Print Your Name Legibly:__

Score: _____

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, or formula sheets allowed.

- 1. (30 pts) For each of the following statements, please *circle* T (True) or F (False). You do not need to justify your answer.
 - (a) T or F? The eigenvalue of a matrix is always a real number.
 - (b) T or F? The eigenvalue of a symmetric matrix is always positive.
 - (c) T or F? The singular value of a matrix can be any real number.
 - (d) T or F? The number of singular values of a matrix equals the dimension of the null space of the matrix.
 - (e) T or F? There are matrixes which do not have any eigenvalue.
 - (f) T or F? Any eigenvector of a matrix is in the column space of the matrix.
 - (g) T or F? For matrix multiplication it is always true that AB = BA.
- 2. (20 pts) Let $A = \begin{bmatrix} 4 & 1 \\ 2 & 0 \end{bmatrix}$.
 - (a) Use elementary row reduction to find the inverse A^{-1} .

(b) Find all eigenvalues of A.

- 3. (20 pts) Let $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$.
 - (a) Is $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ an eigenvector of A? Justify your answer.

- (b) Is 1 an eigenvalue of A? Justify your answer.
- $4. \ (20 \text{ pts}) \text{ Let } W = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \right\}.$
 - (a) Find a basis for W.

(b) Write every non-basis vector of the spanning set as a linear combination of the basis vectors.

- 5. (15 pts) Let $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$.
 - (a) Find the distance between \mathbf{u} and \mathbf{v} .
 - (b) Find the angle between \mathbf{u} and \mathbf{v} .

- 6. (20 pts) Let $W = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$.
 - (a) Find a basis for the orthogonal complement W^{\perp} of W.

(b) Find an orthogonal basis for W^{\perp} .

7. (20 pts) Let matrix A be diagonalized as below

$$A = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}^{-1}$$

- (a) What are the eigenvalues of A?
- (b) Find a basis for the eigenspace of the largest eigenvalue.
- (c) Find the determinant of A.
- 8. (20 pts) Find an orthogonal diagonalization (or spectral decomposition) of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

9. (15 pts) The singular value decomposition of a 2×3 matrix is given as

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix}$$

- (a) What are the eigenvalues of the product $A^{T}A$?
- (b) What is a singular value decomposition of the transpose A^T ?
- 10. (20 pts) Find a singular value decomposition of $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$.