1(8pts) (a) State the Completeness Axiom.
(b) Use the Completeness Axiom only to prove that every bounded sequence \(\{s_n\} \) has a converging subsequence.

2(10pts) Prove that every Cauchy sequence converges. (Caution: Do not use the result to prove itself.)

3(8pts) Let \(f_n(x) = \frac{x^n}{1 + x^n} \) and \(g_n(x) = \frac{x^n}{1 + x^n \ln n} \).
(a) Does \(f_n \) uniformly converge on \(x \in [0, 1] \)? Justify your answer.
(b) Does \(g_n \) uniformly converge on \(x \in [0, 1] \)? Justify your answer.

4(8pts) Prove that every continuous function \(f \) on a bounded closed interval \([a; b]\) obtains its maximum at a point in \([a, b]\).

5(8pts) Show that if \(\sum |a_k| < \infty \), then the radius of convergence for \(\sum a_k x^k \) must not be smaller than 1.

6(8pts) (a) Complete the statement of Weierstrass’s Approximation Theorem: For every function \(f \) on a bounded closed interval \([a, b]\), there is a sequence of ______ that ______ to \(f \) on ______.
(b) State the definition of derivative for a function \(f \) at a point \(a \).
(c) State the Mean Value Theorem.

7(8pts) Prove the Chain Rule: If \(f \) is differentiable at \(a \) and \(g \) is differentiable at \(f(a) \), then the composite function \(g \circ f \) is differentiable at \(a \) and \((g \circ f)'(a) = g'(f(a))f'(a) \).

8(8pts) Prove that if \(x_0 \) is a local extremum of a function \(f \) over an open interval containing \(x_0 \) and \(f \) is differentiable at \(x_0 \), then \(f'(x_0) = 0 \).

9(8pts) (a) Show that if \(f'(x) < 0 \) for all \(x \in (a, b) \), then \(f \) is strictly decreasing.
(b) Show that \(x < \tan x \) for all \(x \in (0, \pi/2) \).

10(8pts) Let \(f \) be defined on \(\mathbb{R} \) and suppose there is an \(\epsilon > 0 \) such that
\[
|f(x) - f(y)| \leq |x - y|^{1+\epsilon}.
\]
Prove that \(f \) is a constant function.

11(8pts) Let \(f(x) = \ln(1 + x), |x| < 1 \).
(a) Show that \(f^{(n)}(x) = (-1)^{n+1}(n-1)!(1 + x)^{-n} \).
(b) Use Taylor’s Theorem (see Problem 12 below) only to show
\[
\ln(1 + x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \quad |x| < 1.
\]

12(10pts) Do (a) or (b) but not both.
(a) State and PROVE Rolle’s Theorem.
(b) Prove Taylor’s Theorem: If \(f^{(n)} \) exists on \((a, b)\) with \(a < 0 < b \) for some \(n \geq 1 \), then for each \(x \in (a, b) \) there is some \(y \) between 0 and \(x \) such that
\[
R_n(x) = \frac{f^{(n)}(y)}{n!} x^n
\]
where \(R_n(x) = f(x) - \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k \).

The End