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Note: The homework you turn in must contain each
problem statement in its entirety and followed by its
solution, as demonstrated in the first problem below.
Others below are sketches, outlines, or hints for solu-
tions.

[#1.3] Prove 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2

for all natural numbers n.

Proof: Notice first that 1 + 2 + · · ·+ n = n(n+1)
2 . So

we only need to show 13 + 23 + · · · + n3 = n2(n+1)2

4 .

By induction, we have 13 = 12(1+1)2

4 for n = 1. So
the identity holds for n = 1. Assume it holds for n.
Now consider the case for n + 1. By the induction
assumption, we have 13 + 23 + · · ·+ n3 + (n+ 1)3 =
n2(n+1)2

4 + (n + 1)3 = (n + 1)2[n
2

4 + (n + 1)] = (n +

1)2 n
2+4n+4
4 = (n+1)2(n+2)2

4 , which is the case for n+
1. This completes the proof. ¤

[#1.4 (a) Let Sn = 1+ 3+ 5 + · · ·+ (2n− 1). Then
S1 = 1, S2 = 4, S3 = 9, suggesting Sn = n2. (b)
Assume Sn = n2. Then S(n+1) = Sn+2(n+1)− 1 =
n2 + 2n + 1 by the assumption and simplification,
which equals (n + 1)2 by complete squaring. Hence,
by induction we have shown that Sn = n2 for all
n ∈ N.

[#1.6 *] Modelled after Example 2 page 3.

[#1.12*] (a) Notice first that for all n ∈ N,
(

n
0

)

= n!
0!(n−0)! = 1,

(

n
n

)

= n!
n!(n−n)! = 1,

n! = n(n− 1) · · · 2 · 1 = n(n− 1)! = n(n− 1)(n− 2)!,
(

n
1

)

= n!
1!(n−1)! = n,

(

n
2

)

= n!
2!(n−2)! =

n(n−1)
2 .

With those identities, you can check the cases for
n = 1, 2, 3 directly. Also, notice that there are
n + 1 terms in the binomial expansion (a + b)n. (b)
(

n
k

)

+

(

n
k − 1

)

= n!
k!(n−k)! +

n!
(k−1)!(n−(k−1))! Be-

cause k! = k(k − 1)!, (n − (k − 1))! = (n + 1 − k)! =
(n + 1 − k)(n − k)!, the common denominator is
k(k − 1)!(n + 1 − k)(n − k)! = k!(n + 1 − k)!.

Simplify the addition then as follows:

(

n
k

)

+
(

n
k − 1

)

= n!(n+1−k)+n!k
k!(n+1−k)! = n![(n+1−k)+k]

k!(n+1−k)! =

n!(n+1)
k!(n+1−k)! = (n+1)!

k!(n+1−k)! =

(

n+ 1
k

)

. (c) Use in-

duction. More precisely, the expansion for n = 1
trivially. Assume the expansion for n. Then consider
the case for n + 1: (a + b)n+1 = (a + b)n(a + b) =
[(

n
0

)

an +

(

n
1

)

an−1b+ · · ·
(

n
n

)

bn
]

(a + b),

by the assumption. Expand further, collect like terms
an+1, anb, . . . , akbn−k, bn+1. You will find with ex-
ceptions for the 1st and last terms, the coefficient for

akb(n−k) is

(

n
k

)

+

(

n
k − 1

)

=

(

n+ 1
k

)

by (b)

for k = 1, 2, . . . , n. For an+1, bn+1, their coefficients

remain to be

(

n
0

)

= n!
0!(n−0)! =

(

n+ 1
0

)

=

1,

(

n
n

)

= n!
0!(n−0)! =

(

n+ 1
n+ 1

)

= 1.

[#2.2, 2.4, 2.5] They are all similar. Follow Exam-
ples 2–6 of §2.
[#3.3]

(−a)(−b) = (−a)(−b) + 0 (by A3)

= (−a)(−b) + (ab+ (−ab)) (A4)

= [(−a)(−b) + (−ab)] + ab (A2, A1)

= [(−a)(−b) + (−a)b)] + ab (Thm 3.1(iii))

= (−a)[(−b) + b)] + ab (DL)

= (−a)0 + ab = ab (A4, A3)

[#3.5] (a) First it is obvious that −|b| ≤ b ≤ |b|
because either |b| = b or |b| = −b which implies for
the former case that |b| = b ≥ 0 ≥ −|b| and that
−|b| = b ≤ 0 ≤ |b| for the latter case. Therefore,
together with |b| ≤ a it implies −a ≤ −|b| ≤ b ≤ |b| ≤
a as required. Conversely, if −a ≤ b ≤ a, then we
must have |b| = b ≤ a if b ≥ 0 using the right part of
the inequality b ≤ a, or |b| = −b ≤ a if b ≤ 0 using the
left part of the inequality −a ≤ b⇒ −b ≤ a. (b) By
(a) we only need to show −|a−b| ≤ |a|− |b| ≤ |a−b|.
For the right part, we have |a| = |a−b+b| ≤ |a−b|+|b|
by the triangle inequality. Hence, |a| − |b| ≤ |a − b|.
This is true for all a, b. Exchanging a, b, we have
|b| − |a| ≤ |b− a| = | − (b− a)| = |a− b| which is the
same as −|a − b| ≤ |a| − |b|, showing the left part of
the inequality.
[#3.6] (a) |a+ b+ c| = |a+ (b+ c)| ≤ |a|+ |b+ c| ≤
|a|+ |b|+ |c|, using the triangle inequality twice in a
roll. (b) Follow the hint.
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[#3.7*] (a) Same as 3.5(a) changing ≤ to < in the
argument. Alternatively, it is a special case of 3.5(a).
More precisely, for |b| < a, we cannot have b = a
if b ≥ 0 nor b = −a since −a < −|b| = b. Thus,
|b| < a iff −a ≤ b ≤ a with b 6= a,−a iff −a < b < a.
(b) By (a), |a − b| < c ⇐⇒ −c < a − b < c ⇐⇒
b − c < a < b + c. (c) Same as (b), changing <
to ≤ in the argument. Alternative, consider the two
cases |a − b| < c and |a − b| = c separately. For the
former, |a − b| < c =⇒ b − c < a < b + c by (b),
=⇒ b− c ≤ a ≤ b+ c. Conversely, |a− b| < c implies
a− b 6= c,−c, which together with b− c ≤ a ≤ b+ c
implies b− c < a < b+ c =⇒ |a− b| < c by (b). For
the latter case that |a− b| = c, either a− b = c or −c,
implying a = b+c or b−c, implying b−c ≤ a ≤ b+c.
Conversely, b − c ≤ a ≤ b + c =⇒ −c ≤ a − b ≤ c.
Together with the case definition |a− b| = c we have
the trivial conclusion |a− b| ≤ c.
[#3.8*] Assume instead that a > b. Then b <
2−1(a + b) < a because 2b = b(1 + 1) = b + b <
a + b < a + a = 2a. Let b1 = 2−1(a + b) > b. Then
by the hypothesis we have a ≤ b1 = 2−1(a + b) →
2a = 2 · 2−1(a + b) = a + b → a ≤ b, contradicting
the assumption that a > b.
[#4.5] Since s ≤ m = supS for all s ∈ S and m ∈ S,
therefore by definition m = maxS.
[#4.6] (a) Since S 6= ∅, ∃s0 ∈ S s.t. inf S ≤ s0 ≤
supS. (b) S must be a one-point set S = {a} for
some a ∈ R.
[#4.7*] (a) ∀s ∈ S ⊂ T , inf T ≤ s by a part of the
definition of inf T . This implies inf T is a lower bound
of S. By inf S, we must have inf T ≤ inf S. You then
show similarly that supS ≤ supT . The part inf S ≤
supS is from #4.6. (b) Since S, T ⊂ S ∪ T , by (a),
supS, supT ≤ sup(S ∪ T ) and max{supS, supT} ≤
sup(S ∪ T ). One the other hand, ∀a ∈ S supT , ei-
ther a ∈ S or a ∈ T , which implies either a ≤
supS or a ≤ supT ⇐⇒ a ≤ max{supS, supT}.
Therefore, max{supS, supT} is an upper bound of
S ∪ T . Because sup(S ∪ T ) is the least upper bound,
sup(S∪T ) ≤ max{supS, supT}. Together the estab-
lished inequality max{supS, supT} ≤ sup(S ∪ T ) we
have the equality max{supS, supT} = sup(S ∪ T ).
[#4.10*] By Archimedean Property, ∃k ∈ N s.t.
ka > 1 since a > 0, 1 > 0. Thus a > 1

k since
k > 0. Use the property for same pair 1, a, ∃m ∈

N ⇒ m = m · 1 > a. Let n = max k,m, then
1
n ≤ 1

k < a < m ≤ n.
[#4.11] It suffices to show there is an infinite se-
quence a < a1 < a2 < · · · < an · · · < b with an ∈ Q.
Construct the sequence by induction. By the dense-
ness of Q, ∃a1 ∈ Q ⇒ a < a1 < b. Assuming an is
constructed such that a < a1 < a2 < . . . an <, then
applying the same denseness property to the pair
an < b to have some an+1 ∈ Q with an < an+1 < b.
This completes the proof.
[#4.12] By the denseness property of Q in R, we
have for this pair a −

√
2 < b −

√
2 a rational r ∈ Q

such that a−
√
2 < r < b−

√
2, which is a < r+

√
2 <

b. Since r ∈ Q,
√
2 ∈ I, we must x = r +

√
2I for

otherwise
√
2 = x− r ∈ Q would be a contradiction.

[#4.16*] By the way set A := {r ∈ Q : r < a} is
defined, we concluded right away that a is an upper
bound of A: supA ≤ a. If a 6= supA, then we must
have supA < a. By the denseness property of Q,
there is a r ∈ Q such that supA < r < a. By defi-
nition of A, this r ∈ A contradicting the implication
that a ≤ supA.
[#5.2]
[#5.4*] Consider 2 cases separately. Case of m =
inf S > −∞. Then ∀s ∈ S, m ≤ s which im-
plies −s ≤ −m. Thus −m is an upper bound
for −S. Moreover, if A is an upper bound of −S:
−s ≤ A∀s ∈ S, then −A ≤ s∀s ∈ S is an lower
bound of S, and −A ≤ m = inf S follows. Thus
−m ≤ A, and −m = sup(−S) by definition and
inf S = m = −(−m) = −(sup(−S)) follows. For
the remaining case that inf S = −∞ that S is not
bounded below, then −S cannot be bounded above
because M is an upper bound of −S iff −M is
a lower bound of S. Hence sup(−S) = ∞, and
inf S = −∞ = − sup(−S).
[#5.5] The argument is identical to 4.6(a).
[#7.2]
[#7.4*] (a)

√
2/n→ 0. (b) (1 + 1/n)n → e. tn+1 =

(t2n + 2)/(2tn), t1 = 1. Then 1 ≤ tn ≤ 2, and tn
increasing. lim tn = t exists, and t =

√
2.

[#8.2a,c] (a) ∀ε > 0 let N = 1/ε. Then n > N =⇒
|an−0| = an = n/(n2+1) < n/n2 = 1/n < 1/N = ε.
[#8.4] By assumption, ∀ε > 0,∃N > 0 s.t. n >
N =⇒ |sn| < ε/M,=⇒ |sntn| = |sn||tn| <
(ε/M)M = ε since |tn| < M for all n.
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[#8.8(a)*] (This is another example for how YOUR
hand-in homework should look like for this problem:
State the problem, followed by a formal declaration
“Proof” or “Solution” whichever applies.)

Prove the limit lim(
√
n2 + 1− n) = 0.

Proof: ∀ε > 0, let N = 1/ε. Then for n > N we
have |

√
n2 + 1− n− 0| =

√
n2 + 1− n = (

√
n2 + 1−

n) · (
√
n2 + 1 + n)/(

√
n2 + 1 + n) = (

√
n2 + 1

2 −
n2)/(

√
n2 + 1 + n) = 1/(

√
n2 + 1 + n) < 1/n <

1/N = ε. This proves lim(
√
n2 + 1− n) = 0 by defi-

nition. ¤

[#9.2b] By Theorems 9.2 and 9.3, lim(3yn − xn) =
lim(3yn+(−1)xn) = 3·7+(−1)·3 = 18. By Theorem
9.6, lim(3yn − xn/yn = 18/7.

[#9.4] (b) s1 = 1, sn+1 =
√
sn + 1. Assume lim sn =

s exists. Than lim sn+1 = lim sn = s. By Example 5
of § and Theorem 9.3, s = lim sn+1 = lim

√
sn + 1 =√

lim sn + 1 =
√
s+ 1. Solving s we get s = (1 +√

5)/2.

[#9.6a,b] (a) Plug in the “limit” to get a = 3a2 =⇒
a = 0 or a = 1/3. (b) The limit does not exits be-
cause xn > 3n−1 →∞ by induction.

[#9.8]

[#9.10*] (a) By assumption, ∀M > 0,∃N, s.t. n >
N =⇒ sn > M/k > 0 since k > 0 is a constant.
Therefore ksn > k(M/k) = M for all n > N ,
showing ksn → ∞ by definition. (b) (=⇒) ∀M <
0, ∃N, s.t. n > N =⇒ sn > −M since lim sn = +∞.
Hence we have −sn < M showing lim(−s) = −∞ by
definition. Similar argument applies to (⇐=). Also
for (c).

[#9.12*] (a) Let ε0 = (1−L)/2 > 0 as L < 1 . By as-
sumption ∃N0 > 0 such that ∀n ≥ N0, ||sn+1|/|sn| −
L| < ε0 ⇐⇒ L − ε0 < |sn+1|/|sn| < L + ε0 =
(1 + L)/2. Let a = (1 + L)/2. Then L < a < 1,
and |sn+1|/|sn| < a for n ≥ N0. Repeatedly us-
ing this inequality for n, n − 1, . . . , n − (n − N0) =
N0 >≥ N0, we have |sn| < a|sn−1| < a(a|sn−2|) <
· · · < an−N0 |sn−(n−N0)| = an−N0 |sN0

|. Because N0
is fixed and an → 0 as n → ∞ since 0 < a < 1, we
have ∀ε > 0,∃N s.t. n > N =⇒ an < εaN0/|sN0

| =⇒
|sn| < an−N0 |sN0

| < ε. (b) Let tn = 1/|sn|. Then
tn+1/tn = 1/(sn+1/sn) → 1/L < 1. By (a) lim tn =
0 which is equivalent to sn →∞ by Theorem 9.10.

[#9.14] Follow the hints.

[#9.16] Follow the instruction.
[#10.6*] (a) ∀ε > 0, let N = − ln εln 2 , then n ≥ m > N
implies

|sn − sm| = |sn − sn−1 + sn−1 − sn−2 + · · · − sm+1 + sm+1 − sm|
≤ |sn − sn−1|+ |sn−1 − sn−2|+ · · ·+ |sm+1 − sm|
< 2−(n−1) + 2−(n−2) + · · ·+ 2−(m+1) + 2−m

= 2−m
1− 2−(n−m)

1− 2−1

< 2−(m−1) ≤ 2−N = ε.

(b) No. Conterexample: sn =
∑n

k=1 1/k → ∞ as
n→∞ hence, it cannot be Cauchy for every Cauchy
sequence must be bounded. However sn+1 − sn =
1/(n+ 1) < 1/n satisfied.
[#10.10*] (a, b) are straightforward. (c) Assume
(sn) is not nonincreasing, then there is an n such
that sn+1 > sn ⇐⇒ (sn + 1)/3 > sn ⇐⇒ sn <
1/2 contradicting sn ≥ 1/2 for all n. (d) Since (sn)
nonincreasing and bounded below by 1/2, lim sn =
s0 ∈ R exists. Using a limit theorem on sn+1 =
(sn + 1)/3 we have s0 = lim sn+1 = lim(sn + 1)/3 =
(lim sn + 1)/3 = (s0 + 1)/3⇐⇒ s0 = 1/2.
[#11.8*] (a) Let SN = {sn : n > N}. Then by
Ex.5.4, inf{sn : n > N} = − sup(−{sn : n > N}) =
− sup{−sn : n > N}. Taking limit in N → ∞, then
by definition and a limit theorem we have lim inf sn =
limN→∞ inf{sn : n > N} = limN→∞(− sup{−sn :
n > N}) = − limN→∞ sup{−sn : n > N} =
− lim sup(−sn). (b) Obviously (−tk) is monotone
iff (tk) is monotone. Then by a limit theorem
and (a) we have limk→∞(−tk) = − limk→∞ tk =
−(lim sup(−sn)) = lim inf sn.
[#11.10*] (a) S = {1/n : n ∈ N} ∪ {0}. In fact,
the nth column subsequence converges to 1/n, and
every row subsequence converges to 0. So S ⊃ {1/n :
n ∈ N} ∪ {0}. Moreover, for any number a /∈ S,
there is a small ε0 > 0 such that the interval (a −
ε0, a + ε0) contains no points of the sequence (sn),
and therefore a cannot be a subsequential limit of
(sn), and S = {1/n : n ∈ N} ∪ {0} follows. (b) By
inspection, lim sup sn = 1 = supS, lim inf sn = 0 =
inf S.
[#12.2] Since 0 ≤ lim inf |sn| ≤ lim sup |sn| for
any sequence, then lim sup |sn| = 0 iff lim inf |sn| =
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lim sup |sn| = 0 iff lim |sn| = 0 iff lim sn = 0.
[#12.4] Follow the hint.
[#12.6] Follow the hint.
[#12.8*] Because every sequence has a subsequence
converging to its limsup (Rmk: state known results
rather than theorem, corollary, or lemma numbers
from text, such as Corollary 11.4 in this case. Fol-
low this convention when you take exams), there is
a subsequence rnk

= snk
tnk

of the product sequence
rn := sntn such that limk→∞ snk

tnk
= lim sup sntn.

(This does not imply snk
or tnk

convergent!). Be-
cause every bounded sequence has a converging sub-
sequence, and (sn), (tn), hence (snk

), (tnk
) automat-

ically, are bounded, (snk
) has a converging subse-

quence (snkl
) to s ∈ R (This does not imply (tnkl

)
converges). By the same result, (tnkl

) has a converg-
ing subsequence (tnklm

) to t ∈ R. Now we have found

convergent subsequences (tnklm
), (snklm

). Because

all subsequences of a convergent sequence converge
to the same limit, we have

lim
m→∞

snklm
tnklm

= lim
k→∞

snk
tnk

= lim sup sntn.

On the other hand, by the limit product theorem we
have

lim
m→∞

snklm
tnklm

= lim
m→∞

snklm
lim
m→∞

tnklm

≤ lim sup sn lim sup tn.

The last inequality holds because lim sup of every se-
quence is the least upper bound of all the sequential
limits of the sequence, and the fact that both sn, tn
are nonnegative.
A simpler, alternative proof by Kirsty: For any
n > N we have SN = sup{sn : n > N} ≥ sn ≥
0, TN = sup{tn : n > N} ≥ tn ≥ 0 =⇒ sntn ≤
SNTN =⇒ sup{sntn : n > N} ≤ SNTN . By defi-
nition of lim sup and the product limit theorem, we
have

lim sup sntn = lim
N→∞

{sntn : n > N}

≤ lim
N→∞

SNTN = lim
N→∞

SN lim
N→∞

TN

= lim sup sn lim sup tn. ¤

[#12.12*] Following the hint, we have for any n >

M > N ,

σn =
s1 + · · ·+ sn

n
=

s1 + · · ·+ sN
n

+
sN+1 + · · ·+ sn

n

≤ s1 + · · ·+ sN
M

+
n−N

n
sup{sn : n > N}

(for sn ≥ 0, n > M)

<
s1 + · · ·+ sN

M
+ sup{sn : n > N}

(for n−N
n < 1, n > N and sn ≥ 0)

(1)

Since it holds for all n > M , it holds for sup{σn :
n > M}

sup{σn : n > M} ≤ s1 + · · · sN
M

+ sup{sn : n > N}

By definition and the fact that limits pre-
serve inequality relations we have lim supσn =
limM→∞ sup{σn : n > M} ≤ limM→∞[ s1+···sN

M +
sup{sn : n > N}] = sup{sn : n > N}.
Since this inequality holds for all N ,lim supσn ≤
limN→∞ sup{sn : n > N} = lim sup sn follows. To
show lim inf sn ≤ lim inf σn, we argue similarly as in
(??) above as follows:

σn =
s1 + · · · sn

n
=

s1 + · · ·+ sN
n

+
sN+1 + · · ·+ sn

n

≥ n−N

n
inf{sn : n > N}(for sn ≥ 0)

= 1− N

n
inf{sn : n > N}

> 1− N

M
inf{sn : n > N} (for sn ≥ 0, n > M)

Taking the limits in the order of M → ∞ first and
N →∞ afterwards gives rise to the required result.
[#14.4] (a) Use Comparison Test. 1/[n+ (−1)n]2 ≤
1/(n − 1)2 and

∑∞
n=2 1/(n − 1)2 =

∑∞
n=1 1/n

2 con-

verges. (b) The partial sum sn = (
√
2 −

√
1) +

(
√
3−

√
2)+ · · ·+(

√
n−

√
n− 1)+ (

√
n+ 1−√n) =√

n+ 1 − 1 → ∞. Diverges. (c) By Ratio Test,
|an+1/an| = 1/(1 + 1/n)n → 1/e < 1 =⇒ converges.
[#14.6] Let B be an upper bound of (|bn|): |bn| ≤
B∀n. By Cauchy criterion and the assumption that
∑ |an| < ∞, we have ∀ε > 0,∃N s.t. ∀m > n >
N =⇒ ∑m

k=n+1 |ak| < ε/B. Hence
∑m

k=n+1 |akbk| ≤
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B
∑m

k=n+1 |ak| < Bε/B = ε. This proves by Cauchy
criterion that

∑

anbn converges absolutely.
[#14.8] Use this inequality: (a+b)2 = a2+2ab+b2 ≥
ab and the Comparison Test.
[#14.12*] Since every sequence has a converging
subsequence to its liminf, we have in this case a subse-
quence ank

such that |ank
| → lim inf |an| = 0. Thus,

w.l.o.g., we assume |an| → 0 as n → ∞. We next
construct a subsequence ank

such that |ank
| ≤ 1

k2

(without specifying, it implies automatically that
n1 < n2 < · · · < nk < · · · .) We do this by in-
duction using the assumption that an → 0. By def-
inition, for ε = 1/12 = 1, ∃N s.t. n > N =⇒
|an| = |an − 0| < ε = 1/12. Define n1 = N + 1.
Assume ani

, i = 1, 2, . . . , k are found. Then to
construct ank+1

we use again the assumption that
an → 0. To this end, let ε = 1/(k + 1)2. Then
∃N s.t. n > N =⇒ |an| < ε = 1/(k + 1)2. Define
nk+1 = max{N + 1, nk + 1} then we have nk+1 > nk
and |ank+1

| < 1/(k + 1)2 as required. Hence by in-
duction (ank

) can be constructed with |ank
| < 1/k2.

Since
∑

1
k2 <∞ converges, by the Comparison Test,

∑∞
k=1 ank

converges absolutely, and itself converges
as well.
[#14.14*] Let sn be the nth partial sum of this series
∑

an = 1
2 + 1

4 + 1
4 + · · · . Then sn is a monotone

increasing sequence. Notice that there are exactly
2k−1 terms of the form 1

2k , all together there are 1 +

2 + 22 + · · · 2k−1 = 2k − 1 terms for all the terms
having the form 1

2i with i = 1, 2, . . . , k. Hence the
(2k − 1)st partial sum is

s2k−1 =
k
∑

i=1

2i−1
∑

j=1

1

2i
=

k
∑

i=1

1

2
= k/2.

Hence s2k−1 = k/2 → ∞, and sn → ∞ follows. It
is obvious that an <

1
n , and then by the Comparison

Test we conclude that
∑

1
n diverges as well.

[#15.4*] (a) Either by Comparion/Integral or Com-
parison Test. By Comparison/Integral Test, we start
off by noticing 1√

n logn
≥ 1

n logn . f(x) = 1
x log x is

monotone decreasing for x ≥ 2.
∑∞

n=2
1

n logn ≥
∫∞
2

1
x log xdx = ∞ because

∫

1
x log xdx = log log x.

Therefore by Integral Test,
∑∞

n=2
1

n logn diverges,

and by Comparison Test 1√
n logn

≥ 1
n logn = ∞ di-

verges as well. By Comparison Test alone, we notice
log n <

√
n for n ≥ 1, and 1√

n logn
≥ 1

n . Since
∑

1
n

diverges,
∑

1√
n logn

diverges. (b) Either by Compar-

ison or Integral Test. Use Comparison Test we have
logn
n ≥ 1

n for n ≥ 3 (assuming log the natural log-
arithmic, or n > 10 if the base 10 logarithmic) and
the divergence follows from the divergence of

∑

1
n .

Use Integral Test, we check first that f(x) = log x
x

is monotone decreasing which is the case for x ≥ 3
since f ′(x) = 1−log x

x2 < 0. Because
∫∞
3

log x
x dx =

(log x)2

2 |∞3 = ∞, the series
∑ logn

n diverges as well.
(c) Use Integral Test on f(x) = 1

x log x(log log x) . (d)

Use Integral Test or Comparison Test. By Integral
Test, we use f(x) = log x

x2 which is monotone de-

creasing since f ′(x) = 1−2 log x
x3 < 0 for x ≥ 2. Also

∫

log x
x2 dx = − log xx +

∫

1
x2 dx = − log xx − 1

x using in-

tegration by parts. Hence
∫∞
2

log x
x2 dx = 1+log 2

2 con-
verges. By Integral Test, the series converges. Use
Comparison Test, we note that log n < nq for any
fixed 0 < q < 1 and sufficiently large n > N . So
logn
n2 < nq

n2 = 1
np with p = 2− q > 1. Since

∑

1
np con-

verges for any p > 1, we conclude by the Comparison
Test that

∑ logn
n2 <

∑

1
np <∞ converges.

[#15.6*] (a) an = 1/n. (b)
∑

an < +∞, an ≥ 0
implies a2n ≤ an for all large n since an → 0. Com-
parison Test. (c) an = (−1)n1/√n.
[#17.13*] (a) For any x ∈ R and n ∈ N, there is
a rational rn ∈ Q such that x < rn < x + 1/n
by the Archimedean Property. Hence the ratio-
nal number sequence rn → x. Also the irrational
number sequence tn = rn +

√
2/n → x. There-

fore either lim f(rn) = 1 6= f(x) if x ∈ R − Q or
lim f(tn) = 0 6= f(x) if x ∈ Q. f is not continuous
in both cases. (b) Similar to (a) when x 6= 0. For
x = 0, we always have |h(x)− h(0)| = |h(x)| ≤ |x| to
which ε− δ argument can be easily fashioned.

[#17.14*] If x ∈ Q, construct an irrational sequence
tn ∈ R − Q in the same way as in #17.13 above so
that tn → x and lim f(tn) = 0 6= f(x) = 1/q if
x 6= 0. If x ∈ R − Q, f(x) = 0 and we claim for
every sequence xn → x, lim f(xn) → 0. Otherwise,
there is a sequence xn → 0 but f(xn) 9 0, and
w.l.o.g we assume |f(xn)| ≥ ε0 > 0 for some constant
ε0. This implies then that xn ∈ Q and f(xn) =
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1/qn ≥ ε0, which in turn implies 0 < qn ≤ A = 1/ε0.
Since convergent sequences are bounded, |pn/qn| =
|xn| ≤ B for some constant B. Hence |pn| ≤ B|qn| ≤
BA. Therefore there are only finitely many parings
of pn, qn for |pn| ≤ BA, 0 < qn ≤ A. Therefore the
sequence xn can only take on finitely many values.
Since sequence (xn) converges, xn must take on a
fixed number for all large n and that fixed number
is on of the rationals: pn/qn with |pn| ≤ BA and
0 < qn ≤ A. This contradicts to the fact that xn
converges to an irrational number.
[#17.17*] It is obvious that the condition is neces-
sary since it is a special case of the definition that
xn → x0 implies f(xn) → f(x0). Conversely, as-
sume the contrary that there is a sequence xn → x0
with xn ∈ dom(f) but lim f(xn) 9 f(x0). Then
∃ε0 > 0 so that ∀N,∃n ≥ N with |f(xn) − f(x0)| ≥
ε0. That is a subsequence can be found so that
|f(xn) − f(x0)| ≥ ε0. Therefore w.o.l.g, we as-
sume xn is such a subsequence. Then we concluded
right away that xn 6= x0 but xn → x0 nonetheless.
This contradicts the assumption that we must have
f(xn) → f(x0) whenever xn → x0 and xn 6= x0 for
all n.
[#18.4*] f(x) = 1/(x− x0).
[#18.5*] (a) Let h = f − g. Then h is continuous
as both f and g are continuous. Also h(a) = f(a)−
g(a) ≤ 0 and h(b) = f(b) − g(b) ≥ 0 by assumption.
Then by the Intermediate Value Theorem h(x0) = 0
for some x0 ∈ [a, b], implying f(x0) = g(x0) as re-
quired. (b) Let g(x) = x. Then f(0) ≥ 0 = g(0) and
f(1) ≤ 1 = g(1) by the assumption that f maps [0, 1]
into [0, 1]. Hence the conditions of (a) are satisfied
for the given functions f, g and [a, b] = [0, 1].
[#18.10*] Let g(x) = f(x + 1) − f(x), x ∈ [0, 1].
Then g is continuous in [0, 1] as f is continuous in
[0, 2]. Also, g(0) = f(1)− f(0), g(1) = f(2)− f(1) =
f(0) − f(1) by the assumption that f(2) = f(0).
Therefore g(0) = −(f(1) − f(0)) = −g(1), implying
either g(0) = g(1) = 0 or g(0) and g(1) have op-
posite signs. In the latter case there exists a number
x0 ∈ [0, 1] such that g(x0) = 0 by IVT. In either cases
the same result holds. Therefore with y0 = x0 + 1
f(y0) = f(x0) follows.
[#19.2*] (c) Only. ∀ε > 0, let δ = ε/4 s.t. |x− y| <
δ, x, y ≥ 1/2 implies |f(x)−f(y)| = | 1x− 1y | = |

y−x
xy | ≤

| y−x
(1/2)(1/2) | = 4|x− y| < 4δ = ε.

[#19.7*] (a) Note first that the continuity of f on
[0,∞) implies the continuity of f on any subset, in-
cluding [0, k + 1]. Since [0, k + 1] is bounded and
closed interval of R f is uniformly continuous on
[0, k + 1]. We now show that f is uniformly con-
tinuous on [0,∞) by definition. ∀ε > 0, ∃δ1 > 0 s.t.
|x − y| < δ1, x, y ∈ [k,∞) implies |f(x) − f(y)| < ε
by the assumption that f is uniformly continuous on
[k,∞). Since f is uniformly continuous on [0, k + 1],
∃δ2 > 0 s.t. |x − y| < δ2, x, y ∈ [0, k + 1] implies
|f(x) − f(y)| < ε. Let δ = min{1, δ1, δ2}, we claim
that |x−y| < δ, x, y ∈ [0,∞) implies |f(x)−f(y)| < ε.
To this end all we need to show is that the condition
|x−y| < δ, x, y ∈ [0,∞) implies either x, y ∈ [0, k+1]
or x, y ∈ [k,∞). Suppose x, y ∈ [0, k + 1] does not
hold. Then either both x, y ≥ k + 1 > k or one of
x, y is in [0, k + 1] while the other is not. In the
former case we have x, y ∈ [k,∞). In the latter
case, suppose w.o.l.g that x < k + 1 ≤ y. Then
the condition that |x − y| < δ ≤ 1 implies that
x = y− (y−x) ≥ y− |y−x| ≥ y− δ > k+1− 1 = k.
That is, k < x < y and x, y ∈ [k,∞) holds as well.
(b) Obviously f(x) =

√
x is continuous in [0,∞).

Because f ′(x) = 1
2
1√
x
≤ 1
2
1
1 for x ≥ 1, hence f is uni-

formly continuous on [1,∞). By (a) f is uniformly
continuous in [0,∞).

[#19.9*] (a) f(x) = x sin( 1x ) for x 6= 0 and f(0) = 0
is continuous on R. This follows from the product
and composition rules for continuous functions when
x 6= 0 and the estimate |f(x) − f(0)| ≤ |x| at the
point 0. (b) Let S be any bounded subset of R. Then
a = inf S and b = supS are all finite numbers. There-
fore f is uniformly continuous in the bounded, closed
interval [a, b] since f is continuous there. Hence f
is uniformly continuous on any subset of [a, b] which
includes S. (c) Because f ′(x) = sin( 1x )− 1

x cos(
1
x ) for

x 6= 0 we have |f ′(x)| ≤ 1+1 = 2 for |x| ≥ 1. Hence f
is uniformly continuous in (−∞,−1] and [1,∞). Be-
cause f is also uniformly continuous in, say [−2, 2],
the exactly same argument for #19.7(a) can be used
to show f is uniformly continuous in R.

[Notes Supplement On Riemann Integral] Let
U({xi}) =

∑

supIi
f∆xi be the upper sum of any

partition a = x0 < x1 < · · · < xn = b,∆xi =
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xi − xi−1, i = 1, 2, . . . , n, Ii = [xi−1, xi]. We claim
that lim∆x→0 U({xi}) = ` exists where ∆x =
max{∆xi, i = 1, 2, . . . , n}.

Since f is continuous in [a, b], ∃x̄i ∈ [xi−1, xi] such
that f(x̄i) = supIi

f . Since f is uniformly continuous
in [a, b], then ∀ε > 0, ∃δ > 0 s.t. |x − y| < δ, x, y ∈
[a, b] implies |f(x)− f(y)| < ε.

We now proceed to prove the claim by first devel-
oping a background result. A partition a = y0 <
y1 < . . . ym = b is said to be a refinement of a given
partition a = x0 < x1 < · · · < xn = b if {xi} is just
a subset of {yj}, i.e., xi = yji

for some ji and for
all i = 0, 1, 2, . . . , n. Then the difference between the
corresponding upper sums U({xi})−U({yj}) has the
following properties.

Either a subinterval [xi−1, xi] contains no refine-
ment points yj with xi = yji

for some ji and xi−1 =
yji−1. In this case the corresponding summands
supIi

f∆xi and supJji
f∆yji

are identical and cancel

out each other in the difference U({xi})− U({yj}).
Or a subinterval [xi−1, xi] contains some refine-

ment points xi−1 = yj < yj+1 < · · · < yj+k = xi for
some k > 1. In this case the summand supIi

f∆xi

corresponds to the subsum
∑k

l=1 supJj+l
f∆yj+l with

Jj+l = [yj+l−1, yj+l]. Breaking up [xi−1, xi] accord-
ing to its refinement xi−1 = yj < yj+1 < · · · <
yj+k = xi, the corresponding difference in absolute

value | supIi
f∆xi −

∑k
l=1 supJj+l

f∆yj+l| becomes

|
k
∑

l=1

(sup
Ii

f − sup
Jj+l

f)∆yj+l| <
k
∑

l=1

ε∆yj+l ≤ ε∆xi

if ∆xi = xi − xi−1 < δ by the uniformly continuity
since supIi

f = f(x̄i) and supJj+l
f = f(ȳj+l) with

x̄i, ȳj+l ∈ [xi−1, xi] =⇒ |x̄i − ȳj+l| ≤ xi − xi−1 <
δ. Hence the upper sum difference in absolute value
|U({xi})−U({yj})| on a whole is bounded above by
ε
∑n

i=1∆xi = ε(b− a) for any refinement of partition
{xi} and ∆x ≤ δ.

We are now ready to prove the claim
lim∆x→0 U({xi}) = `. As we did in class we
first show that the sequence Un = U({xi}) in regular
partition xi = a+i∆x,∆x = (b−a)/n has a limit. We
do this by showing that {Un} is a Cauchy sequence.
In fact, for (b− a)/N < δ or N > (b− a)/δ and any

m,n > N , the partition for Umn is a refinement for
both partitions of Un and Um because the partition
points of Un satisfy xi = a + i b−an = a + im b−a

nm
which is a partition point of Umn for each i and
similarly for Um. By what we have just proved
above, |Un − Um| = |Un − Umn + Umn − Um| ≤
|Un − Umn| + |Umn − Um| < 2ε(b − a) since
∆x = (b − a)/n for Un and ∆x = (b − a)/m for Um
are both less than (b− a)/N < δ for m,n > N . This
shows Un is Cauchy and limUn = ` follows.

Finally we prove lim∆x→0 U({xi}) = ` for all par-
tition. Assume on the contrary that it is false, then
a sequence of upper Riemann sums U({xki }), k =
1, 2, . . . can be found such that |U({xki }) − `| >
ε0 for some fixed number ε0 even though ∆xk =
max{∆xki , i = 1, 2, . . . nk} → 0 as k → 0. Because
Un → `, we have N0 > 0 such n > N0 implies
|Un−`| < ε0/2 and thus |U({xki })−Un| = |U({xki })−
` − (Un − `)| ≥ |U({xki }) − `| − |Un − `| > ε0/2 for
n > N0 and all k. This has to be a contradiction
for the following reasons. For each regular nth par-
tition and any given one in {xki }, putting all these
points together to form a refinement partition for
both Un and U({xki }) and denote the refinement up-
per sum by Uk

n . Then when ∆xk, (b − a)/n < δ, we
have |U({xki })− Un| = |U({xki })− Uk

n + Uk
n − Un| ≤

|U({xki }) − Uk
n | + |Uk

nUn| < 2ε(b − a) < ε0/2 since ε
is arbitrary. This completes the proof.
[#20.11*] Follow the hints.
[#20.16*(c)] (a) The case with L1 = +∞ must im-
ply L2 = ∞ = L1 because ∀M > 0, ∃δ > 0 s.t.
a < x < a+ δ implies M < f1(x) ≤ f2(x). Similarly
the case with L2 = −∞ implies L1 = L2 = −∞. In
both cases L1 ≤ L2 follows. For the remaining case
we only have L1, L2 ∈ R. In this case ∀ε > 0, ∃δ1 >
0, δ2 > 0 s.t. a < x < a + δ1 =⇒ |f1(x) − L1| < ε
and a < x < a + δ2 =⇒ |f2(x) − L2| < ε. Then for
a < x < a+ δ with δ = min{δ1, δ2} we have

L1 = f1(x) + (L1 − f1(x))

< f1(x) + ε

≤ f2(x) + ε = f2(x)− L2 + L2 + ε

< ε+ L2 + ε = L2 + 2ε

implying L1 ≤ L2 since ε > 0 is arbitrary. (b) No.
For example f1(x) = x2, f1(x) = x, x ∈ (0, 1).
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[#20.17*] Follow the hints.

[#20.20*(c)] By definition for any sequence
xn → a with xn ∈ S ⊂ R we have
f1(xn) → +∞ and f2(xn) → L2 < 0.
Since −f2(xn) → −L2 > 0 by Theorem
9.9 lim f1(xn)(−f2(xn)) = +∞. By #9.10(c),
lim f1(xn)f2(xn) = lim(−1)[f1(xn)(−f2(xn))] =
−∞. Alternatively, you can prove it directly. By
definition, for any sequence xn → a with xn ∈ S we
have f1(xn)→ +∞ and f2(xn)→ L2 < 0. That is, if
we let A = max{L2/2,−1} < 0, then ∀M > 0, ∃N1
s.t. n > N1 implies f1(xn) > M/|A| and ∃N2 s.t.
n > N2 implies f2(xn) < A = max{L2/2,−1} <
0. Let N = max{N1, N2}. then n > N im-
plies f1(xn)f2(xn) < f1(xn)A < M

|A|A = −M be-

cause A = −|A|. This implies by definition that
lim1(xn)f2(xn) = −∞. Since this holds for all se-
quences xn → a, xn ∈ S we have by definition that
limx→aS f1(x)f2(x) = −∞.

[#23.2*] (a) a
1/n
n = n1/2n = exp( lnn2n ) → exp(0) =

1. R = 1/ lim sup a
1/n
n = 1/1 = 1. At x = ±1,

∑√
nxn diverge because

√
nxn =

√
n, or (−1)n√n

and none of which goes to 0 as required for con-
vergent series. Interval of convergence (−1, 1). (b)

a
1/n
n = 1/n1/

√
n = 1/ exp( lnn√

n
) → 1/ exp(0) = 1 and

R = 1/1/ lim sup a
1/n
n = 1. At x = ±1, |anxn| =

1/n
√
n ≤ 1/n2 for n ≥ 4. Hence both sequences

∑

anx
n at x = ±1 converge by dominant compari-

son test. Interval of convergence [−1, 1]. (c) Notice

ck = 1 if k = n! for some n and 0 otherwise. So c
1/k
k =

0 or 1 for infinitely many k and lim sup c
1/k
k = 1 and

R = 1/ lim sup c
1/k
k = 1. At x = ±1, |xn!| = 1 9 0

and
∑

xn! diverges at the end points by the neces-
sary criterion for converging series. Interval of con-

vergence (−1, 1). (d) c
1/n
n = 0 if n is even and

c
1/n
n = 3k/(2k+1)/k1/(4k+2) for n = 2k + 1 is odd.

Thus lim sup c
1/n
n = limk→∞ 3k/(2k+1)/k1/(4k+2) =

31/2/1 =
√
3. R = 1/ lim sup c

1/n
n = 1/

√
3. At

x = 1/
√
3,

∑

anx
n =

∑

3n
√
n
( 1√
3
)2n+1 = 1√

3

∑

1√
n

which diverges as a p-series with p = 1/2 < 1. At x =
−1/

√
3,

∑

anx
n =

∑

3n
√
n
(− 1√

3
)2n+1 = − 1√

3

∑

1√
n

which diverges for the same reason.

[#23.4*] (a) (an)
1/n = 6/5 if n is even and 2/5 if n is

odd. So lim sup(an)
1/n = 6/5, lim inf(an)

1/n = 2/5.
Similarly |an+1/an| = 6

53
n when n is odd and 2

5 (
1
3 )
n

when n is even. Hence lim sup |an+1/an| = ∞ and
lim inf |an+1/an| = 0. (b) Both diverge because the
necessary condition that an → 0 does not satisfied be-
cause of the fact that lim sup(an)

1/n = 6/5 > 1. (c)
The radius of convergence is R = 1/ lim sup(an)

1/n =

5/6. At x = 5/6,
∑

anx
n =

∑

( 4+2(−1)
n

6 )n di-

verges because ( 4+2(−1)
n

6 )n 9 0. Similarly, at x =

−5/6, ∑

anx
n =

∑

(−1)n( 4+2(−1)
n

6 )n diverges be-

cause (−1)n( 4+2(−1)
n

6 )n 9 0.

[#23.8*] (a) fn(x) =
∑n
0 x

k = 1−xn+1

1−x if x ∈ [0, 1)

and fn(1) = n+1. Thus fn → 1
1−x point wise in [0, 1)

but not at x = 1. (b) Since fn does not converge
point wise on [0, 1], it does not converge uniformly
on [0, 1].

[#23.16*] (a) fn(x) = nx
1+nx2 → 0 if x = 0 and

1/x if x > 0. So f(x) = 0 if x = 0 and 1/x if
x > 0. (b) The convergence is not uniform in [0, 1]
because otherwise f would be continuous in [0, 1] as
each fn is continuous. Alternatively, we can show
directly by definition that fn → f not uniformly. In
fact, for ε0 = 1 and ∀n, solving |fn(x) − f(x)| = 1
is equivalent to | nx

1+nx2 − 1
x | = 1

x+nx3 = 1, equivalent

to p(x) = nx3 + x− 1 = 0, for which it must have a
solution xn in [0, 1] by Intermediate Value Theorem
since p(0) = −1 < 0 and p(1) = n > 0. This shows
∃xn ∈ (0, 1) s.t. |fn(xn) − f(xn)| = 1 for all n ≥ 1
and lim fn = f is not uniform. (c) Because |fn(x)−
f(x)| = 1

x+nx3 ≤ 1/(1 + n) for all x ≥ 1, lim fn = f
uniformly on [1,∞). In fact, ∀ε > 0, let N = 1/ε then
for n > N and x ∈ [1,∞) we have |fn(x) − f(x)| =
1

x+nx3 ≤ 1/(1 + n) < 1/N = ε.

[#23.17*] By assumption, ∀ε > 0, ∃N1 > 0 s.t.
n > N1 implies |fn(y)− f(y)| < ε/2 for all y ∈ [a, b],
in particular, |fn(xn)−f(xn)| < ε/2 for any sequence
xn ∈ [a, b] with xn → x. Since the uniform limit of
continuous functions is continuous and that xn →
x, ∃N2 > 0 s.t. |f(xn) − f(x)| < ε/2 for n > N2.
Let N = max{N1, N2}. Then n > N implies that
|fn(xn)− f(x)| = |fn(xn)− f(xn) + f(xn)− f(x)| ≤
|fn(xn) − f(xn)| + |f(xn) − f(x)| < ε/2 + ε/2 = ε.
This shows, by definition, that lim fn(xn) = f(x).

%%%%%%%%%%%%%%%%%%%%%%%%
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SOLUTIONS TO SELECTED EXAM II
PROBLEMS

[#2] (=⇒) Suppose the contrary: ∃N0 > 0 s.t. ∀δ >
0, in particular, δn = 1/n, ∃xn ∈ S with |xn − a| <
1/n but f(xn) ≤ N0. This contradicts the condition
that for every sequence xn ∈ S with xn → a we
have f(xn)→ +∞. (⇐=) By the assumption, ∀M >
0,∃δ > 0 s.t. |x − a| < δ, x ∈ S implies f(x) > M .
Now for any sequence xn ∈ S, xn → a, ∃N > 0
s.t. n > N implies |xn − a| < δ. Hence f(xn) > M
follows, showing lim f(xn) = +∞.

[#3] (a) a
1/n
n = 3

(−1)n

n −1 → 30−1 = 1/3 im-

plying lim sup a
1/n
n = lim inf a

1/n
n = lim a

1/n
n =

1/3. |an+1

an
| = 3(−1)

n+1−n−1/3(−1)
n−n =

3(−1)
n+1−(−1)n−1 = 3 if n is odd and = 1/27 if n

is even. So lim sup an+1

an
= 3, lim inf an+1

an
= 1/27.

(b) c2n = 0, c2n+1 = 3(−1)
n−n. (c2n)

1/2n → 0

and (c2n+1)
1/2n+1 = 3

(−1)n

2n+1 − n
2n+1 → 30−1/2. Hence

lim sup(cn)
1/n = 1/

√
3 and the radius of conver-

gence R = 1/ lim sup(cn)
1/n =

√
3. (c) At x =√

3,
∑

3(−1)
n−n(

√
3)2n+1 =

∑

3(−1)
n−n3n+1/2 =

∑

3(−1)
n+1/2 = +∞ which diverges because

3(−1)
n+1/2 9 0 not satisfying the necessary con-

dition for convergence. Similarly, at x = −
√
3,

∑

3(−1)
n−n(−

√
3)2n+1 = −∑

3(−1)
n+1/2 = −∞ di-

verges for the same reason. Interval of convergence:
(−
√
3,
√
3).

[#5] (a) fn(x) = |x|n → f(x) =

{

0, |x| < 1

1, |x| = 1
. Since

f is not continuous while fn are, fn → f only point-
wise not uniform. (b) Yes, because f(x) = 0, x ∈
(a, b) with −1 < a < b < 1, and therefore x ∈ (a, b)
implies |fn(x) − f(x)| = |xn| ≤ max{|a|n, |b|n} → 0
independent of x since |a|, |b| < 1.

%%%%%%%%%%%%%%%%%%%%%%%%

[#25.3*] (a) Consider |fn(x)− 12 | = | n+cosx2n+sin2 x
− 12 | =

| 2 cosx−sin2 x
4n+2 sin2 x

| ≤ 3
4n . (b) Use Theorem 25.2.

[#25.8*] Since |an|1/n = 1/(n2/n2) → 1/2, the
radius of convergence is R = 1/(1/2) = 2. Be-

cause for |x| ≤ 2, | xn

n22n | ≤ |x|n
n22n ≤ 2n

n22n ≤ 1
n2 .

Since
∑

1
n2 <∞ converges by the p-series Test, with

p = 2 > 1,
∑

xn

n22n converges uniformly on |x| ≤ 2 by
the Dominant Convergence Theorem. Therefore the

sum f(x) =
∑

xn

n22n is continuous in [−2, 2].
[#25.12*] Let fn =

∑n
k=0 gk. Then that gk

is continuous in [a, b] implies fn is continuous in
[a, b]. Also

∑

gk converges uniformly on [a, b]
iff fn → g =

∑

gk uniformly. Then by The-

orem 25.2
∫ b

a
g(x)dx =

∫ b

a
limn→∞ fn(x)dx =

limn→∞
∫ b

a
fn(x)dx = limn→∞

∫ b

a

∑n
k=0 gk(x)dx =

limn→∞
∑n

k=0

∫ b

a
gk(x)dx =

∑∞
k=0

∫ b

a
gk(x)dx.

[#25.15*] (a) Assume fn → 0 is not uniform. Then
∃ε0 > 0 and ∀n,∃xn ∈ [a, b] so that |fn(xn)| ≥ ε0.
Since {fn(x)} is non-increasing in n we have for
k ≥ n that fn(x) ≥ fk(x) → 0 as k → ∞ imply-
ing fn(x) ≥ 0 for all n. Therefore fn(xn) ≥ ε0. Next
by Weierstrass Theorem, {xn} has a convergent sub-
sequence xnk

→ x0 ∈ [a, b], and hence fnk
(xnk

) ≥ ε0.
So w.o.l.g we can assume xn → x0 and fn(xn) ≥ ε0 as
originally stated. Because {fn(x)} is non-increasing
in n, we have fm(x) ≥ fn(x) for all m ≤ n and
all x ∈ [a, b], in particular for x = xn. That is
fm(xn) ≥ fn(xn) ≥ ε0 for all m ≤ n. This will give
rise to a contradiction. In fact, because fm(x0) → 0
as m→∞ by the pointwise convergence assumption,
∃M > 0 s.t. m > M implies fm(x0) < ε0/2. For this
M , since fM+1 is continuous, ∃N1 s.t. n > N1 im-
plies |fM+1(xn) − fM+1(x0)| < ε0/2. Putting these
two results together we have for n > max{N1,M}
the following fM+1(xn) = fM+1(xn) − fM+1(x0) +
fM+1(x0) < ε0/2 + ε0/2 = ε0 contradicting to the
statement that fM+1(xn) ≥ ε0 since n ≥M + 1. (b)
Let gn(x) = fn(x) − f(x). Because f is continuous
by assumption gn is continuous. Because {fn(x)} is
nonincreasing in n {gn(x)} is nonincreasing in n for
each x ∈ [a, b]. Also gn → 0 pointwise. So the condi-
tions of (a) are satisfied for gn, and gn → 0 uniformly
follows, implying fn → f uniformly as wanted.

[#26.6*] Let s(x) =
∑∞

n=0
(−1)n
(2n+1)!x

2n+1, c(x) =
∑∞

n=0
(−1)n
(2n)! x

2n. (a) Let s(x) =
∑

ckx
k then

(ck)
1/k =

{

0, k = 2n

(1/(2n+ 1)!)1/(2n+1), k = 2n+ 1.
So

lim sup |ck|1/k = lim(1/(2n + 1)!)1/(2n+1) = 0 be-

cause lim(1/n!)1/n = lim 1/(n+1)!
1/n! = lim 1

n+1 = 0.

Therefore the radius of convergence for s(x) is R =
1/ lim sup |ck|1/k = ∞ and s(x) converges for all
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x ∈ R. Then by the derivative theorem of power

series we have s′(x) =
∑∞

n=0
(−1)n
(2n+1)! (2n + 1)x2n =

∑∞
n=0

(−1)n
(2n)! x

2n = c(x). Exactly the same argument

shows c′(x) = −s(x). (b) By (a), (s2(x) + c2(x))′ =
2ss′ + 2cc′ = 2sc + 2c(−s) ≡ 0. (c) Because
(s2(x) + c2(x))′ ≡ 0, s2(x) + c2(x) ≡constant and
s2(x) + c2(x) ≡ s2(0) + c2(0) = 0 + 1 = 1 follows.

[#26.7*] No, because all power series with posi-
tive radius of convergence are differentiable at x = 0
whereas f(x) = |x| is not differentiable at x = 0.

[#26.8*] (a) Since
∑∞

n=0 y
n = 1/(1− y) for |y| < 1,

for |x| < 1 and y = −x2 we have by direct sub-
stitution that

∑∞
n=0(−1)nx2n =

∑∞
n=0(−x2)n =

1/(1 − (−x2)) = 1/(1 + x2). (b) Because 1/(1 +
x2) =

∑∞
n=0(−1)nx2n holds for x ∈ (−1, 1),

by the integral theorem of power series we have
for all x ∈ (−1, 1) that arctanx = arctanx −
arctan 0 =

∫ x

0
1
1+t2 dt =

∫ x

0

∑∞
n=0(−1)nt2ndt =

∑∞
n=0(−1)n

∫ x

0
t2ndt =

∑∞
n=0

(−1)n
2n+1 x

2n+1. (c) At

x = 1, the series
∑∞

n=0
(−1)n
2n+1 x

2n+1 =
∑∞

n=0
(−1)n
2n+1

converges by the Alternating Test since an = 1/(2n+
1) → 0 and an < an−1. Thus by Abel’s Theorem

the power series
∑∞

n=0
(−1)n
2n+1 x

2n+1 converges and is
continuous in (−1, 1]. Because arctanx is continu-
ous, we have π/4 = arctan 1 = limx→1− arctanx =

limx→1−
∑∞

n=0
(−1)n
2n+1 x

2n+1 =
∑∞

n=0
(−1)n
2n+1 . Thus

arctanx =
∑∞

n=0
(−1)n
2n+1 x

2n+1 holds in (−1, 1] and

π = 4
∑∞

n=0
(−1)n
2n+1 follows. (d) Exactly the same ar-

gument of (c) applies to x = −1.
[#27.3*] (a) Assume on the contrary that there
is a sequence of polynomials pn(x) converging uni-
formly to sinx on R, then there is an N > 0 such
that n > N implies |pn(x) − sinx| < 1. pn(x)
cannot be a constant polynomial for otherwise, we
would have 2 = | sin(π/2)−sin(−π/2)| = | sin(π/2)−
pn + pn − sin(−π/2)| ≤ | sin(π/2) − pn| + |pn −
sin(−π/2)| < 1 + 1 = 2, a contradiction. Since
pn(x) is not a constant polynomial, it is unbounded,
so is |pn(x)− sinx|, contradicting to the assumption
that |pn(x) − sinx| < 1 for all x ∈ R. (b) Because
for any polynomial

∑n
k=0 akx

k we have for x > 0
that ex > xn+1/(n + 1)! and |ex − ∑n

k=0 akx
k| ≥

xn+1/(n + 1)! −∑n
k=0 |ak|xk > 1 for all sufficiently

large x > 0. Hence it is not possible to have a se-
quence of polynomials to converge uniformly to ex.
[#27.6*] Because the Bernstin polynomials are con-
tinuous functions on [0, 1].
[#28.2*] Use definition.
[#28.4*] (a) For x 6= 0, f(x) = x2 sin( 1x ) is continu-
ously differentiable by product and chain rules, and
f ′(x) = 2x sin( 1x )− cos( 1x ). (b) By definition,

f ′(0) = lim
x→0

f(x)− f(0)

x− 0

= lim
x→0

x2 sin(1/x)− 0

x
= lim

x→0
x sin(1/x) = 0

because sin(1/x) is bounded and x → 0 in the
product. (c) Since limx→0 2x sin(1/x) = 0 and
limx→0 cos(1/x) does not exist, limx→ 0f ′(x) =
limx→0(2x sin(1/x)−cos(1/x)) does not exist. There-
fore limx→0 f ′(x) = f ′(0) = 0 does not hold, and f ′

is not continuous at x = 0 by definition.
[#28.6*] Similar to #28.4 above.
[#29.2*] Let f(x) = cosx. f is differentiable every-
where and f ′(x) = − sinx. Since f is continuous on
[x, y] (or [y, x] if y < x) and differentiable on (x, y)
(or (y, x) respectively), then by MVT, there exists a
z between x, y such that

cosx− cos y

x− y
=

f(x)− f(y)

x− y
= f ′(z) = − sin z.

Hence | cosx− cos y| = | − sin z(x− y)| = | sin z||x−
y| ≤ |x− y| follows.
[#29.5*] By definition,

|f ′(x)| = lim
y→x

∣

∣

∣

∣

f(y)− f(x)

y − x

∣

∣

∣

∣

≤ lim
y→x

|y − x|2
|y − x| = lim

y→x
|y − x| = 0.

Therefore f ′(x) = 0 for all x and f ≡constant.
[#29.10*] Let g(x) = x2 sin(1/x), x 6= 0 and g(0) =
0. Then f(x) = g(x) + x/2. From #28.4 g is differ-
entiable everywhere with g′(0) = 0 but the derivative
g′ is continuous everywhere except at x = 0. Then
by the summation theorem of derivatives we have
f ′(0) = g′(0) + 1/2 = 1/2 > 0. (b) For any inter-
val (a, b), a < 0 < b about 0, there exists an integer
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n such that 0 < xn = 1
2nπ < b. At the point xn,

f ′(xn) = 0− 1+1/2 = 1/2. Since f ′ is continuous at
xn, ∃δ > 0 s.t. |x−xn| < δ =⇒ |f ′(x)−f ′(xn)| < 1/4
which implies f ′(x) < f ′(xn) + 1/4 = −1/4 < 0 for
all x ∈ (xn−δ, xn+δ) ⊂ (a, b). Therefore f is strictly
decreasing in the subinterval (xn−δ, xn+δ). (c) Even
though f ′(0) > 0 function f does not satisfy the con-
dition of Corollary 29.7(i) in any neighborhood of 0,
hence the result does not apply. Moreover, this ex-
ample shows the result can be false if the sufficient
conditions are not met.
[#29.13*] Let h(x) = g(x) − f(x). Then h(0) =
g(0)− f(0) = 0 and h′(x) = g′(x)− f ′(x) ≥ 0 for all
x ∈ R. Therefore h is increasing on R. In particular,
for x ≥ 0, h(x) ≥ h(0) = 0, implying g(x)− f(x) ≥ 0
and g(x) ≥ f(x) for all x ≥ 0 follows.
[#29.18*] By MVT, there exists an xn between sn−1
and sn for all n ∈ N such that

∣

∣

∣

∣

sn+1 − sn
sn − sn−1

∣

∣

∣

∣

=

∣

∣

∣

∣

f(sn)− f(sn−1)

sn − sn−1

∣

∣

∣

∣

= |f ′(xn)| ≤ a < 1.

Thus |sn+1 − sn| ≤ a|sn − sn−1| ≤ an|s1 − s0|. Now
for any m ≥ n, let m = n+ k with k ≥ 0. We have

|sm − sn| = |sn+k − sn+k−1 + sn+k−1 − · · ·
− sn+1 + sn+1 − sn|

≤ |sn+k − sn+k−1|+ · · · |sn+1 − sn|
≤ an+k−1|s1 − s0|+ an+k−2|s1 − s0|+ · · ·

+ an|s1 − s0|
= (an+k−1 + an+k−2 + · · ·+ an)|s1 − s0|

= an
1− ak

1− a
|s1 − s0| ≤

an

1− a
|s1 − s0|

since 0 ≤ a < 1. If s1 = s0, then |sm − sn| =
0 < ε for any ε and {sn} is clearly a Cauchy se-
quence. Otherwise if s1 6= s0 then ∀ε > 0 let

N = max{1,
(

ln ε(1−a)
|s1−s0|

)

/ ln a}, then m ≥ n > N

implies |sm − sn| ≤ an

1−a |s1 − s0| < aN

1−a |s1 − s0| = ε.
Hence {sn} is Cauchy and limn→∞ sn = s∗ ∈ R ex-
ists, with s∗ satisfying f(s∗) = s∗.
[#31.1*] Let f(x) = cosx. Then for k =
0, 1, 2, . . . and x = 0, f (4k)(x) = cosx =
1, f (4k+1)(x) = − sinx = 0, f (4k+2)(x) = − cosx =

−1, f (4k+3)(x) = − sinx = 0. Hence the Taylor se-

ries is
∑∞

n=0
f(n)(0)
n! xn =

∑∞
j=0(−1)j x2j

(2j)! . Because

|f (n)(x)| ≤ 1, by Taylor’s Theorem, |Rn(x)| ≤ |x|n
n! →

0 as n → ∞ for every x ∈ R. Hence the Tay-
lor series of cosx converges to itself and cosx =
∑∞

n=0(−1)n x2n

(2n)! .

[#31.3*] (a) By induction there exist polynomials

pn(x) of degree 3n such that g(n)(x) = pn(
1
x )e

−1/x2

for x 6= 0 and n ≥ 1. For n = 1, it is
straightforward to verify that g′(x) = 2

x3 e
−1/x2

for x 6= 0. Assume the case for n, and con-
sider g(n+1)(x) = (g(n)(x))′ = (pn(

1
x )e

−1/x2

)′ =

p′n(
1
x )(− 1

x2 )e
−1/x2

+pn(
1
x )
2
x3 e

−1/x2

= pn+1(
1
x )e

−1/x2

with pn+1(x) clearly a polynomial of degree 3(n+1).
To show g(n)(0) = 0 we use induction again. g′(0) =

limx→0
g(x)−g(0)

x−0 = limx→0
e−1/x2

x = limy→∞
y

ey2

with y = 1/x. Since ey
2

=
∑ y2n

n! ≥ y2n

n! for

any n, we have limy→∞
y

ey2 < yn!
y2n = 0. Simi-

larly, assume g(n)(0) = 0 we can show g(n+1)(0) =

limx→0
g(n)(x)−g(n)(0)

x−0 = limx→0 pn(1/x)e1/x
2

/x =

limy→∞ ypn(y)/e
y2 ≤ limy→∞ ypn(y)k!/y

2k = 0 as
k can be chosen so that 2k > 3n+ 1, with the latter
to be the degree of ypn(y). (b) Since g

(n)(0) = 0, the

Taylor series is f(x) =
∑ g(n)(0)

n! xn ≡ 0 = g(0) which
agrees with g(x) only at x = 0.

[#31.6*] (a) Let M be defined as f(x) = f(0) +
∑n−1

k=1
f(k)(0)
k! xk + M

n! x
n for x 6= 0, that is M =

n!(f(x) − f(0) −∑n−1
k=1

f(k)(0)
k! xk)/xn. Define for t ∈

[0, x], F (t) = f(t) +
∑n−1

k=1
(x−t)k
k! f (k)(t) +M (x−t)n

n! .
Then F (t) is continuous in [0, x] and differentiable
in (0, x) because f (n) exists in |x| < R. In addi-

tion, F (0) = f(0) +
∑n−1

k=1
f(k)(0)
k! xk + M

n! x
n = f(x)

by the definition for M , and F (x) = f(x) ob-
viously. Hence F (0) = F (x), and Rolle’s Theo-
rem, there is a y ∈ (0, x) such that F ′(y) = 0.

Since F ′(t) = f ′(t) +
∑n−1

k=1(−
(x−t)(k−1)

(k−1)! )f (k)(t) +
∑n−1

k=1
(x−t)k
k! f (k+1)(t) −M (x−t)(n−1)

(n−1)! . Changing the

summation index by k − 1 = i for the first sum and
renaming k = i for the second, regrouping, simplify-
ing by cancellation, then we have F ′(t) = f ′(t) +
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∑n−2
i=0 (−

(x−t)i
i! )f (i+1)(t) +

∑n−1
i=1

(x−t)i
i! f (i+1)(t) −

M (x−t)(n−1)

(n−1)! = (x−t)(n−1)

(n−1)! f (n)(t) − M (x−t)(n−1)

(n−1)! =

(x−t)(n−1)

(n−1)! (f (n)(t) − M). Since y 6= x, F ′(y) =

(x−y)(n−1)

(n−1)! (f (n)(y)−M) = 0 iff f (n)(y)−M = 0.


