Name:______ Score:_____

- 1(15pts) (i) State the Completeness Axiom
 - (ii) State the definitions of the following
 - (a) $\sup S$.
 - (b) $\limsup s_n$.
 - (c) A sequence (s_n) is Cauchy.
 - (d) A series $\sum a_n$ converges.
- **2(15pts)** Prove the limit theorem of product: if $\lim s_n = s \in \mathbb{R}$ and $\lim t_n = t \in \mathbb{R}$, then $\lim s_n t_n = \lim s_n \lim t_n$. (You can use the result that convergent sequences are bounded.)
- **3(15pts)** Prove that if (s_n) is a nondecreasing sequence then $\lim s_n$ exists and find the limit. (Warning: Don't use the result to prove itself.)
- **4(15pts)** Assume $\limsup s_n \in \mathbb{R}$. Prove that there is a subsequence (s_{n_k}) such that $\lim_{k\to\infty} s_{n_k} = \limsup s_n$. (Warning: Don't use the result to prove itself.)
- **5(15pts)** (a) Use the definition to show $\lim_{n \to \infty} \frac{2n^2 + n}{n^2 1} = 2$.
 - (b) Determine whether or not $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ converges. State the test used and demonstrate how it is used.
 - (c) Determine whether or not $\sum_{n=0}^{\infty} \frac{a^n}{n!}$ converges. State the test used and demonstrate how it is used.
- **6(15pts)** Suppose $|a_n| \leq b_n$ for all $n \in \mathbb{N}$ and $\sum b_n < \infty$ converges. Prove $\sum a_n$ converges by the Cauchy criterion.
- **7(15pts)** Prove that if (s_n) is a Cauchy sequence, then $\limsup s_n = \liminf s_n$. (Warning: Don't use the result to prove itself. In particular, you are not allowed to use the result that (s_n) Cauchy implies $\lim s_n \in \mathbb{R}$ exists.)