is enough to observe that the first two equations of 
(2.1) are the same as the ones in [5] with u(t) replaced by ¢(t), which is 
easily seen to be nonnegative). These lemmas relate the trajectories of 
system (2,1) with the open set iq. 

LEMMA 2.1 

Consider u( t ) ;, 0 a function of bounded variation. The corresponding 
solution ( x( t ), y( t ), c( t ) ) of (2.1) with initial conditions ( X o, Y o, co) satisfy- 
ing (xo,Yo)~l)  is such that its projectiott on the x,y-plane, that is, 
(x(t), y(t)), never touches the boundary of It in finite time. 

This lemma implies in particular that 0 < x(t)< y(t) for all finite 
time t. 

Now we proceed to the study of the optimal control problem formed 
by (2.1) and (2.2). First of all we introduce the Hamiltonian (Kirk [13]) 

H( x,y ,  A,, Ae,C,U ) = A,[xf(y) + a f ( y ) ( y  - x)] 

+ Az[yf(y ) - cg(y - x)] + 3.3( - 7c + u) (2.7) 

and the costate equations are: 

dAl'dt = - ( A l f ( y ) ( 1 -  a ) -  AeC(t ) Og.(yox- x) ) 

dA2at = - [ Al(xf'(y) + e t f ' ( y ) (y  - x) + ¢tf(y))  

+ Az(yf'(y ) + f ( y )  - c(t)Og(y-ay x) )] 

dA 3 
"dt -- A 2 g ( Y  - x )  + A3~, 
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with the respeetive final conditions: 
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Oy(tf) 
A l ( t ¢ )  = = O, 

Oy(tf)  
Az(tf) = Oy(tf) ( t f )  = 1, 

3y(tf) 
A3(tf) ac(tf) (tf)=O' 

According to the Pontryagin's minimum principle [13], the optimal 
control, u*(t), must minimize the Hamiltonian for all t~[O, ty], and 
observing that the Hamiltonian is linear in the control variable u, we 
conclude that the optimal strategy depends on the sign of the coeffi- 
cient of u (which is A 3) and is as follows (control law): 

l O if h 3 > 0 

u* = U m  if ha < 0 (2.8) 
undetermined if h 3 = O. 

In the last c a s e  ()k 3 = 0), we say that a situation of singular control 
occurs. 

Concerning this, we have the following result: 

PROPOSITION 2.1 

An optimal solution is such that the corresponding optimal control 
cannot be singular at any interval. 

Proof. Suppose by contradiction that the optimal control is singular 
in some subinterval of [0, t~ ]. Thus, in this subinterval )L 3 ~ 0 .  B y  virtue 
of the equation of dA3/d t ,  we conclude that A 2 ---0 in the same 
interval (since, according to Lemma 2.1 and the conditions on g, we 
have g ( y ( t ) -  x(t))  ~ 0 at any finite time t). As the Hamiltonian is null 
on an optimal trajectory (this is a free end-time optimal control prob- 
lem; see [13]), this implies that A 1 - 0  in the same interval. Since the 
costate equations are linear with respect to the costate variables, whose 
coefficients are bounded function of time on [0,t~ ], the fact that 
'~1 ~ }L2 ~ )~3 ~--" 0 for some interval implies that the same holds for all 
t ~ [0; t~ ]. But AE(t ~ ) = 1, and this is a contradiction, ii 

PROPOSITION 2.2 

The last control to be applied in an optimal strategy is um. That is 
u*(t) = u m for t ~[t~ - e, t~)  forsome e > O. 
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Proof. Since dA 3 /d t ( t~ )  = g ( y ( t ~ ) -  x(t~)) > 0 because A3(t ~) = 0, 
and A3(t ~) being continuous, we conclude that A3(t) < 0 in a neighbor- 
hood of t~. Thus, the optimal control rule (2.8) implies the stated result. 

The previous two propositions imply 

PROPOSITION 2.3 

An optimal treatment consists of  either continuous drug injection at the 
highest rate (u m) or alternate periods of  rest (u = O) and maximum drug 
injection. 

In view of Proposition 2.3 and the fact that the number of drug 
resistant cells is a strictly increasing function, another general result is 
drawn that concerns the performance of the two candidates for the 
optimal treatment. 

COROLLARY 2.3.1 

Let ym(t ) be the level of  tumor cells corresponding to the maximum drug 
injection for all t > 0 and x( t ) be the level of  drug resistant cells correspond- 
ing to the strategy of  alternated rest periods (u = O) and maximum drug 
injection (u = Urn) applied in an interval of  time [0, tf]. Also let t~ be such 
that (d /d t )ym( t  ~)  = O. I f  there exists -t > 0 such that x(-t) = y(t~),  then 
the final tumor level for the alternated strategy, y(tf  ) is such that y(t f  ) > 
Ym(t?). 

Proof. Let u ( t ) = u  m for all t ~ [ 0 , t ? ]  be a treatment where t ?  is 
determined by ( d / d t ) y ( t }  ~) = 0. Now, let u be a treatment with a finite 
number of switchings between 0 and um in the interval [0,tf] and 
u(t) =Um in the neighborhood of tf. Suppose that for a certain ~ ~ [0, tl], 
t 1 = min(tm,t ), one has x(- t )=y( t~)  Since x is a strictly increasing 

f _ 

function, x(ty) > x(t)  = y( t~)  and y ( t ) -  x(t)  > 0 for all finite t, then 
y(tf)  > x(tf)  > y(t?).  • 

That is to say, if the treatment u allows the drug resistant cells to go 
beyond the final tumor level of treatment u m, then the final tumor level 
of treatment u will be higher than that of um. Furthermore, this result 
indicates that therapies, with switchings between 0 and u,~ have a 
limited time of operation if a better performance than that of u m is ever 
to be achieved. The dependence of the performance on this time of 
operation shows up quite clearly in the analysis of a subsequent section 
(see Section 4). 

In the sequel we will set up the optimal treatment first for the 
Malthusian (exponential) model of cell growth, and then we analyze the 
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possibilities for the general model of cell growth, with linear drug kill 
rate in both cases. 

3. THE M A L T H U S I A N  CASE 

This model assumes that the specific growth rate of the cells is 
constant, that is, f ( . ) =  r > 0. Its importance is centered on the intro- 
duction of the concept of doubling time, and, although it does not have 
a strong physiological basis, it starts with a reasonable assumption [17] 
(this model is used for modeling cell growth in [7]). 

In this case, the equations reduce to the following form: 

dx 
d--[ = rx + a r ( y  - x )  

dy 
d--7= ry - Fc( t ) ( y  - x )  (3.1) 

dc 
d--7 = - v c  + u ( t )  

X( to) = Xo, y (  to) = Yo, C( to) = Co, 

where r > 0 is the specific growth rate of the cells, and g ( y -  x ) =  
(y  - x )F .  

Solving the third equation in terms of u(t)  yields 

c ( t )  : C(to)exp( - y ( t  - to)) + ftlexp( - y ( t  - s ) ) u ( s )  ds. 

From this expression we observe that, if Ul(t) >t u2(t) , then Cl(t) >I c2(t). 
Now, letting z = y - x, then 

z ( t )  = Z ( t o ) e x p ( ( 1 - a ) r ( t - t ° ) ) e x p ( - F f t c ( r ) d r )  " t o  

And, when q ( t )  >~ c2(t) for t ~ [to,t], this implies that 

z l ( t  ) <~ z2(t ) for t ~ [ to, t  ]. 

Let denote u l ( t )=  u m for all t, the strategy of maximum drug 
injection and u2(t) be any other strategy such that u2(t) is either um or 
zero in alternate subintervals of time. 



200 M. COSTA ET AL. 

Using the same subscripts for the state variables corresponding to 
the mentioned strategies, the above observations imply that 

and 

dx  1 
at = rxl(t)  + °trzl(t) ~< rxl(t) + arz2 

Xl(t0) = x 0 

dx  2 
dt = rX2 + ° lrz2  

x 2 ( t o )  = X 0. 

(3.2) 

(3.3) 

Comparing (3.2) with (3,3) and resorting to the results of differential 
inequalities (see Hale [9, p. 30], we have 

x l ( t  ) ~<x2(t ) Vt ~ [ t 0 , t  ]. 

Since yl(t)  = Xl(t)+ Zx(t) ~< x2(t)+ z2(t) = y2(t), then yl(t) < y2(t) for 
all t ~ [t 0, t] (the strict inequalities also hold true for this analysis). 

Therefore, in the exponential cell growth with linear drug kill rate, 
maximum drug injection will provide lower levels of tumor size at the 
end of the treatment than its applications with alternated rest periods. 

We have thus proved the following: 

THEOREM 3.1 

In the Malthusian case, the optimal strategy for the optimal control 
problem given by (2.2), (2.3), (3.1) is the application of  the maximum 
allowed drug concentration. 

4. A M O R E  G E N E R A L  CASE 

In this section we assume again a linear drug kill rate, but we con- 
sider a more general growth rate. Specifically, we assume: 

The specific growth rate f is a nonincreasing C a function (4.1) 
satisfying (2.5) or (2.6).  

With these assumptions, the model equations reduce to 

dr 
d-7 = x f ( y )  + - x )  

ay  
d---{ = i f ( Y )  - Fc( t ) ( y  - x)  

dc 
d--{ = - y c  + u ( t )  

x(O) = x o, y(O) = Yo, c(O) = c o. 

(4.2) 
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By the same token as in the previous section, inspired on the result 
of Proposition 2.I, we will compare the performance of the system 
under the action of two types of strategies: maximum drug injection 
throughout the treatment and alternating periods of either maximum 
drug injection or rest. 

The main result in this section can be summarized as follows: due to 
the more difficult nonlinearities, we are not able to prove that the 
application of maximum injection throughout the treatment is optimal. 
On the other hand, we demonstrate that it is surely effective under 
certain conditions (see Theorem 4.1). In better words, under these 
conditions we prove that the maximum injection strategy is suboptimal 
in the sense that it is the best in the class of strategies with the same 
duration and short rest periods. 

This result hinges upon a result of integro-differential inequalities 
given by the following lemma. 

LEMMA 4.1 

Let 11 be a connected open set in ~3, W : ~ " * ~  and k :~  ~ R  be 
continuous functions such that there is a unique solution in the interval 
[t 0, T] for the initial value problem of the integro-differential equation 

dU t 
- ~ ( t )  = w(t, u(t) ,  ftok(U(s) ds), 

U( to) =U0. 

Let V( t ) be a continuous function satisfying the corresponding integro- 
differential inequality in the interval [to, T] 

D~V( t ) <~ w( t ,V(  t) ,  ftlk( V( s) ) ds ) , 

V(to) = Vo (4.3) 

(here D r denotes the right-hand derivative). 

Suppose that V o <~ Uo, that k is a nonincreasing function, and that 
w( t,W, ~ ) is a nonincreasing function in the variable ~. Then V( t ) <~ U( t ) 
for all t ~ [to, T]. 

For n ~ N -{0}, we consider the modified integro-differential Proof 
equation 

( ) dt ( t ) = w  t,Vn(t), ' ~))ds 

V~( to) = Uo. 

1 + -  
n 
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In  a s tandard  way it can be  p roved  that,  for  n large enough,  U~(t) is 
def ined on [ to ,T]  and that  U~ converges  to U uniformly on [to,T].  

Le t  us prove  that  V(t) < U~(t) for  all t ~ [t o, T]. Suppose  by contra-  
diction that  there  are  tl, t 2 ~ [t o, T]  such that  V(t) ~ U~(t) for  t ~ [t o, t 1 ] 
and V ( t ) >  U~(t) for  t ~ (t l ,  t2). 

Then,  

( DrV(tl)>/__d_i_(tl)=W tl,Un(tl ) tl ! 

=w tl,V t 1 , k s ds +--. n 

But, since V(s) < Un(s) for  s ~ [t0,tl],  we have k(V(s)) >1 k(Un(s)) for  
s ~ [t0,tl].  Thus,  

f,i'k( V( ~) ) d~ >i f,i'k(U.( s) ) ds, 

and there fore  

W(tl (t , ) 
Hence ,  

( )1 
DrV( tl) >/w t l ,V(  tl) ,  lk( V( s) ) ds "l- -'~ 

> w( tl,V( tl), ftilk( V( s) ) ds), 

in contradic t ion with (4.3), and we conclude that  V(t)<<. Un(t) for  all 
t ~ [ t 0 , T ] .  By taking the limit as n goes to infinity, we finally have 
V(t) < U(t) for  all t ~ [t 0, T]. • 

T o  apply the  above  l e m m a  in our  case, we observe  tha t  if we call 
z(t) = y( t ) -x( t )  ( the popula t ion  of  drug sensitive cells) and  subtract  
the first equa t ion  f rom the second one  in (4.2), we are  left with 

dz 
~ -  = [ ( 1 -  o ~ ) f ( y ( t ) )  - Fc(t)]z. 
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Therefore, 
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X,to,,ex l <c,s,+,[,l 
By using this expression back into the second equation in (4.2), we 

have 

~t  ( t )  = y ( t ) f ( y ( t ) )  

- F e x p [ ( 1 - a ) f t : f ( y ( s ) ) d s  ] 

(4.4) 

which is an integro-differential equation similar to the one in the above 
lemma. 

Since we want to compare the result of the strategy of maximum 
injection throughout treatment with the result of the strategy with rest 
periods, we start with a lemma that considers the behavior of the 
expression between curly brackets in (4.4) in a simple case. 

LEMMA 4.2 

Let  t o < T, 0 < A t  < T - to, and cm(t) and c(t)  be solutions on the 
interval [to, T] of  the equations 

dc m 
dt = - Y C m  + Um(t) '  

dc 
d---{ = - y c  + u( t ) ,  

m 

respectively, with initial conditions Cm( t o) = C( to) =Co > O. Here, urn(t)= 
u m > 0 for all t ~ [t0,T] and u( t )  = 0 for t ~ [t0,t 0 + At), u(t)  = u m for 
t ~ [t o + At, T]. 

Then, i f  F < y 2 / ( ~ 7  + um[expy T _ 1]) and At  is small enough, we 
have for all t ~ [to,T] 
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Proof. Since c(t) >. O, t ° satisfy the above inequality it is enough to 
have 

inf c(t) >~expF (Cm(S)-c(s))ds. 
to<~t<T 

By solving the equations for Cm(t) and c(t) we obtain 

Um c,.(t) = ~0 exp[- ~,(t-/0)] + -~--{1-exp[- ,/(t-to)]} 

and 

= c-o exp [ -  3 , ( t -  to)] + ~ - { 1 - e x p [ -  ~ / ( t - /0 ) ]  exp 3,At}. c( t)  

Thus, 

cm(t) ( C--o - u m / y ) + ( U m / 3 J ) e x p y ( t - t o )  
h ( t ) =  c(t) (-~ooo-(Um/.y)expyAt)+(Um/T)expy(t-to) 

and it is easy to verify that h'(t) < 0. Therefore, 

inf Cm(t) (~° + U m / Y ) + ( U m / Y ) e x p y ( T - t ° )  
. 

to<.t~r c(t) ( -~o- (Um/Y)expyAt )+(Um/Y)expy (T- to )  

On the other hand, it is also easy to see that 

exp f [Cm(S)-C(s)]ds ~ exp-~[exp(, /At)- l] ;  

thus, it is enough to require that 

(-~o - u m / Y )  + (Urn/Y) exp y( T - to) 
( )-~0 - ( u r n / 3 ' )  exp yAt)  + (urn/Y) exp ~,(r - to) 

F.. 
i> exp ~ [exp(yAt) -- 1]. (4.5) 

For this, we expand both sides of the above inequality in powers of At 
to obtain 

1 +  - -  U m Y  . Fu 
CoY+Um[expy(T to) 1] A t + 0 ( A t 2 ) / > l +  - -  - -  " y  

(4.6) 

Hence, if UmT/(C~/ + Um[eXpy(T -- to)= 1]) > Fu m/T, which is true by 
hypothesis, and At is small enough, we have (4.6) (and therefore (4.5)) 
satisfied, iii 

Now, we can prove the following 
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THEOREM 4.1 

Let us assume (4.1) and call Xm(t),Ym(t),Cm(t) the solution of (4.2) 
corresponding to maximum drug injection throughout the treatment, u( t ) = 
u m for all time. Let T >~ 0 be the time at which Ym(t) reaches its minimum. 
Let us call x ( t ) , y ( t ) , c ( t )  be any solution of (4.2) corresponding to a 
treatment with a finite number of alternating periods of either maximum 
drug injection (u(t) = u m) or rest (u(t)  = O) in which the rest periods have 
a duration less than or equal to a fixed number At. 

Then, if  F < "yZ/(c0y + UmexpyT) and At is small enough, ym(t)<~ 
y(t)  for all t ~ [O,T]. 

Proof. Consider initially a u(t) such that it is u m in a neighborhood 
of T, that  is, there are 0 < t (1) < T (1) < T, (z (1) - t (1) ~ At) such that  
u(t) = 0 for t ~ [t(1),Z (1)) and u(t)  = u m for t ~ [T(1),T]. 

Now, we consider the solution x(1)(t),y(i)(t), c(~)(t) of (4.2) for u(1)(t) 
= u(t) for t ~ [0,t °)) and u( i ) ( t )= u m for t ~ [t(l),T], with initial condi- 
tions x(t0), y(to), C(to). 

We observe that  x(i)(t), y(a)(t) and c°)(t)  coincide respectively with 
x(t),  y( t )  and c(t) in the interval [0,t(1)]. Also, f rom 

dc 
d-7 = - yc + u ( t )  <~ - yc + Urn, 

we conclude that  0 ~< c(t o) ~ c0exp( -  y t  0) + u m/y[1  - exp - y t  0] ~< 
c o + u m / y .  Therefore,  F < y2/(CoY + U,neX p y T )  ~< y2/(C(to)y + 
Um[exp(yT)-1]), and if At is small enough, we can apply Lemma 4.2 
on the interval [ t° ) ,T]  to conclude that  c(1)(t)exp[ - Fftfi~c°)(s)ds] >>. 
c(t)exp[ - Fftfi~c(s) ds] on [t (1), T]. 

Therefore,  the equation corresponding to (4.4) for y°)( t )  in the 
interval [t °), T] satisfies 

dy (1) 
dt - Y°)( t ) f ( Y ° ) (  t ) ) 

yO) ( t ) f ( yO) ( t ) )  

- F  exp[(1 - a )  f t : f  ( y(1)(s) )ds ][ y(t(1)) - x ( t  0)) ] 
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On the other hand, the equation corresponding to (4.4) for y(t) in 
the interval [t (1), T] is 

dy - F e x p [ ( 1  a . t f  ds][y(t(1)) - x(tO)) ] d---{ =y( t ) f (y ( t ) )  - ) Jto, (y(s)) 

Now, by calling 

w(t,y, ~) = yf(y) - F exp[(1 - ce)s c ] [ y ( t  (1)) - x( t° ) ) ]  

×{c(t)exp[-Fft i ,  c(s)ds]), 

we have 

-~t(t)=w(t,y(t) , f t( t l f(Y(s))ds ), 

dY(1)(t)<~w(t'y(1)(t)'ftilf 

and y(t  (1)) = y°)(t°)). 
Now, we have exactly the conditions in Lemma 4.1, and we can 

conclude that y°)(t)  ~< y(t)  for t ~ [0,T]. 
If t (1) = 0 the stated result is true; otherwise we can repeat the above 

procedure to obtain a finite sequence 0 = t (k) < t (k- 1) < ... < t(1) < T 
with corresponding functions y(k)(t) ~< y(k- 1)(t ) ~< ... y(1) ~< y(t) for all 
t ~[0,T]  and y(k)(t)being the solution of (4.2)with u(t)= u m for all 
t ~ [0,T], that is, y(k)(t)= ym(t), and we have proved that ym(t)< y(t) 
for all t ~ [0, T]. 

Now, consider the case where u(t) is zero in a neighborhood of T. 
We take 7 = T - E, with e > 0 small enough in order that u ( t )  = 0 on 
It, T]. Now consider ~(t) defined by ~(t)= u(t) for t ~[0,t) ,  ~(t)= u,, 
for t ~[7,T]. " 

From the third equation in (4.2) it is easy to obtain that in the 
interval [t,T] the concentrations corresponding to ~(t) and u(t) are 
respectively 

~( t )  = c ( t ) e x p ( -  y ( t  - 7)) + um [1 - e x p -  y ( t  - 7)] T 
c(t) = c 0 ) e x p -  ~ ( t  - 7 ) .  
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Thus, 

~( t )  um Um 
= 1 + ------7~ [exp y ( t -  t ) -  1] = 1 + -7-:Z-~ ( t  - t) C( t---ff y c [ t )  - 

+ O ( t  - ~)2. 

Also, 
F,~ 

- -  Fum 
exp F f t[~(s) - c( S)] ds =exp --~- (t  -- ~)exp - - - ~  [1 -- exp-- y ( t  ~)] 

= l + O ( t - ~ )  2. 

Since for t e[~,T],  t - ~ = O(e), by choosing e small enough we can 
make ~ ( t ) / c ( t ) > ~ e x p F f f [ ~ ( s ) - c ( s ) ] d s  for t e[~,T], that is, in this 
interval 

?( t ) e x p -  F f_ttc( s) ds >1 c( t)exp - F f tc(s) ds. 

Therefore, we can proceed as in the first part of the proof to 
conclude that the solution of (4.2) corresponding to fi(t) satisfies 
y(t) ,< y( t )  for all t ~ [0, T]. Since ~(t) is equal to u m in the neighbor- 
hood of T, from the first part we have ym(t) <~ y(t), for all t ~ [0, T] and 
therefore ym(t) <<. y ( t )  in the same interval. • 

5. DISCUSSION 

In this work we attempted to derive an optimal chemotherapeutic 
treatment where the kinetics of the drug is taken into account. In most 
of the models it is generally assumed that there is an instantaneous 
mixing of the drug in the plasma and that the drug is delivered to the 
tumor site with no delay. 

Adding a pharmacokinetic equation, the relation between drug con- 
centration at the tumor site and delivered drug concentration was 
settled. The candidates for the optimal treatment were found to be 
cyclic (on/off)  irrespective of the growth functions and kill rates. 
Abulesz and Lyberatos [1] arrived at a similar result with the same 
pharmacokinetic equation, though, in the simpler case of an uncoupled 
system of equations for tumor and normal cells (without drug resistant 
cells) and a different performance criterion. 

When the specific growth rate is assumed to be constant (e.g., 
density-independent) and the kill rate linearly proportional to the 
sensitive cells, maximum allowable drug injection is the optimal treat- 
ment, that is, the tumor cells attain its lowest level at the end of the 
treatment. In this case rest periods are not effective and drug decay 
does not seem to play an important role. 
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Fo r  density-dependent growth rates, we only proved that the maxi- 
mum allowable injection is suboptimal in the sense that it is the best in 
the class of strategies with the same duration and short rest periods 
(Theorem 4.1). On the other hand, the statement of Theorem 4.1 leads 
to the conjecture that treatment with rest periods might yield better 
results if either the rest periods were long enough or the condition in 
that theorem is not satisfied. Thus, the results found in this work with 
respect to rest periods seem to be at variance with those obtained in [5] 
and [6], where maximum allowable drug concentration proved to be 
optimal (rest periods were not part of any optimal strategy). A very 
likely cause for this difference may be the fact that instantaneous drug 
mixing was assumed in those works. This-suggests that the inclusion of 
drug kinetics and density-dependent specific growth rates in chemother- 
apeutic models may entail optimal treatments containing rest periods 
under certain conditions, which is in accordance with clinical evidence. 
The study with the inclusion of the cumulative toxicity criterion (fd~pu dt)  
is still under way, but up to now we have been unable to complete the 
mathematical analysis. This is due, in part, to the fact that the addi- 
tional term pu  appears in the Hamiltonian ((2.7)) and the switching 
function in (2.8) changes to A 3 + p. In turn, these factors may engender 
a situation of singular control dependent on the penalization term p. 
Consequently, Propositions 2.1 and 2.3 no longer hold. Moreover, it is 
not clear yet how this situation varies (if ever) in qualitative terms 
according to the parameter p. 

Likewise the inclusion of a noncumulative toxicity criterion such a 
minimum level of normal cells (see [4]) would create similar difficulties 
due to the increased order of the differential equations system ((2.1) 
would become a fourth-order system as a result of the additional 
dynamical equation for the normal cells) and the number of parameters, 
let alone the inequality constraint on the normal cells. It is very unlikely 
to draw clear-cut qualitative results from these settings, that is to say, to 
determine how the chemotherapeutic protocols may vary qualitatively 
according to the parameters, the initial conditions of the variables and 
the values taken by the variables as time elapses. 

We take the view that all the issues raised in this section await 
further research and it seems to us that some numerical investigation 
should be taken up if the search for qualitative results proves to be 
mathematically intractable. 
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