Maple

Exact solutions

zrical solutions

The command dsolve encountered in Section 3.7 can be used for systems
too. A convenient way to find the exact solution of a system or of an initial
value problem is to first write each equation separately and then apply
the command dsolve, with or without initial conditions.

e ey
EXAMPLE ¥ To solve the initial value problem

x'=x4+y—-z
y'=-x+y+z, x(0) = 1, y(0) = —1, z(0) = 0O,
2 =x—y+z

proceed as shown below. (Here Maple has been set to echo input and
show results in typeset format.) Write first the three equations

> el:=diff(x(t), t)=x(t)+y(t)-z(t);

el:= %x(t) = x(t) + y(£) — z(8)

> e2:=diff(y(t),t)=-x(t)+y(t)+z(t);

e2 1= %y(t) = —x(t) + y(t) + z(t)

> e3:=diff(z(t),t)=x(t)-y(t)+z(t);

e3 .= %z(t) = x@) —y@t)+ z@)

and then use the command dsolve as follows:

> dsolve({el,e2,e3,x(0)=1,y(0)=-1,2z(0)=0},
(), y(t),z(0D));

Maple will display the solution
{z@t) = ge' 3sin(t /3), y(t) = %et(—s cos(t V/3) — /3sin(t V/3)),

x(t) = —%et(—S cos(t v/3) + /3sin(t V3

With the help of Maple we will numerically solve the initial value

problem
x'=tx~—y+z
y' =3x+y—2z, x(0) = y(0) = 1, 2(0) = O, (1)
2 =x+y—tz



in the interval [0, 1.5] with step size 0.1. We will first use Euler’s method
and then the second-order Runge-Kutta method.

Euler's method To numerically solve the initial value problem (1) with
the help of Euler's method, we first write the three functions defining
the vector field and then assign the initial conditions fo, Xo, Yo, Zo. the step
size h, and the number of steps n. The do command then uses Euler’s
formula to iterate all the steps.

> Fl:=(t,x,y,Zz)->L*X-Y+Z;
fli=Uxy2z) > tx—y+z
> f2:=Ct,X,y,Z)->3*X+y—-Z;
f2:=xy,z)—> 3x+y—=z
> f3:=(t,x,y,Z)->X+y-t*z;
f3:=U,xy z) > x+y—tz
t0:=0: x0:=1: y0:=1: z0:=0:
:=0.1:
n:=15:
t:=t0: x:=x0: y:=y0: z:=z0:
for i from 1 to n do
u:=F1¢t,x,y,z): v:=Ff2(t,x,y,2z): w:=F3(t,x,y,z):
x:=x+h*u: y:=y+h*v: z:=z+h¥*w:
t:=t+h:
print(t,x,y,z);
od:

VY VVY

Maple displays the numerical result below:

.1, .9, 1.4, .2

.2, .789, 1.79, .428

.3, .66858, 2.1629, .67734

.4, .5400814, 2.512030, .9401678

.5, .404498436, 2.83124064, 1.207772228

.6, .2623765166, 3.114937012, 1.470957524

.7, .1137211588, 3.358047916, 1.720431426

.8, -.0420800091, 3.555925913, 1.947178134

.9, -.2063211877, 3.704176688, 2.142788474
1.0, -.3810289160, 3.798419153, 2.299723061
1.1, -.5690014168, 3.833980087, 2.411489779
1.2, -.7738406035, 3.805528693, 2.472723770
1.3, -.9999819682, 3.706657004, 2.479165727
1.4, -1.252728752, 3.529411541, 2.427541686
1.5, -1.538297763, 3.263779901, 2.315354129

The second-order Runge-Kutta method In case of the second-order Runge-
Kutta method, the first part of the program is the same as for Euler's
method. The difference appears in using the command do. The changes
reflect formula (5) of Section 4.5. The program works as follows.

> for i from 1 to n do
a:=F1(t,x,y,z): b:=F2(t,x,y,z): c:=F3(t,x,y,Zz):



u:=x+h*a: v:=y+h*b: w:=z+h*c:
=x+h*(a+fl(t+h,u,v,w))/2:
i=y+h*(b+f2(t+h,u,v,w))/2:
:=z+h*(c+f3(t+h,u,v,w))/2:
t:i=t+h:

print(t,x,y,z):;

od:

N < x|

Maple displays the numerical result below:

.1, .8945000000, 1.395000000, .2140000000

.2, .7807439500, 1.773058750, .4513366500
.3, .6603398859, 2.127972638, .7042301039
-4, .5344876539, 2.454202842, .9641548238
.5, .4038917521, 2.746862558, 1.222215625
.6, .2686896235, 3.001637640, 1.4659518363
-7, .1283964925, 3.214640732, 1.697508652
-8, -.0181336987, 3.382201772, 1.898255436
.9, -.1727331441, 3.500599904, 2.064661404
1.0, -.3379339723, 3.565743174, 2.190588593
1.1, -.5169751448, 3.572802772, 2.270894318
1.2, -.7138073142, 3.515808053, 2.301379180
1.3, -.8331009066, 3.387207087, 2.278654656
1.4, -1.180262830, 3.177395277, 2.199942240
1.5, -1.461467158, 2.874211673, 2.062818978

To draw graphs of x, y, and z using the Runge-Kutta method, we can
proceed as follows:

> fl:=(t,x,y,Z)->t*X-y+2;
fl:=0xy,2) > tx—y+z
> f2:=(t,x,y,zZ)->3*xX+y-2;
f2:=(x,y,2z)— 3x+y—2z
> f3:=(t,x,y,Z)->x+y-t*z;

f3:=(tx,y,2z)—> x+y—tz

t:=t0: x:=x0: y:=y0: z:=z0: M:=M0O: N:=NO: P:=PO:
for i from 1 to n do

> t0:=0: x0:=1: yO0:=1: z0:=0:

> MO:=[t0,x0]: NO:=[tO0,y0]: PO:=[t0,z0]:
> h:=0.1:

> n:=15:

>

>

a:=f1(t,x,y,z): b:=f2(t,x,y,z): c:=f3(t,x,vy,2):
u:=x+h*a: v:=y+h*b: w:=z+h*c:
x:=x+h*(a+f1(t+h,u,v,w))/2:
y:=y+h*(b+f2(t+h,u,v,w))/2:
z:=z+h*(c+f3(t+h,u,v,w))/2:
M:=(M,[t,x]): N:=(N,[t,y]): P:=(P,[t,z2]):
t:=t+h:
od:

PLOT(CURVES([M], [N],LCP1D);
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The graphs of the solutions are drawn in Figure 4.6.1. Compare these
graphs with the numerical data obtained with the help of the Runge-
Kutta method.

Maple is also capable of finding the eigenvalues and eigenvectors of a
given matrix. For this it is endowed with a linear algebra package, which
we must call with a specific command. Then we need to define the matrix
and finally use the commands eigenvalues and eigenvectors.

EXAMPLE 2 To obtain the eigenvalues and eigenvectors of the matrix

1 —3 3
A=13 —5 3},
6 —6 4

we can proceed as follows. We first call the linear algebra package with
the command with(1inalg). We then use the command matrix to ex-
plain to Maple that the matrix we define is three-dimensional (i.e., three
rows and three columns), and then write the elements of the matrix in a
sequence starting with the first row, then the second row, etc. The com-
mand eigenvalues will find that the characteristic polynomial has the
simple root 4 and the double root —2. The command eigenvectors will
then obtain for the eigenvalue —2 the two eigenvectors that it writes
down, and for the eigenvalue 4 the one eigenvector that it writes down.

> with(linalg):
> A := matrix(3,3, [1,-3,3,3,-5,3,6,-6,4]);

1 —3 3
A:=[3 —5 3]
6 —6 4
> eigenvalues(A);
4, —2, -2
> eigenvectors(A);

[—22 {[1,1,0L[-101]}] [41 {[1 1, 2]}]
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With the help of the DEplot command we can draw the direction field
and the flow of a two-dimensional linear or nonlinear system in the phase
plane. To obtain the curves, we need to specify initial conditions and
Maple will draw a curve for each specified initial condition.

EXAMPLE 3 To draw the direction field and the solution curves
through (1.2, 1.2), (1, 0.7), and (0.8, 0.1) for the two-dimensional system

x'=x(1—-y)
y' = 3y(x — 1),

proceed as follows. First call the package DEtools and then use the
command DEplot as shown below. Since the curve is obtained numeri-

cally, a step size is also specified. Maple then draws the picture in Figure
4.6.2.

> with(DEtools):

> DEplot([diff(x(t),t)=x(t)*(1-y(tl),
difFFCy () ,t)=.3*y(D)*(x(t)-1D], [x(t),y(td],t=-7..7,
[[x(0)=1.2,y(0)=1.2],[x(0)=1,y(0)=.71,
[x(0)=0.8,y(0)=1]],stepsize=.2);




