DIFFERENTIAL EQUATIONS: A MODELING APPROACH

by Glenn Ledder

Corrections for the First Printing

Corrections to the Exercise Statements

- **p. 356, Exercise 6.2.25** The inequality in part b should be $4b^3d < 27c^2e^2$ and the condition to be explained in part d should be d(b+ce) > 1.
- **p. 386, Exercise 6.5.5** The initial conditions should be (0, 1) rather than (1, -2).
- **p. 396, Exercise 6.6.11**c The form of the third solution should have $(c_1\mathbf{u} + c_2\mathbf{v})$ instead of \mathbf{v} .
- **p. 408, Exercises 6.7.7 and 6.7.8** Change "the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ " to "the corresponding non-linear system $\mathbf{x}' = \mathbf{f}(\mathbf{x})$ "; elsewhere, change **A** to $\mathbf{J}(0,0)$.
- **p. 409, Exercise 6.7.10** Replace $\epsilon = e/(qr)$ with R = qr/e, assume H = 0.5 for parts b and c, eliminate the phrase "in the limit $\epsilon \to 0$ ", change $\epsilon = 0.2$ to R = 5.
- **p. 467, Exercises 7.5.1 through 7.5.4** The references to Section 4.6 should be for Exercises 5-8, not Exercises1-4

Wrong Answers

The answers provided for Exercises 3.6.9, 4.4.11f, 4.5.33, 6.1.15, 7.5.3 are incorrect.