Name:____

Any 4 digit PIN:_____

Score:____

1(25pts) Consider the linear programming problem

Minimize $z = x_1 + 2x_2$ subject to $x_1 + x_2 \ge 2$ $x_1 + 3x_2 \ge 4$ $x_1 \ge 0, x_2 \ge 0.$

- (a) Sketch the feasible region and use the graphical method to solve the problem.
- (b) Formulate the problem as an augmented (equality) linear programming problem.
- (c) Use the Big-M method to write down *only* the initial tableau for the simplex method, and explain why having surplus variables is not sufficient in general and why you need to introduce artificial variables.
- (d) For M828 Student Only: Find *only* the initial feasible echelon form of the augmented Big-M problem and its corresponding feasible solution and value. Do NOT find any subsequent echelon form or solution.

2(25pts) The augmented matrix form for a LP problem: max. $z = c^T x$ subject to $Ax \le b, x \ge 0$ is given as follows:

		z	x_1	x_2	x_3	x_4	rhs
basic variable	z	1	-4	-3	0	0	0
	x_3	0	2	1	1	0	10
	x_4	0	2	3	0	1	18

- (a) Determine the vectors c, b and the matrix A.
- (b) Find the optimal solution of the problem by using the tableau simplex method only.
- (c) For M828 Student Only: Write the dual LP problem and its solution obtained from (b) as the shadow price of the primal LP problem.
- 3(25pts) Consider a staged bipartite graph as shown with the assumption that each edge weight represents some type of cost.
 - (a) Use the graphical dynamical programming method to find the optimal path or paths from state ${\bf A}$ to state ${\bf I}$
 - (b) The backward iterative method to find the optimal path or paths from state $\bf A$ to state $\bf I$ looks like below for the first two iterations. Complete the remaining iterations and find the optimal solution.

S_4	$f_4^*(S_4)$	S_5^*
G	2	I
\mathbf{H}	1	I

	$f_3(S_3, S_4) = C_{S_3S_4} + f_4^*(S_4)$			
	= Cs	$g_3 g_4 + f_4^*(S_4)$		
$S_3 \backslash S_4$	G	Н	$f_3^*(S_3)$	S_4^*
D	7	5	5	Н
\mathbf{E}	6	4	4	Н
F	4	3	3	Н

4(25pts) Consider a game having the following payoff table for Player 1:

		Player 2		
Stra	\mathbf{tegy}	1	2	
	1	-1	5	
Player 1	2	7	1	
	3	9	-3	

- (a) Let $G(y_1) = \max_{\{x_i \ge 0, \sum x_i = 1\}} E(x, y)$ with E being the expected pay-off to Player 1, $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2)$ the mixed strategies for Player 1 and Player 2 respectively. Sketch the graph of $E = G(y_1)$.
- (b) Use the graphical method to find the game value $v = \min_{\{y_j \ge 0, \sum y_j = 1\}} \max_{\{x_i \ge 0, \sum x_i = 1\}} E(x, y)$ and the optimal strategy y^* for Player 2.
- (c) Find the optimal strategy x^* for Player 1.
- (d) Set up one linear programming problem for the game problem, and indicate how the optimal solution can be found from solving your LP problem. **Do not solve the linear programming problem.**