Math 221-02 Test 2 Spring 2008

Name:______Score:_

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

- 1(10pts) Change the equation $ty''(t) + (\sin t + 3t^2)(y')^2 = 5$ to a system of two 1st order equations.
- 2(10pts) The roots of the characteristic equation to the linear differential equation of constant coefficients $a_5y^{(5)} + a_4y^{(4)} + a_3y^{(3)} + a_2y'' + a_1y' + a_0y = 0$ include 0, 0, 1, 2 + 3i. Find the general solution to the differential equation.
- 3(15pts) The linear differential equation of constant coefficients $a_3y^{(3)} + a_2y'' + a_1y' + a_0y = \sin x + 3xe^{4x}$ has $y_1 = e^{4x}, y_2 = \cos x$ as solutions to the homogeneous equation. Find a **FORM** for a particular solution to the nonhomogeneous equation.
- 4(15pts) Solve the initial value problem y'' + 4y' + 13y = 0, y(0) = 2, y'(0) = 1.
- 5(10pts) Find a general solution to the Euler's equation $2x^2y'' + 5xy' + y = 0$.
- 6(10pts) Find a general solution to the system of equations $x'(t) = \frac{1}{2}y(t), y'(t) = -8x(t)$.
- 7(15pts) Use the method of undetermined coefficients to find a particular solution to the equation $y' + 3y = 10e^x \cos(2x)$.
- 8(15pts) Use the method of variation of parameters to find a particular solution to the equation $x^2y'' 2xy' + 2y = x^3e^{2x}$ given that $y_1(x) = x, y_2(x) = x^2$ are solutions to the homogeneous equation.

END