Math	221	/821
watii	441	/ ∪⊿」

Final Exam

Dec. 14, 1999

Na	me: Score:
Ins	tructions: You must show supporting work to receive full and partial credits.
1(16 pts)	Find the general solution to the separable equation $\frac{1}{\cos x} \frac{dy}{dx} = \frac{1}{(y+1)}$.
2(16 pts)	Solve the initial value problem of the linear equation $y' + \frac{2}{t}y = 1, y(1) = 2$.
3(18 pts)	(a) Use the Euler method with step size $h=0.2$ to approximate the solution to the initial value problem $y'=2t-y^2, y(0)=0$ over the interval $0 \le t \le 0.4$. (b) Sketch your approximating solution.
	Find the general solution to the equation $y'' + 2y' + y = 0$.
5(16 pts)	Use the method of undetermined coefficients to find a suitable form for a particular solution $Y(t)$ to the equation
	$y'-y=t^2-(t-1)\sin 3t+2e^t.$
C(1F +-)	(DO NOT SOLVE FOR $Y(t)$ BY FINDING ALL THE UNDETERMINED COEFFICIENTS!)
	Use the method of undetermined coefficients to find a particular solution to the equation $y' - 3y = 3t$. (a) The eigenvalues and their eigenvectors for a linear equation $\vec{x}' = A\vec{x}$ are given as $\lambda_{1,2} = 1 \pm i2$ and
r(10 pts)	$\vec{u}_{1,2} = \begin{pmatrix} 1 \mp i \\ 2 \end{pmatrix}$, respectively. Find the general solution to the equation.
	(b) The eigenvalue of a linear equation $\vec{x}' = A\vec{x}$ is $\lambda = -2$ and it is repeating. An eigenvalue \vec{u} and
	a solution to the equation $(A - \lambda I)\vec{v} = \vec{u}$ are given as $\vec{u} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, respectively. Find two
	linearly independent solutions to the equations and sketch a phase portrait for its trajectories.
8(18 pts)	(a) Find the eigenvalues of the matrix $\begin{pmatrix} 3 & -5 \\ 2 & -4 \end{pmatrix}$.
0/10 +)	(b) Find an eigenvector for the largest eigenvalue.
9(18 pts)	A partial phase portrait is sketched for a system of competing species.
	(a) Completing the phase portrait by marking the
	equilibrium points, some representative field vectors
	on the nullclines and the regions bounded by the null- clines, some representative solution trajectories.
	(b) Under what conditions do they co-exist? Under
	what conditions do they not?
10(18 pts)	Find the Inverse Laplace Transforms of the given functions
	(a) $\mathcal{L}^{-1}\left[\frac{1}{s^2-2s-3}\right](t)$. (<i>Hint:</i> Use partial fraction first.)
	(b) $\mathcal{L}^{-1}\left[\frac{1}{s^2-2s+3}\right](t)$. (<i>Hint:</i> Use complete squaring first.)
11(16 pts)	Find the Laplace Transform $\mathcal{L}[y(t)](s)$ of the solution $y(t)$ to the initial value problem
	$y'''(t) - 2y(t) = 2e^{2t}\cos 3t$, $y(0) = 2$, $y'(0) = 0$, $y''(0) = 0$.
	(DO NOT SOLVE FOR $y(t)!$)

12(18 pts) Use the method of Laplace Transformation to find the solution y(t) to the initial value problem

$$y'(t) - y(t) = 1$$
, $y(0) = 2$.