Name: _____

Score: _

Instructions: You must show supporting work to receive full and partial credits. No text book, notes, formula sheets allowed.

1(18pts) Three points in the space are given: P(0,1,2), Q(2,0,1), R(-1,-1,1).

(a) Find the area of the triangle ΔPQR .

(b) Find an equation of the plane containing the points.

(c) Find a parametric equation of the line through point R and perpendicular to the plane.

2(7pts) Find the angle between two planes: x + y + z = 1 and x - y - z = 10.

- **3(10pts)** Three points in the space are given: P(1,0,0), Q(0,2,0), R(1,2,3).
 - (a) Find the projection of vector \vec{PR} on \vec{PQ} : $\mathbf{proj}_{\vec{PQ}}\vec{PR}$.

(b) Is the vector $\vec{PR} - \mathbf{proj}_{\vec{PQ}}\vec{PR}$ parallel or perpendicular to \vec{PQ} ? Sketch a picture to explain.

4(7pts) The acceleration of a moving particle is given as $\vec{a}(t) = \langle e^{2t}, \frac{2}{1+t^2}, t \sin t^2 \rangle$. Find its velocity $\vec{v}(t)$ if $\vec{v}(0) = \langle 0, 1, 1 \rangle$.

5(8pts) Determine if the following two lines intersect: x = 1 + t, y = -1 + 2t, z = 2 - t, and the line through points P(-1, 0, 3), Q(-3, -1, 2). Find the intersection point if they do.

9(7pts) Find an parametric equation for the line tangent to the curve $\vec{r}(t) = \langle t, \cos t^2, \ln(t^2 + 1) \rangle$ at the point when t = 0.

10(6pts) Sketch an assortment of level curves for the function z = 2xy and label each level curve with its function value.

11(12pts) Find the limit if exists. If the limit does not exist, explain why not.

(a)
$$\lim_{(x,y)\to(1,0)} \frac{xy}{x^2 - y - 1}$$

(b) $\lim_{(x,y)\to(1,3)} \frac{x+y-4}{\sqrt{x+y}-2}$