Math 221-02 Test 3	Spring 2008

Name:______

Instructions: You must show supporting work to receive full and partial credits. No text book, personal notes, formula sheets allowed. **One formula sheet is provided on next page.**

1(20pts) Find the general solution of the equations

$$\begin{cases} x' = 5x - 5y \\ y' = 2x - y \end{cases}$$

2(20pts) Find the general solution of the equations

$$\begin{cases} x' = 2x - 5y \\ y' = 2y \end{cases}$$

3(20pts) Use definition only to find the Laplace transform of the function

$$f(t) = \begin{cases} t, & t < 1 \\ 0, & t \ge 1 \end{cases}$$

(You can use the formula $\int t e^{bt} dt = \frac{1}{b} t e^{bt} - \frac{1}{b^2} e^{bt} + C.)$

4(20pts) Find the Laplace transform or inverse transform:

- (a) Find $\mathcal{L}\{te^{2t}\sin t\}(s)$.
- (b) If $\mathcal{L}^{-1}\left\{\frac{2}{s(s^2+2s+2)}\right\}(t)$.

5(20pts) Use the Laplace method to solve the initial value problem

$$x'' + 4x = 4$$
, $x(0) = 4$, $x'(0) = 0$.

Bonus 2pts: The state fish of Nebraska is _____

The End

Table of Laplace Transforms and Inverse Transforms

$f(t) = \mathcal{L}^{-1}{F(s)}(t)$	$F(s) = \mathcal{L}\{f(t)\}(s)$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}} , s > a$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2} , s > a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2} \ , s>a$
$e^{at}f(t)$	$F(s) _{s\to s-a}$
u(t-a)f(t)	$e^{-as}\mathcal{L}\{f(t+a)\}(s),$ alternatively,
$u(t-a)\big[f(t)\big _{t\to t-a}\big]$	$e^{-as}F(s)$
$\delta(t-a)f(t)$	$f(a)e^{-as}$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$, with special case
	$\mathcal{L}^{-1}\{F(s)\}(t) = -\frac{1}{t}\mathcal{L}^{-1}\{F'(s)\}(t)$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) \ d\sigma, \text{ with special case}$
	$\mathcal{L}^{-1}{F(s)}(t) = t\mathcal{L}^{-1}\left\{\int_{s}^{\infty} F(\sigma) \ d\sigma\right\}(t)$
$\int_0^t f(\tau) \ d\tau$	$\frac{F(s)}{s}$
f(t) * g(t)	F(s)G(s)